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Abstract

This paper formulates and analyzes a general model of elections in which candidates receive private sig-
nals about voters’ preferences prior to committing to political platforms. We fully characterize the unique
pure-strategy equilibrium: After receiving her signal, each candidate locates at the median of the distribu-
tion of the median voter’s location, conditional on the other candidate receiving the same signal. Sufficient
conditions for the existence of pure strategy equilibrium are provided. Though the electoral game exhibits
discontinuous payoffs for the candidates, we prove that mixed strategy equilibria exist generally, that equi-
librium expected payoffs are continuous in the parameters of the model, and that mixed strategy equilibria
are upper hemicontinuous. This allows us to study the robustness of the median voter theorem to private
information: Pure strategy equilibria may fail to exist in models “close” to the Downsian model, but mixed
strategy equilibria must, and they will be “close” to the Downsian equilibrium.
© 2006 Elsevier Inc. All rights reserved.

JEL classification: C72; D72; D78

1. Introduction

The most familiar and widely-used model of elections in political science and political econ-
omy is the classical Downsian model (Hotelling, 1929; Downs, 1957; Black, 1958). The central
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result is the median voter theorem: When two office-motivated candidates are completely in-
formed about the median voter’s ideal point, the unique electoral equilibrium is that both candi-
dates locate there. The political science literature on “probabilistic voting” relaxes the assumption
of complete information and assumes only that candidates are symmetrically informed, sharing
a common prior distribution about the location of the median voter. It is a “folk theorem” that, in
this environment, the unique Nash equilibrium is for both candidates to locate at the median of
the prior distribution of the median voter’s ideal point. In reality, however, candidates’ platforms
often diverge from their estimates of the median voter’s preferred policy, as is widely documented
in the empirical literature.1

Symmetric information is clearly very strong. It is evident that political candidates do not
precisely know voters’ policy preferences when selecting platforms, and that asymmetries in can-
didates’ information about voters may arise from many sources—differences in the candidates’
personal experiences, or different backgrounds of their political advisors, or different results
from private polling conducted before the election. There is considerable supporting evidence.
Eisinger (2003) finds that since the Roosevelt administration, private polls have been an integral
part of the White House modus operandi. Medvic (2001) finds that 46 percent of all spending
on US Congressional campaigns in 1990 and 1992 was devoted to the hiring of political consul-
tants, primarily political pollsters. In addition, the major parties provide polling services to their
candidates. Of course, private polling information is jealously guarded by candidates and parties.
Indeed, Nixon had polls routinely conducted, but did not disclose results even to the Republi-
can National Committee; and F.D. Roosevelt described private polling as his “secret weapon”
(Eisinger, 2003).

In this paper, we develop a general model of elections in which candidates receive private
polling signals. Each candidate receives a signal drawn from an arbitrary finite set of possible
signals about the location of the median voter’s ideal policy; each candidate updates about the
location of the median voter and about her opponent’s platform before choosing a platform from
the real line; and the candidate whose platform is closest to the median voter wins. The set-
ting we consider is quite general. In particular, we allow for any possible correlation in polling
signal structure and any number of signal realizations. We allow for any family of conditional
distributions of the random median policy such that the conditional distributions are continu-
ous with connected supports. While we give results for a baseline model in which candidates
have identical polling technologies, our most general results allow candidates to have different
polling technologies, as might be expected when an incumbent runs against a challenger. Within
this framework, we derive the existence and continuity properties of electoral equilibria, and
we determine the ways in which the classical median voter theorem is and is not robust to the
introduction of small amounts of asymmetric information.

The introduction of private polling to the model generates subtle informational incentives
for candidates, and logic of the median voter theorem does not extend to the general private-
information environment in the expected way. In particular, a candidate does not target the
median voter conditional on his own signal. We prove that in the symmetric model, there is

1 See, for example, the National Election Survey data estimating presidential candidates’ platforms from 1964 to 1972
(Page, 1978, Chapters 3 and 4) and for 1984 and 1988 races (Merrill and Grofman, 1999, pp. 55–56). Budge et al.
(2001) compare estimates of the US and British median voters based on survey data (such as the NES and British
Election Survey) with estimates of candidates’ platforms derived from speech and writing context analyses. They find
clear evidence of divergence from the median policy, and no evidence of extremization. Poole and Rosenthal (1997)
obtain similar findings using roll call voting to estimate Congress-persons’ platforms (pp. 62–63).
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at most one pure strategy equilibrium: After receiving a signal, a candidate updates the prior
distribution of the median voter, conditioning on both candidates receiving that same signal, and
locates at the median of that posterior distribution.2 In the probabilistic voting model, where
candidates have symmetric information, conditioning on one candidate receiving a signal is the
same as conditioning on both receiving it, so we obtain the traditional probabilistic version of
the median voter theorem as a special case. With private information, however, our result shows
that strategic competition leads candidates to take positions that are more extreme than their own
estimates of the median voter’s ideal policy: Asymmetric information obviously leads to policy
divergence, and the strategic effect magnifies the policy divergence already inherent in private
information.

We give sufficient conditions for existence of the pure strategy equilibrium, the key being
that conditional on a candidate receiving a signal, the probability that the opponent receives a
signal weakly to the “left” should exceed the probability that the opponent receives a signal
strictly to the “right,” and vice versa. This limits the incentive for a candidate to move away
from the equilibrium platform after any signal, and together with other background conditions,
it ensures the existence of the pure strategy equilibrium. This key condition is actually necessary
for existence in some environments. It becomes quite restrictive, however, when the number of
possible signals is large, and we conclude that the pure strategy equilibrium often fails to exist in
elections with fine polling information. In fact, we show that if we add arbitrarily small amounts
of asymmetric information to the Downsian model, then the pure strategy equilibrium may cease
to exist, highlighting the issue of robustness of the median voter theorem with respect to even
small amounts of private information.

These considerations lead us to analyze mixed strategy equilibria. Despite discontinuities in-
herent in candidate payoffs, we prove that mixed strategy equilibria exist. We show that the
(unique) mixed strategy equilibrium payoffs of our model vary continuously in its parameters,
and we use this result to prove upper hemicontinuity of equilibrium mixed strategies. Imposing
only our minimal functional form restrictions, we obtain characterization results for mixed-
strategy equilibria. We prove that the supports of mixed strategy equilibria lie in the interval
defined by the smallest and largest conditional medians, and we deduce the corollary that the
equilibrium of the traditional probabilistic voting model is unique within the class of all mixed
strategy equilibria. Furthermore, we show that the only possible atoms of equilibrium mixed
strategies are at conditional medians. As a consequence, if there is a positive probability that the
candidates converge on the same policy platform in equilibrium, then that platform must belong
to the finite set of conditional medians.

Finally, we return to the issue of robustness of the median voter theorem. Our continuity
results apply to the traditional probabilistic voting model and immediately yield robustness of
the probabilistic version of the median voter theorem: When candidate beliefs about the median
voter’s location are “close” to some common distribution, mixed strategy equilibria must be
“close” to the median of that distribution. Furthermore, even though the Downsian model is
marked by fundamental discontinuities, the robustness result extends. Thus, in the Downsian
model, the median voter theorem is fragile in terms of pure strategies, but robust in terms of
mixed strategies: Mixed strategy equilibria exist and must be close to the median when small

2 This result is reminiscent of the findings of Milgrom (1981), who shows that in a common-value second-price auction,
the equilibrium bid of a type θ corresponds to the expected value of the good conditional on both types being equal to θ .
Here, since candidates maximize the probability of winning, the relevant statistic is the median.
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amounts of asymmetric information are added to the model.3 Lastly, we give examples showing
the robustness result for the Downsian model relies critically on complete information: It does
not extend to general models with discontinuous conditional distributions.

2. Related literature

Bernhardt et al. (2005) (henceforth BDS) explicitly calculate the (essentially unique) mixed
strategy equilibrium in a tractable version of our model of privately informed candidates. This al-
lows them to derive comparative statics and investigate voter welfare. Ledyard (1989) first raised
the issue of privately-informed candidates and considered several examples exploring the effects
of the order of candidate position-taking, public polls, and repeated elections. Other papers have
independently considered aspects of elections with privately-informed candidates. Chan (2001)
studies a three-signal model that differs structurally from ours in that a valence term, common
to all voters but unobserved by the candidates, is attached to each candidate. He only shows
existence of a pure strategy equilibrium when signals are almost uninformative, circumventing
non-convexities in candidate payoffs. Ottaviani and Sorensen (2003) consider a model of fi-
nancial analysts who receive private signals of a firm’s earnings and simultaneously announce
forecasts, with rewards depending on the accuracy of their predictions. The case of two analysts
can be interpreted as a model of electoral competition with privately-informed candidates similar
to ours, except that the authors assume signals are continuously distributed. They prove existence
of mixed strategy equilibrium when the policy space is finite, permitting the application of stand-
ard purification arguments to obtain a pure strategy equilibrium. For infinite policy spaces, they
give a characterization of equilibrium strategies based on a first order analysis, but they do not
prove existence, which our results indicate is a significant issue.

Presumably, given the difficulty of observing the structure of information in an election, the
ideal analysis would model signals as generated by an arbitrary probability measure, conditional
on the true location of the median voter. We choose to model signals as discretely distributed,
providing a natural model and giving us a handle on issues of equilibrium existence and char-
acterization. This also captures the simple special cases, e.g., two or three possible signals, that
are likely to be considered in applications of the model. Moreover, since we allow for arbitrary
discrete distributions of signals, we gain insight into the continuous signal model when viewed
as a limit of discrete models. For example, because pure strategy equilibria typically fail to exist
when the number of signals is large, we see that pure strategy equilibria in the continuous signal
model, if they exist and if they are robust to discretization of the signal space, must be viewed as
the limit of mixed, rather than pure, strategy equilibria.

More distantly related, in Heidhues and Lagerlöf (2003) there are two policy alternatives, all
voters prefer the implemented policy to match the unknown state of the world, and candidates
receive private signals correlated with this unknown state. They find that candidates bias their
platforms toward the prior, and that lower signal correlation leads to larger bias and lower wel-
fare. Martinelli (2001) studies a situation in which parties are better informed than voters about
the optimal policies for voters, but voters have private information of their own. If the voters’
information is biased, equilibrium results in less than full convergence even if parties know with
certainty the optimal policy for the median voter. Martinelli and Matsui (2002) extend this model

3 Banks and Duggan (2005) derive a related finding in the probabilistic voting model with expected plurality-
maximizing candidates. There, the unique pure strategy equilibrium may cease to exist if a small amount of randomness
is introduced to voter behavior, but mixed strategy equilibria exist and vary continuously in this respect.
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to the case of two policy-motivated parties. Surprisingly, in all separating equilibria, when the
left-wing party attains power, the policies it implements are to the right of the policies imple-
mented by the right-wing party when it attains power.

There is also a large literature on the convergence of policy platforms in elections, as seen
in the Downsian and probabilistic voting models. Policy convergence survives if we introduce
policy preferences for the candidates (Calvert, 1985; Duggan and Fey, 2005).4 Further variations
of the basic model can generate policy divergence. For example, adding probabilistic voting and
policy-motivation simultaneously to the basic model does so, as in any pure strategy equilibrium
a wedge appears between the candidates’ platforms (Wittman, 1983; Calvert, 1985). Also, if one
candidate has a “valence advantage,” so that all voters would vote for that candidate even if the
opponent offers a slightly better policy, then equilibria in pure strategies do not exist, and mixed
strategy equilibria obviously lead candidates to adopt distinct platforms (Groseclose, 2001 and
Aragones and Palfrey, 2002).5

3. The electoral framework

Two political candidates, A and B , simultaneously choose policy platforms, x and y, on the
real line, �. Voter utilities are symmetric. We assume that a median, denoted μ, is uniquely
defined (e.g., either the number of voters is odd, or there is a continuum of voters with ideal
policies distributed according to a density with convex support). Hence, policy z is majority-
preferred to policy w if and only if z is preferred by the median voter, and we can summarize
all relevant information about voters’ preferences by the median policy μ. Candidate A wins the
election if |x − μ| < |y − μ| and loses if the inequality is reversed; if |x − μ| = |y − μ|, then the
election is decided by a fair coin toss, so that each candidate wins with probability one half.

Candidates do not observe μ, but receive private signals, s and t , about its realization. These
signals may reflect the personal experiences of the candidates, or they may be generated by
private polls conducted by the candidates’ campaign organizations or political parties. Let S

denote the finite set of possible signals for A, and let T denote the finite set of possible signals
for B . Candidates have a common prior distribution on � × S × T , where the distribution of μ

conditional on signals s and t is Fs,t , and the marginal probability of signal pair (s, t) is P(s, t).
The marginal probability of signal s is P(s), and that of signal t is P(t), where we assume that
P(s) > 0 and P(t) > 0. Conditional probabilities P(·|s) and P(·|t) are defined using Bayes rule.
The model is fully general with respect to the correlation between candidates’ signals, allowing
for conditionally-independent signals and perfectly-correlated signals as special cases.

We impose minimal regularity conditions on the conditional distributions of the median. We
assume that each Fs,t is continuous, and that for all a, b, c ∈ � with a < b < c, if 0 < Fs,t (a)

and Fs,t (c) < 1, then Fs,t (a) < Fs,t (b) < Fs,t (c). Thus, Fs,t admits a density, denoted fs,t , with
convex support. Let ms,t be the uniquely-defined median of Fs,t . Given a subset T ′ ⊆ T , we
define Fs,T ′ by

Fs,T ′(z) =
∑
t∈T ′

P(t |s)
P (T ′|s)Fs,t (z),

4 Banks and Duggan (2005) show that convergence obtains quite generally under expected plurality maximization as
well.

5 A different modeling approach is the “citizen-candidate model” (Osborne and Slivinski, 1996; Besley and Coate,
1997), where candidates’ platforms are determined exogenously by their policy preferences.
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when P(T ′|s) > 0, and we let ms,T ′ denote the unique median of Fs,T ′ . We define FS′,t and mS′,t
analogously. We write Fs for Fs,T , the distribution of μ conditional only on s, and ms for the
associated median; Ft and mt are defined analogously.

Thus, the probability that candidate A wins when A uses platform x and receives signal s and
B uses platform y and receives signal t , is

Fs,t

(x + y

2

)
if x < y, 1 − Fs,t

(x + y

2

)
if y < x, and

1

2
if x = y.

The probability that B wins has an analogous form and, of course, is equal one minus the proba-
bility that A wins. Assuming office-motivated candidates, this defines a Bayesian game, in which
pure strategies for the candidates are vectors X = (xs) and Y = (yt ), and given pure strategies X

and Y , candidate A’s interim expected payoff conditional on signal s, denoted ΠA(X,Y |s), is
∑

t∈T : xs<yt

P (t |s)Fs,t

(xs + yt

2

)
+

∑
t∈T : yt<xs

P (t |s)
(

1 − Fs,t

(xs + yt

2

))
+ 1

2

∑
t∈T : xs=yt

P (t |s).

Candidate B’s interim expected payoff is defined analogously.
A pure strategy Bayesian equilibrium is a strategy pair (X,Y ) such that ΠA(X,Y |s) �

ΠA(X′, Y |s) for all signals s ∈ S and all strategies X′; and ΠB(X,Y |t) � ΠB(X,Y ′|t) for all
signals t ∈ T and all strategies Y ′. That is, candidates’ campaign platforms are chosen optimally
given all information available to them.

Candidate A’s ex ante expected payoff, the expected payoff before receiving a signal, is then
just the ex ante probability of winning:

ΠA(X,Y ) =
∑
s∈S

P (s)ΠA(X,Y |s).

Candidate B’s ex ante expected payoff, ΠB(X,Y ), is defined analogously. Clearly, ΠA(X,Y ) +
ΠB(X,Y ) = 1 for all strategies X and Y . Thus, (X,Y ) is a pure strategy Bayesian equilibrium if
and only if ΠA(X,Y ′) � ΠA(X,Y ) � ΠA(X′, Y ) for all X′ and all Y ′. That is, the pure strategy
Bayesian equilibria are equilibria of a two-player, constant-sum game. The constant sum property
implies that equilibria are “interchangeable”: If (X,Y ) and (X′, Y ′) are equilibria, then so are
(X,Y ′) and (X′, Y ). All of these concepts extend to mixed strategies, defined in Section 5, where
candidates use their information in a non-deterministic way.

At times, we impose more structure. Conditions (C1)–(C4) define our Canonical Model of
polling, in which candidates employ identical polling technologies and signals exhibit a natural
ordering structure. We first impose symmetry conditions (C1) and (C2).

(C1) S = T .

Thus, the same set I , with elements i, j , etc., can be used to index these sets. We then write
P(i, j) for P(si, tj ), Fi,j for Fsi,tj , and so on.

(C2) For all signals i, j ∈ I , P(i, j) = P(j, i) and Fi,j = Fj,i .

Condition (C2) implies that signal i of candidate A can be identified with signal i of candidate
B in the sense that they are equally informative. If candidates have equal access to resources
and polling technologies, then conditions (C1) and (C2) are natural assumptions. In that case, we
may be interested in equilibria in which candidates use information similarly: A symmetric pure
strategy Bayesian equilibrium is an equilibrium (X,Y ) in which xi = yi for all i ∈ I .
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Under (C1)–(C2), candidates’ ex ante payoffs are symmetric in the sense that ΠA(X,Y ) =
ΠB(Y,X) for all X and Y . Symmetry implies that if (X,Y ) is an equilibrium, then so is (Y,X).
With interchangeability, it follows that if (X,Y ) is an equilibrium, then (X,X) and (Y,Y ) are
symmetric equilibria.

The next condition says that when one candidate receives any signal, the other candidate also
receives that signal with positive probability.

(C3) For all signals i ∈ I , P(i, i) > 0.

The last condition defining the Canonical Model imposes a natural linear ordering structure on
signals. It captures the idea that “higher” signals are correlated with higher values of μ.

(C4) There exists a linear ordering � of I , with asymmetric part <,6 such that for all signals
i, j ∈ I ,

i < j if and only if for all K ⊆ I with P(K|i)P (K|j) > 0, we have mi,K < mj,K.

Note that condition (C4) implies that i < j if and only if the conditional medians satisfy mj,i <

mj,j , or equivalently (in the Canonical Model), mi,i < mj,i .
A special case of the Canonical Model is the traditional Probabilistic Voting Model, in which

information between the candidates is complete, so that P(i|i) = 1 for all i ∈ I , and the con-
ditional distribution Fi,i is common knowledge after signal pair (i, i) is realized. Since the
realizations of the candidates’ signals are common knowledge in this model, the electoral game
following any signal pair (i, i), which we refer to as the ith “component game,” can be analyzed
independently as the game with strategy set � for each candidate and payoffs

Πi
A(x, y) =

⎧⎪⎨
⎪⎩

Fi,i(
x+y

2 ) if x < y,

1 − Fi,i(
x+y

2 ) if y < x,
1
2 if x = y.

From the probabilistic version of the median voter theorem, the unique pure strategy Bayesian
equilibrium has each candidate locating at mi after signal i.

The Downsian Model of elections specializes the Probabilistic Voting Model, but for one
feature that places it outside the class of models that we consider. As in the Probabilistic Voting
Model, candidates have complete information about each other’s signals, i.e., P(i|i) = 1 for all
i ∈ I . The exceptional feature is that conditional on a candidate’s signal, the location of μ is
known with certainty. Formally, Fi,i is the point mass on mi,i = mi , violating our maintained
assumption that Fi,i is continuous. A candidate then wins with probability one if her platform is
closer to μ than the other candidate’s, generating expected payoffs

ΠA(X,Y |i) =

⎧⎪⎪⎨
⎪⎪⎩

1 if xi < yi and xi+yi

2 > mi,

1 if yi < xi and xi+yi

2 < mi,
1
2 if xi = yi or xi+yi

2 = mi,

0 otherwise.

6 We say � is a linear order if it is complete, transitive, and anti-symmetric, i.e., i � j and j � i implies i = j . As the
asymmetric part, i < j holds if and only if i � j but not conversely.
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By the median voter theorem, the unique pure strategy equilibrium has the candidates locating
at mi after receiving signal i.

4. Pure strategy equilibrium

This section provides a full characterization of the pure strategy equilibria of the Canonical
Model: If a pure strategy Bayesian equilibrium exists, then it is unique; and after receiving a
signal, a candidate locates at the median of the distribution of μ conditional on both candidates
receiving that signal. Given a natural restriction on conditional medians, a corollary is that can-
didates take policy positions that are extreme relative to their expectations of μ given their own
information. Specifically, candidates who receive high signals tend to overshoot μ, while those
who receive low signals tend to undershoot. To derive the characterization, we first consider sym-
metric equilibria in Lemma 1. The proof is provided in Appendix A, as are all proofs of formal
results that are omitted from the main text.

Lemma 1. In the Canonical Model, if (X,Y ) is a symmetric pure strategy Bayesian equilibrium,
then xi = yi = mi,i for all i ∈ I .

The intuition is simple. Suppose that the candidates choose the same policy following two
signal realizations, i and j , and suppose for simplicity that these are the only realizations for
which they choose this policy; the proof uses (C4) to rule out other cases. Then, conditional
on those realizations, each candidate expects to win the election with probability one half. If
the candidates are not located at the median policy conditional on signals i and j , then either
candidate could gain by moving slightly toward that conditional median: If A deviates in this
way, then A’s expected payoff given other signal realizations for B varies continuously with
A’s location, but A’s payoff given realization j would jump discontinuously above one half.
Therefore, a slight deviation would raise A’s payoff, which is impossible in equilibrium.

Theorem 1 (Necessity). In the Canonical Model, if (X,Y ) is a pure strategy Bayesian equilib-
rium, then xi = yi = mi,i for all i ∈ I .

Proof. First, consider a symmetric equilibrium (X,Y ), where xi = yi for all i ∈ I . By Lemma 1,
xi = yi = mi,i for all i ∈ I . Now suppose there is an asymmetric equilibrium (X,Y ), where
xi �= mi,i for some i ∈ I , and define the strategy Y ′ = X for candidate B . Then, by symmetry
and interchangeability, (X,Y ′) is a symmetric Bayesian equilibrium with xi �= mi,i , contradicting
Lemma 1. �

It is natural to suppose that lower signals indicate lower values of μ and higher signals indicate
higher ones. Then Theorem 1 implies that private polling causes candidates to “extremize” their
locations.

Corollary 1. In the Canonical Model, suppose there exists a signal c ∈ I such that i < c implies
mi,i < mi and c < i implies mi < mi,i . If (X,Y ) is a pure strategy Bayesian equilibrium, then
xi < mi for i < c and mi < xi for i > c.

To highlight this result, suppose that c corresponds to an uninformative signal in the sense
that the conditional median mc,c is equal to the unconditional median. Then it follows that in a
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pure strategy equilibrium, private polling magnifies platform divergence: Candidates bias their
locations in the direction of their private signals past the median given their own signal and away
from the unconditional median.

Theorem 1 gives a necessary, not a sufficient, condition for the existence of a pure strategy
equilibrium. While we soon give sufficient conditions for existence, the next example shows
that pure strategy equilibria do not always exist. In fact, the example shows more: Pure strategy
equilibria may not exist in Canonical Models arbitrarily close to the Downsian Model. Thus, the
example demonstrates a type of fragility of the Downsian median voter theorem. We return to
this issue in our analysis of mixed strategies. There we show that even if pure strategy equilibria
fail to exist in models close to the Downsian Model, mixed strategy equilibria do exist and are
necessarily “close” to the Downsian equilibrium.

Example 1 (Fragility of Pure Strategy Equilibrium in the Downsian Model). Consider the Down-
sian Model in which I = {−1,1} and P(−1,−1) = P(1,1) = 1

2 , with conditional distributions
F−1,−1 and F1,1 with point mass on m−1,−1 and m1,1 = m−1,−1 + 1, respectively. Let F−1,1
and F1,−1 be degenerate on m−1,1 = m1,−1 = (m−1,−1 +m1,1)/2. By the median voter theorem,
the unique equilibrium is (X,Y ) defined by x−1 = y−1 = m−1,−1 and x1 = y1 = m1,1. Now de-
fine the sequences {Fn

i,j | i, j = −1,1} of conditional distributions as follows. For each n � 2,

let P n(−1,−1) = P n(1,1) = 1
2 − 1

n
and P n(−1,1) = P n(1,−1) = 1

n
. Let Fn

−1,−1 be the uni-
form distribution on � with density n centered at m−1,−1; let Fn

1,1 be the uniform distribution
with density n centered at m1,1; and let Fn

−1,1 = Fn
1,−1 be the uniform distribution with den-

sity n2 centered at m−1,1 = m1,−1. Note that the conditional medians of Fn
−1,−1 and Fn

1,1 are
fixed at m−1,−1 and m1,1, respectively, for all n. Furthermore, the upper bound of the support of
Fn

−1,1 = Fn
1,−1 is m−1,1 + 1

2n2 . By Theorem 1, the only possible pure strategy Bayesian equilib-

rium in the nth game is (X,Y ) defined above. But we claim that (X,Y ) is not an equilibrium,
because A can deviate profitably to strategy X̂n defined by x̂n

−1 = m−1,−1 + 1
n2 and x̂n

1 = xn
1 . To

see this, note that the difference ΠA(X̂n,Y | − 1) − ΠA(X,Y | − 1) equals

P n(−1| − 1)

[
1 − Fn

−1,−1

(
m−1,−1 + x̂n

−1

2

)]
+ P n(1| − 1)(1) − 1

2
,

where we use the fact that m−1,1 + 1
2n2 = 1

2 (m−1,−1 + 1
n2 + m1,1), which in turn implies

Fn
−1,1(

x̂n
−1+m1,1

2 ) = 1. After substituting, this difference equals
(

1 − 2

n

)(
1

2
− 1

2n

)
+ 2

n
− 1

2
= 1

2n
+ 1

n2
> 0,

establishing the claim. Since Fk
i,j → Fi,j weakly and P k(i, j) → P(i, j) for i, j = 1,−1, the

sequence of perturbed models can be chosen arbitrarily close to the Downsian Model. Thus,
introducing even arbitrarily small amounts of private information to the Downsian Model can
lead to the non-existence of pure strategy equilibrium. �

We now provide sufficient conditions for the pure strategy equilibrium to exist. To simplify
our arguments, we provide separate conditions on the priors over signal pairs and on the distri-
bution of μ conditional on signal realizations. Condition (C5) is a regularity condition on the
conditional distributions that reinforces the symmetry present in the Canonical Model. Condi-
tion (C6) imposes a stochastic dominance-like restriction on the conditional distributions.
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(C5) For all signals i, j ∈ I with P(i, j) > 0, we have mi,j = (mi,i + mj,j )/2.
(C6) For all signals i, j, k ∈ I with i < j < k, and for all z ∈ [mi,i,mk,k], we have

Fi,j

(mi,i + z

2

)
� Fj,k

(mk,k + z

2

)
. (1)

Because mi,i � mj,j � mk,k , the range over which inequality (1) holds is necessarily non-
empty. To interpret inequality (1), note that it holds over [mi,i ,mk,k] if and only if

Fi,j (z) � Fj,k

(mk,k − mi,i

2
+ z

)

holds over [mi,i

2 ,
mi,i+mk,k

2 ]. That is, the distribution conditional on signals j and k when shifted
to the left by (mk,k − mi,i)/2 � 0 must dominate the distribution conditional on signals i and j .
Condition (C6) is stronger than stochastic dominance in that Fj,k is shifted to the left, but it is
weaker in that the inequality must hold only over a given range.

Lastly, we impose a restriction on priors over signals, formalizing the idea that conditional on
a candidate’s signal, the probability the other candidate receives the same signal is high enough.
Indeed, the condition is weaker than that, because it only restricts “net” probabilities.

(C7) For all signals i ∈ I ,

∑
j∈I : j�i

P (j |i) �
∑

j∈I : j>i

P (j |i) and
∑

j∈I : j<i

P (j |i) �
∑

j∈I : j�i

P (j |i).

Clearly, (C7) is most restrictive for the “extremal” signals, for which P(i|i) � 1/2 is implied
by the condition, and its intuitive restrictiveness depends on the number of possible signals. With
just two signals, for example, it is satisfied whenever signals are not negatively correlated.

Theorem 2 (Sufficiency). In the Canonical Model, conditions (C5)–(C7) are sufficient for the
existence of the unique pure strategy Bayesian equilibrium. In that equilibrium candidates locate
at mi,i following signal i ∈ I .

If we strengthen (C6) by imposing equality in (1), as BDS (2005) do for a special case of
our model, then inspection of the proof of Theorem 2 reveals that under (C5), condition (C7)
actually becomes necessary for the existence of the unique pure strategy equilibrium. Since con-
dition (C7) is difficult to sustain when the number of possible signals is large, this highlights the
importance of mixed strategies in the electoral model, to which we now turn.

5. Mixed strategy equilibrium

We now consider mixed strategy equilibria in the electoral game. We let candidate A ran-
domize over campaign platforms following signal s according to a distribution Gs . A mixed
strategy for A is a vector G = (Gs) of such distributions, and a mixed strategy for B is a vec-
tor H = (Ht ). We let Gs(z)

− and Ht(z)
− be the left-hand limits of these distributions, e.g.,

Gs(z)
− = limw↑z Gs(w). Accordingly, Gs has an atom at x if and only if Gs(x) − Gs(x)− > 0.
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To extend our definition of interim expected payoffs, we denote the probability that A wins
using platform x following signal s when B uses platform y following signal t as

πA(x, y|s, t) =

⎧⎪⎨
⎪⎩

Fs,t (
x+y

2 ) if x < y,

1 − Fs,t (
x+y

2 ) if y < x,
1
2 if x = y,

so that πB(·|s, t) = 1 − πA(·|s, t). Then, given mixed strategies (G,H), candidate A’s interim
expected payoff conditional on signal s is

ΠA(G,H |s) =
∑
t∈T

P (t |s)
∫

πA(x, y|s, t)Gs(dx)Ht (dy).

Candidate B’s interim payoff ΠB(G,H |t) is defined analogously. Abusing notation slightly,
let ΠA(X,H |s) be A’s expected payoff from the degenerate mixed strategy with Gs(xs) −
Gs(xs)

− = 1 for all s ∈ S, and let ΠB(G,Y |t) be the analogous expected payoff for B .
A mixed strategy Bayesian equilibrium is a strategy pair (G,H) such that ΠA(G,H |s) �

ΠA(G′,H |s) for all signals s ∈ S and all strategies G′, and ΠB(G,H |t) � ΠB(G,H ′|t) for all
signals t ∈ T and all strategies H ′. As with pure strategies, ex ante expected payoffs correspond
to the ex ante probability of winning,

ΠA(G,H) =
∑
s∈S

P (s)ΠA(G,H |s) and ΠB(G,H) =
∑
t∈T

P (t)ΠB(G,H |t).

Thus, mixed strategy Bayesian equilibria of the electoral game are equilibria of a two-player,
constant-sum game. In the Canonical Model, the game is symmetric, and we define a symmetric
mixed strategy Bayesian equilibrium as an equilibrium strategy pair (G,H) with G = H .

The strategy X can be a discontinuity point of ΠA(·,H |s) only if Ht puts positive probability
on policies y such that πA(·, y|s, t) is discontinuous at xs for some t ∈ T . By continuity of the
conditional distributions, there is only one such policy, namely y = xs . Because each Ht has at
most a countable number of atoms, candidate A’s expected payoff function is continuous on all
but perhaps a countable set of pure strategies. Further, in equilibrium, if X is a continuity point of
ΠA(·,H |s) in the support of Gs , then the expected payoff from X conditional on signal s must
be ΠA(G,H |s). Candidate A must therefore be indifferent over all such policies.

The next theorem provides a general existence result for mixed strategy equilibria in which
candidates use mixed strategies with supports bounded as follows. Let m = max{ms,t : s ∈ S,

t ∈ T } and m = min{ms,t : s ∈ S, t ∈ T }. The interval defined by these “extreme” conditional
medians is M = [m,m]. We say (G,H) has support in M if the candidates put probability one
on M following all signal realizations: For all s ∈ S, Gs(m) − Gs(m)− = 1; and for all t ∈ T ,
Ht(m) − Ht(m)− = 1.

Theorem 3. There exists a mixed strategy Bayesian equilibrium with support in M . Under (C1)
and (C2), there exists a symmetric mixed strategy Bayesian equilibrium with support in M .

Our existence proof uses a result due to Dasgupta and Maskin (1986),7 and it relies on the
assumption of continuous conditional distributions: If discontinuities are permitted, then their

7 An alternative is to define a corresponding game with endogenous sharing rule, and then to apply results of Simon
and Zame (1990) and Jackson et al. (2002) to generate a selection of win probabilities as a function of the candidates’
policy locations for which an equilibrium exists. However, our model assumes “symmetric” discontinuities: when the
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weak lower semicontinuity condition can be violated. A weaker sufficient condition for existence
in symmetric games that could be used is Reny’s (1999) diagonal better reply security. However,
Example A.1 in Appendix A shows that Reny’s condition can be violated even if only very
limited discontinuities are present. As a result, prospects for a more general result using known
sufficient conditions for existence in discontinuous games seem poor.

We now study the continuity properties of the mixed strategy equilibrium correspondence
as we vary the parameters of the model; specifically, the candidates’ marginal prior on S × T

and the conditional distributions of μ. We index specifications of the model by γ , where the
marginal probability of (s, t) in game γ is P γ (s, t), and the distribution of μ conditional on s

and t in γ is F
γ
s,t , with median m

γ
s,t . To consider continuity properties, we assume that γ lies

in a metric space Γ , and that the indexing is continuous: For each s ∈ S and t ∈ T , if γn → γ ,
then P γn(s, t) → P γ (s, t) and F

γn
s,t → F

γ
s,t weakly. Denote the interval defined by the extreme

conditional medians in game γ by M(γ ), and note that by the assumption of continuous indexing,
the correspondence M:Γ ⇒ � so-defined is continuous.

Theorem 3 establishes the existence of a mixed strategy equilibrium for all γ ∈ Γ . Since the
electoral game is constant-sum, a candidate’s ex ante expected payoff in game γ is the same in all
mixed strategy equilibria. Denote these payoffs, or “values,” by vA(γ ) and vB(γ ). Furthermore,
each candidate has an “optimal” mixed strategy that guarantees the candidate’s value, no matter
which strategy the opponent uses. If (C1) and (C2) hold for game γ , then the game is symmetric,
so vA(γ ) = vB(γ ) = 1/2 trivially. It is more challenging to prove that vA(γ ) and vB(γ ) vary
continuously in the parameters of the game while allowing for asymmetries, as when candidates
have different polling technologies. We establish this continuity result next.

Theorem 4. The mapping vA :Γ → � is continuous.

Letting B denote the Borel probability measures over X with the topology of weak conver-
gence, define the mixed strategy Bayesian equilibrium correspondence E:Γ ⇒ BS∪T so that
E(γ ) consists of all equilibrium mixed strategy pairs (G,H). We have shown that this corre-
spondence has non-empty values. The next result establishes an important continuity property of
the equilibrium correspondence.

Theorem 5. The correspondence E :Γ ⇒ BS∪T has closed graph.

Despite the discontinuities present in the electoral game, Theorem 5 delivers a desirable ro-
bustness property for mixed strategy equilibria: If we perturb the game slightly, then mixed
strategy equilibria cannot be far away from the mixed strategy equilibria for the original spec-
ification of the game. The maintained assumption that conditional distributions are continuous
in each specification γ ∈ Γ is critical for our proof. When we provide an analogous robustness
characterization of the unique pure strategy equilibrium for the Downsian Model in Section 6,
we must use a distinct line of argument.

To this point, we have established existence of mixed strategy Bayesian equilibria with sup-
port in M , but there remains the possibility of equilibria that put positive probability outside
that interval. We now show that in the Canonical Model, even without (C4), all mixed strategy
Bayesian equilibria must have support in M .

candidates are equidistant from a conditional median, the probability of winning is one half for each candidate. The
sharing rule approach delivers a selection satisfying this property only in the symmetric version of our model.
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Theorem 6. Under (C1)–(C3), if (G,H) is a mixed strategy Bayesian equilibrium, then it has
support in M .

The symmetry assumed in Theorem 6 is essential for the bounds derived on equilibrium strate-
gies: Without symmetry, it is possible that one candidate, say B , essentially competes with just
one type of the other candidate, A, allowing the other types of candidate A to win with probability
one, even if they choose platforms outside the interval M .

Example 2 (Symmetry Needed for Equilibrium Bounds). Let I = {−1,1}, let each Fi,j be a
uniform distribution with density 2, with priors on I × I and conditional medians as follows:

j = 1 P(−1,1) = ε P (1,1) = ε2

m−1,1 = −1 m1,1 = 1

j = −1 P(−1,−1) = 1 − ε − ε2 − ε3 P(1,−1) = ε3

m−1,−1 = 0 m1,−1 = −1

i = −1 i = 1

The conditional distribution following signal pairs (−1,1) or (1,−1) has support [−1.25,−0.75];
the conditional distribution following (−1,−1) has support [−0.25,0.25]; and the conditional
distribution following (1,1) has support [0.75,1.25]. When ε is small, the conditional probabil-
ity that candidate A receives signal i = −1 is close to one, regardless of B’s signal. In contrast,
the conditional probability that B receives signal j is close to one when A receives signal i = j .
Let x−1 = 0, x1 = 1.25, y−1 = 0, and y1 = −1.25. The strategy profile (X,Y ) so-defined is a
Bayesian equilibrium, despite the fact that x1 = 1.25 > m = 1 and y1 = −1.25 < m = −1, violat-
ing the bound given in Theorem 6. To see this, first note that candidate A maximizes probability
of winning following signal −1: Moving to the left from x−1 = 0 only decreases A’s probability
of winning when B receives signal −1; and moving far enough to increase A’s probability of
winning when B receives signal 1 means A must position at x′−1 < −0.75, but then A would
win with probability zero in case B receives the more likely signal −1. Similarly, A maximizes
probability of winning following signal 1: A already wins with probability one when B receives
signal 1; and A cannot increase the probability of winning when B receives signal −1 without
moving to the left of y−1 = 0, but then A would win with probability zero when B receives the
more likely signal 1. A symmetric argument for B establishes the claim. �

We conclude this section by deriving the properties of atoms of mixed strategy equilibrium
distributions. We prove that with a slight strengthening of condition (C4), the only possible atoms
of the distributions Gi are at the conditional medians mi,i .

(C4*) There exists a linear ordering � of I , with asymmetric part <, such that: For all signals
i, i′ ∈ I with i < i′,

for all j ∈ I, and for all z ∈ M with 0 < Fi′,j (z) < 1, we have Fi′,j (z) < Fi,j (z).
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As with (C4), the stochastic dominance condition in (C4*) arises naturally if higher signals are
correlated with higher values of μ. Note that (C4*) implies that for signals i < i′, we have
Fi′,j (z) � Fi,j (z) for all z ∈ M .

We now use condition (C4*) to characterize the location of mass points of equilibrium mixed
strategies, thereby extending Lemma 1 to mixed strategy equilibria.

Lemma 2. In the Canonical Model with (C4*), let (G,H) be a symmetric mixed strategy
Bayesian equilibrium. For all z ∈ M , if both candidates place positive probability mass on z,
that is, Gi(z) − Gi(z)

− > 0 for some i ∈ I , then z = mi,i .

The intuition behind Lemma 2 is simple. Suppose that the candidates choose the same policy z

with positive probability following some signal realization i; the proof uses (C4*) to show that
the candidates cannot put positive probability on z after any other signal realizations. The argu-
ment then proceeds as in Lemma 1. Conditional on signal i, each candidate expects to choose z

with positive probability, and if z is not equal to mi,i , then a candidate, say A, can shift probabil-
ity mass from z toward mi,i by an arbitrarily small amount. This increases A’s expected payoff
discretely when B chooses z, and it affects A’s expected payoff continuously otherwise. Hence,
a slight deviation increases A’s expected payoff.

We now apply Lemma 2 to prove that in the Canonical Model with (C4*), the only possible
atom of an equilibrium distribution, Gi , is the conditional median mi,i . But for the strengthening
of (C4), this result generalizes Theorem 1.

Theorem 7. In the Canonical Model with (C4*), let (G,H) be a mixed strategy Bayesian equi-
librium. If Gi(z) − Gi(z)

− > 0 or Hi(z) − Hi(z)
− > 0 for some i ∈ I , then z = mi,i .

Proof. Let (G,H) be a mixed strategy Bayesian equilibrium, and suppose Gi(z) − Gi(z)
− > 0

for some i ∈ I , but z �= mi,i . By symmetry and interchangeability, (G,G) is an equilibrium. By
Theorem 6, we must have z ∈ M . But then Lemma 2 implies z = mi,i , a contradiction. �

Theorem 7 does not quite allow us to use differentiable methods to analyze mixed strategy
equilibria. However, it may be reasonable to restrict attention to a subset of “regular” mixed strat-
egy equilibria for which the distribution following each signal is differentiable at all continuity
points. This restriction solves technical problems at the cost of possibly omitting pathological
equilibria. We can then decompose the probability measure generated by any equilibrium distri-
bution into a finite number of degenerate measures and an absolutely continuous measure with
density defined at all but at most a finite number of policies. The usual first-order condition must
then be satisfied at any platform in the support of a candidate’s equilibrium density following
any signal, generating a system of differential equations. See BDS for this approach.

6. Robustness of the median voter theorem

In this section, we first derive the robustness of the probabilistic version of the median voter
theorem as an easy consequence of Theorems 5 and 6. Observe that after decomposing the Prob-
abilistic Voting Model into its component games, Theorem 6 applies to each one separately.
Since the set of medians for the component game corresponding to the signal pair (i, i) is just
the singleton {mi}, it immediately follows that the unique mixed strategy Bayesian equilibrium
of the component game must be the point mass on mi for both candidates. In other words, the
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unique pure strategy Bayesian equilibrium of the Probabilistic Voting Model is unique among all
mixed strategy Bayesian equilibria. Then Theorem 5 gives us a strong continuity result: In mod-
els close to the Probabilistic Voting Model, mixed strategy equilibria must be close in the sense
of weak convergence to the pure strategy equilibrium in which candidates locate at mi following
signal i.

Theorem 8. Assume γ is a Probabilistic Voting Model. If (G,H) is a mixed strategy Bayesian
equilibrium of γ , then the candidates locate at m

γ

i with probability one following signal each
i ∈ I , i.e., Gi(m

γ

i ) − Gi(m
γ

i )− = Hi(m
γ

i ) − Hi(m
γ

i )− = 1 for all i ∈ I . Given any sequence
{γn} → γ in Γ and given (Gn,Hn) ∈ E(γn) for all n, then for all i ∈ I , {Gn

i } and {Hn
i } converge

weakly to the point mass on m
γ

i .

We now turn to the robustness of the median voter theorem in the Downsian Model. Because
that model is characterized by discontinuous conditional distributions of the median voter’s ideal
point, the robustness result of Theorem 5 does not apply. As Example 3 shows below, such dis-
continuities are more than minor technicalities: The introduction of discontinuous conditional
distributions into the Canonical Model can actually overturn the robustness results of the pre-
vious section. The Downsian Model is distinguished, however, by the fact that candidates have
complete information about the median voter’s location, and it is this structure that underlies the
theorems to follow.

To extend our results to the Downsian Model, we say that a sequence {γn} in Γ is ap-
proximately Downsian if: (a) for each n, γn satisfies condition (C1); (b) for all i ∈ I , P γn(i|i)
converges to one; and (c) for all i ∈ I , {Fγn

i,i } converges weakly to the point mass on some mi .
While the models indexed by γn lie in Γ and satisfy our maintained assumption of continuous
conditional distributions, the “limiting model” (which is implicit here) is Downsian and exhibits
discontinuous conditional distributions. We now extend the continuity result of Theorem 4 to ap-
proximately Downsian sequences, showing that each candidate’s ex ante probability of winning
goes to one-half.

Theorem 9. If the sequence {γn} in Γ is approximately Downsian, then vA(γn) → 1/2.

Proof. Let {γn} be approximately Downsian. We will show that lim infvA(γn) � 1/2, and a
symmetric argument for candidate B will then imply that limvA(γn) = 1/2. For each n, let
P n(i, j) denote the prior probability of signal pair (i, j) in γn; let Fn

i,j denote the distribution of
μ conditional on signal pair (i, j); and let mn

i,j denote the median of Fn
i,j . Now let Xn be defined

by xn
i = mn

i,i for all i ∈ I , and let Yn be an arbitrary pure strategy for B . Then A’s expected
payoff from (Xn,Y n) conditional on signal i in game γn, denoted Πn

A(Xn,Y n|i), is equal to

∑
j∈I :xn

i <yn
j

P n(j |i)F n
i,j

(
xn
i + yn

j

2

)
+

∑
j∈I :yn

j <xn
i

P n(j |i)
(

1 − Fn
i,j

(
xn
i + yn

j

2

))

+1

2

∑
j∈I :xn=yn

P n(j |i).

i j
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Note that P n(i|i) → 1 and P n(j |i) → 0 for j �= i, and define the sequence {Φn} by

Φn =

⎧⎪⎪⎨
⎪⎪⎩

Fn
i,i(

mn
i,i+yn

i

2 ) if mn
i,i < yn

i ,

1 − Fn
i,i(

mn
i,i+yn

i

2 ) if yn
i < mn

i,i ,
1
2 otherwise.

Then lim infΠn
A(Xn,Y n|j) � lim infΦn � 1/2, where the last inequality follows from Φn � 1/2

for all n. Thus, A can guarantee an expected payoff arbitrarily close to one half as n goes to
infinity, and we conclude that lim infvA(γn) � 1/2, as required. �

Whereas Theorem 4 established continuity of the payoffs for the class of models with con-
tinuous conditional distributions, Theorem 9 extends this result to certain “boundary points” of
this class exhibiting discontinuous conditional distributions, namely the Downsian Models. The
next example shows that our continuity results do not extend when complete information in the
Downsian Model is relaxed.

Example 3 (Continuity of Value Violated with Discontinuous Conditional Distributions). Let I =
{0,1} and P(i, j) = 1/4 for all i, j ∈ I , with conditional distributions Fi,j equal to the point mass
on zero for all i, j ∈ I . For each n, let Fn

0,j , j = 0,1, be the uniform distribution with density
n centered at zero, and let Fn

1,j , j = 0,1, be the uniform distribution with density n centered
at 1/n. Note that Fn

i,j → Fi,j weakly and that the supports of Fn
0,j and Fn

1,j are contiguous
for all i, j ∈ I . Thus, for each n, candidate A has full information about the distribution of the
median voter, whereas candidate B receives no information: Conditional on j = 0 and j = 1,
the distribution of the median voter has mean 0 and mean 1/n with equal probability. For each
n, define xn

0 = 0, xn
1 = 1/n, and yn

0 = yn
1 = 0, and note that the pure strategy profile (Xn,Y n)

so-defined is a Bayesian equilibrium. In it, candidate A always locates at the median, winning for
sure when i = 1 and matching B when i = 0. Thus, candidate A’s equilibrium expected payoff
is 3/4 and the value of the game for A is vn

A = 3/4 for all n. In contrast, the limiting model is
symmetric, and payoffs for the candidates must be one half in any equilibrium.

We have shown that the value in models close to Downsian must be close to one half, and
the next result pushes this further: The Bayesian equilibrium mixed strategy distributions used
following any signal realization must themselves be close to the location of the median in the
Downsian Model conditional on that signal. Thus, though Example 1 shows that pure strategy
equilibria may fail to exist near the Downsian Model, Theorem 3 shows that mixed strategy
equilibria do exist, and these equilibria must be close to the Downsian equilibrium.

Theorem 10. If the sequence {γn} is approximately Downsian and (Gn,Hn) ∈ E(γn) for all n,
then for all i ∈ I , {Gn

i } and {Hn
i } converge weakly to the point mass on mi .

Proof. Let {γn} be approximately Downsian, let (Gn,Hn) ∈ E(γn) for each n, and suppose that
Hn

i does not converge to the point mass on mi for some i ∈ I . Then there exists an interval
(a, b) containing mi such that either lim supHn

i (a) > 0 or lim infHn
i (b)− < 1. Without loss of

generality, assume the latter, and consider a subsequence (still indexed by n) along which this
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lim inf is achieved, i.e., limHn
i (b)− < 1. Using the notation from the proof of Theorem 9, define

Xn so that xn
i′ = mn

i′,i for each i′ ∈ I and each n. As in the proof of Theorem 9, we can show that

lim inf
n→∞ inf

Y∈�T
Πn

A

(
Xn,Y |i′) � 1

2
(2)

for all i′ ∈ I . Moreover, if we restrict candidate B to strategies such that the candidate locates to
the right of b following signal i, then this inequality becomes strict conditional on candidate A

also receiving signal i:

lim inf
n→∞ inf

Y∈�T: yt�b
Πn

A

(
Xn,Y |i) >

1

2
. (3)

To see this, let Yn be an arbitrary pure strategy for B such that yn
i � b, and take c such that

mi < c < (mi + b)/2. Note that

lim infΦn = lim infFn
i,i

(
mn

i,i + yn
t

2

)
� lim infFn

i,i(c)
− � Fi,i(c)

− >
1

2
,

where the second-to-last inequality follows from weak convergence of Fn
i,i to Fi,i , and the strict

inequality follows from c > mi and our assumption that Fi,i is the point mass on mi . By (2) and
(3), we have

lim infΠn
A

(
Xn,Hn|i)

� lim inf
∫

(−∞,b)

πn
A

(
mn

i,i , y|i, i)Hn
i (dy) + lim inf

∫
[b,∞)

πn
A

(
mn

i,i , y|i, i)Hn
i (dy)

� 1

2
limHn

i (b)− + Fi,i(c)
−(

1 − limHn
i (b)−

)
,

which, by Fi,i(c)
− > 1/2 and limHn

i (b)− < 1, is greater than 1/2. Thus, lim infΠn
A(Gn,Hn) >

1/2, i.e., lim infvA(γn) > 1/2. But vA(γn) → 1/2 by Theorem 9, a contradiction. �
In Example 3, the equilibrium platforms of the candidates converge to zero, the unique equi-

librium of the limiting model. This leaves the possibility that, while our continuity result for the
value does not extend, the upper hemicontinuity result of Theorem 10 does extend beyond the
Downsian Model. However, Example A.2 in Appendix A shows that this too does not hold.

7. Conclusion

This paper provides theoretical results on elections with privately-informed candidates, where
the source of private information may be a candidate’s personal experiences or polls conducted
by the candidate’s campaign organization or political party. We characterize the unique pure
strategy Bayesian equilibrium of the electoral game when it exists, and we give results on the
existence and continuity properties of mixed strategy Bayesian equilibria, as well as bounds on
the supports of mixed strategy equilibria and restrictions on equilibrium atoms. By posing the
analysis within a general framework, not only do we strengthen the foundation of these results,
but we open the possibility of developing special cases of interest in applications. We do just that
for the Downsian Model and the Probabilistic Voting Model, the most commonly used electoral
models. In particular, we show that pure strategy equilibria of the Downsian Model are fragile,
but we provide robustness results in mixed strategies: If a small amount of private information is
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added to either model, then there exist mixed strategy Bayesian equilibria, and in all equilibria a
candidate must place probability near one close to the median conditional on her signal.

To obtain more explicit characterizations, BDS consider a natural specification of the Canon-
ical Model, where the median μ is decomposed as μ = α + β. The component α is uniformly
distributed on [−a, a], and β is an independently-distributed discrete random variable. Candi-
dates share the same set of signals realizations. Signals depend stochastically on the realization
of β and are independent of α, the latter capturing aspects of voter preferences at the time of
the election that are not revealed by the candidates’ polls. BDS prove that there is a unique “or-
dered” mixed strategy Bayesian equilibrium and derive its properties. They obtain an explicit
solution for the mixed strategy equilibrium when the pure strategy equilibrium fails to exist: A
candidate receiving a “moderate” signal i locates at the median mi,i conditional on both can-
didates receiving that signal, while candidates who receive “extreme” signals mix, moderating
their platforms relative to the pure strategy equilibrium choices. Welfare analysis shows that even
though candidates locate more extremely than if they had simply targeted the median voter given
their private information, all voters may be better off if candidates chose even more extreme
platforms.

The model assumes some structural aspects of elections that may be of interest to develop
more fully, such as the nature of the polling process and the determinants of the median voter’s
ideal policy. Several extensions suggest themselves as well. First, because the strategic value of
better information is always positive for candidates, it is conceptually straightforward to endo-
genize the choice of costly polling technologies by candidates. It would also be worthwhile to
determine how outcomes are affected if candidates have ideological preferences, and to endog-
enize contributions by ideologically-motivated lobbies to fund polling by candidates. Finally, as
Ledyard (1989) observes, it would be useful to uncover how equilibrium outcomes are altered
if candidates choose platforms sequentially. Then, the second candidate can see where the first
locates, and hence may be able to unravel the latter’s signal, before locating.
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Appendix A

Lemma A.1. Let (G,H) be any pair of mixed strategies. For all s ∈ S and all w,z ∈ �, one of
three possibilities obtains: Either

∑
t∈T

P (t |s)[Ht(z) − Ht(z)
−][

Fs,t (w)
]

= 1

2

∑
t∈T

P (t |s)[Ht(z) − Ht(z)
−] =

∑
t∈T

P (t |s)[Ht(z) − Ht(z)
−][

1 − Fs,t (w)
]
,

or
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∑
t∈T

P (t |s)[Ht(z) − Ht(z)
−][

Fs,t (w)
]

<
1

2

∑
t∈T

P (t |s)[Ht(z) − Ht(z)
−]

<
∑
t∈T

P (t |s)[Ht(z) − Ht(z)
−][

1 − Fs,t (w)
]
,

or the reverse inequalities hold. Likewise for G and all t ∈ T and all w,z ∈ �.

Proof. Given s ∈ S and z ∈ �, the first possibility obtains if P(t |s)[Ht(z) − Ht(z)
−] = 0 for all

t ∈ T . Suppose P(t |s)[Ht(z) − Ht(z)
−] > 0 for some t ∈ T , and define the function F ∗ by:

F ∗
s (w) =

∑
t∈T P (t |s)[Ht(z) − Ht(z)

−]Fs,t (w)∑
t∈T P (t |s)[Ht(z) − Ht(z)−] .

Since each Fs,t is continuous at w, the three possibilities above correspond to the three possibil-
ities F ∗

s (w) = 1/2, F ∗
s (w) < 1/2, and F ∗

s (w) > 1/2. �
Lemma A.2. Let (G,H) be a mixed strategy Bayesian equilibrium. For all z ∈ �, if Gs′(z) −
Gs′(z)− > 0 for some s′ ∈ S and Ht ′(z) − Ht ′(z)− > 0 for some t ′ ∈ T with P(s′, t ′) > 0, then

∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−][
Fs′,t (z)

]

= 1

2

∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−] =
∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−][
1 − Fs′,t (z)

]

and
∑
s∈S

P (s|t ′)[Gs(z) − Gs(z)
−][

Ft ′,s(z)
]

= 1

2

∑
s∈S

P (s|t ′)[Gs(z) − Gs(z)
−] =

∑
s∈S

P (s|t ′)[Gs(z) − Gs(z)
−][

1 − Ft ′,s(z)
]
.

Proof. We prove the first equalities. If they do not hold for some z and some s′ and t ′ with
P(s′, t ′) > 0, then, by Lemma A.1, we may assume that one of the following holds:

∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−][
1 − Fs′,t (z)

]
>

1

2

∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−]
, (A.1)

∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−][
Fs′,t (z)

]
>

1

2

∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−]
.

We focus on the first inequality, as a symmetric proof addresses the second. For each t ∈ T , let
λt denote the probability measure generated by the distribution Ht , let μt denote the degenerate
measure with mass Ht(z)−Ht(z)

− on z, and let νt = λt −μt . Let {xn} be a sequence decreasing
to z, and let Gn be the mixed strategy defined by replacing Gs in G with the point mass on xn.
Let πt (w) = πA(z,w|s′, t) denote A’s probability of winning using z when B receives signal
t and chooses platform w, and let πn

t (w) = πA(xn,w|s′, t) denote A’s probability of winning
using xn when B receives signal t and chooses platform w. Then
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ΠA

(
Gn,H |s′) − ΠA(G,H |s′) =

∑
t∈T

P (t |s′)
∫ [

πn
t (w) − πt (w)

]
λt (dw)

=
∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−][
1 − Fs′,t

(
z + xn

2

)
− 1

2

]

+
∑
t∈T

P (t |s′)
∫ [

πn
t (w) − πt (w)

]
νt (dw).

Since πn
t − πt → 0 almost everywhere (νt ), the corresponding integral terms above converge to

zero. Thus, limn→∞ ΠA(Gn,H |s′) − ΠA(G,H |s′) equals
∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−][
1 − Fs′,t (z)

] − 1

2

∑
t∈T

P (t |s′)
[
Ht(z) − Ht(z)

−]
,

which is positive by (A.1). Hence, ΠA(Gn,H |s) > ΠA(G,H |s) for high enough n, a contradic-
tion. �
Proof of Lemma 1. Let G be a mixed strategy such that for all i ∈ I , Gi(xi) − Gi(xi)

− = 1.
Let I ′ = {i ∈ I : xi = z}, and take any i ∈ I ′. Lemma A.2 implies

∑
i′∈I ′

P(i′|i)
P (I ′|i)

[
Fi,i′(z)

] = 1

2
, (A.2)

where we use Gi′(z) − Gi′(z)− = 1 for i′ ∈ I ′ and Gi′(z) − Gi′(z)− = 0 otherwise. Thus, z =
mi,I ′ . If there exists j �= i such that j ∈ I ′, then we have mi,I ′ = z = mj,I ′ , contradicting (C4).
Therefore, (A.2) reduces to Fi,i(z) = 1/2, i.e., z = mi,i . �
Proof of Theorem 2. We show that (X,Y ) is an equilibrium, where xi = yi = mi,i for all i ∈ I .
Without loss of generality, we focus on candidate B’s best response problem following signal j .
Consider a deviation to strategy Y ′. There are two cases: y′

j < mj,j and mj,j < y′
j . In the first

case, let

G = {i ∈ I : mi,i � y′
j } and L= {k ∈ I : mj,j � mk,k}.

Note that for all i ∈ I \ (G ∪L), we have y′
j < mi,i < mj,j . Hence, for i with P(i|j) > 0,

Fi,j

(
y′
j + mi,i

2

)
−

[
1 − Fi,j

(mi,i + mj,j

2

)]
� 0,

where we use (C5) to deduce that Fi,j (
y′
j +mi,i

2 ) � 1/2 and Fi,j (
mi,i+mj,j

2 ) = 1/2. That is, B’s
gains from deviating when A receives signal i ∈ I \ (G ∪ L) are non-positive. Therefore, the
change in B’s interim expected payoff, ΠB(X,Y ′|j) − ΠB(X,Y |j), is less than or equal to

∑
i∈G

P(i|j)

[
1 − Fi,j

(
mi,i + y′

j

2

)
−

(
1 − Fi,j

(mi,i + mj,j

2

))]

+
∑
k∈L

P(k|j)

[
Fj,k

(
y′
j + mk,k

2

)
− Fj,k

(mj,j + mk,k

2

)]

=
∑

P(i|j)

[
1

2
− Fi,j

(
mi,i + y′

j

2

)]
+

∑
P(k|j)

[
Fj,k

(
y′
j + mk,k

2

)
− 1

2

]
,

i∈G k∈L
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which is non-positive as long as

∑
i∈G

P(i|j)

[
1

2
− Fi,j

(
mi,i + y′

j

2

)]
�

∑
k∈L

P(k|j)

[
1

2
− Fj,k

(
y′
j + mk,k

2

)]
. (A.3)

Let i∗ minimize Fi,j (
mi,i+y′

j

2 ) over G, and let k∗ maximize Fj,k(
mi,i+y′

j

2 ) over L. Then inequality
(A.3) holds if

[
1

2
− Fi∗,j

(
mi∗,i∗ + y′

j

2

)]∑
i∈G

P(i|j) �
[

1

2
− Fj,k∗

(
y′
j + mk∗,k∗

2

)]∑
k∈L

P(k|j). (A.4)

Note that because of (C4), we have G ⊆ {i ∈ I | i < j} and L = {i ∈ I | j � i}, so (C7) im-
plies

∑
i∈G P(i|j) �

∑
i∈L P(i|j). Furthermore, i∗ < j < k∗ and y′

j ∈ [mi∗,i∗ ,mk∗,k∗ ], so (C6)
implies

Fi∗,j

(
mi∗,i∗ + y′

j

2

)
� Fj,k∗

(
y′
j + mk∗,k∗

2

)
.

Thus, inequality (A.4) holds, and it is unprofitable for B to deviate to y′
j < mj,j . A symmetric

argument applies for deviations y′
j > mj,j . �

Proof of Theorem 3. We use the existence theorem of Dasgupta and Maskin (1986) for multi-
player games with one-dimensional strategy spaces. To apply this result, view the electoral game
as a (|S| + |T |)-player game in which each type (corresponding to different signal realizations)
of each candidate is a separate player. Player s (or t) has strategy space M ⊆ �, a compact
and convex set, with pure strategies xs (or yt ). Then (X,Y ) = (xs, yt )s∈S,t∈T is a pure strategy
profile, one for each type. Let (X−s , Y ) denote the result of deleting xs from (X,Y ). The payoff
function of player s ∈ S is Us(X,Y ) = P(s)ΠA(X,Y |s), and the payoff function of player t ∈ T

is Ut(X,Y ) = P(t)ΠB(X,Y |t). The space of mixed strategies for each player type s (or t) is M,
the Borel probability measures on M , with mixed strategies denoted Gs (or Ht ). Then (G,H) is
a mixed strategy profile, one for each type. Note that∑

s∈S

Us(X,Y ) +
∑
t∈T

Ut (X,Y ) = 1,

for all X and Y , so that the total payoff is trivially upper semi-continuous. Furthermore, payoffs
are between zero and one, so they are bounded. Note that Us is discontinuous at (X,Y ) only if
xs = yt for some t ∈ T . Therefore, the discontinuity points of Us lie in a set that can be written as
A∗(s), as in Dasgupta and Maskin’s equation (2). The discontinuity points of Ut lie in a similar
set. It remains to show that Us (likewise Ut ) is weakly lower semi-continuous in xs ; that is, for
all xs ∈ M , there exists a λ ∈ [0,1] such that for all (X−s , Y ),

Us(X,Y ) � λ lim inf
z↓xs

Us(z,X−s , Y ) + (1 − λ) lim inf
z↑xs

Us(z,X−s , Y ).

It is straightforward to verify that this condition holds with equality for λ = 1/2. Let T + = {t ∈
T : xs < yt }, let T − = {t ∈ T : yt < xs}, and let T 0 = {t ∈ T : xs = yt }. Since

Us(X,Y ) =
∑

−
P(s, t)

(
1 − Fs,t

(xs + yt

2

))
+

∑
0

P(s, t)

2
+

∑
+
P(s, t)Fs,t

(xs + yt

2

)
,

t∈T t∈T t∈T
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it follows that lim infz↑xs Us(z,X−s , Y ) equals
∑
t∈T −

P(s, t)
(

1 − Fs,t

(xs + yt

2

))
+

∑
t∈T 0∪T +

P(s, t)Fs,t

(xs + yt

2

)

and lim infz↓xs Us(z,X−s , Y ) equals
∑

t∈T −∪T 0

P(s, t)
(

1 − Fs,t

(xs + yt

2

))
+

∑
t∈T +

P(s, t)Fs,t

(xs + yt

2

)
.

The claim

Us(X,Y ) = 1

2
lim inf

z↓xs

Us(z,X−s , Y ) + 1

2
lim inf

z↑xs

Us(z,X−s , Y )

then follows immediately. The same argument can be used to verify that Ut is weakly lower
semi-continuous. Then by Dasgupta and Maskin’s (1986) Theorem 5, there exists a mixed strat-
egy equilibrium of the multi-player game, and hence of the electoral game when strategies are
restricted to M . To see that following a signal s, candidate A has no profitable deviations outside
M , take any x > m. For all t ∈ T and all y ∈ M , we have πA(m,y|s, t) � πA(x, y|s, t). Let G′
be any deviation such that G′

s puts probability one on xs > m, and let G′′ put probability one on
m instead. Then ΠA(G′,H |s) � ΠA(G′′,H |s) � ΠA(G,H |s). A similar argument applies when
x < m, yielding the claim. Because the electoral game is a two-player, symmetric constant-sum
game, existence and interchangeability of equilibria imply that there exists a symmetric mixed
strategy equilibrium. �
Example A.1 (Diagonal Better Reply Security Violated with Discontinuous Conditional Distrib-
utions). Consider a discontinuous version of the Canonical Model in which I = {1,2,3} and, for
all i, j ∈ I , Fi,j is the point mass on mi,j , given in the table below. We assign priors on I × I as
indicated there.

j = 3 P(1,3) = 0.16ε P (2,3) = 0.41ε P (3,3) = 1 − 2.89ε

m1,3 = 1.8 m2,3 = 2.3 m3,3 = 2.6

j = 2 P(1,2) = 0.45ε P (2,2) = 0.05ε P (3,2) = 0.41ε

m1,2 = 1 m2,2 = 1.9 m3,2 = 2.3

j = 1 P(1,1) = 0.8ε P (2,1) = 0.45ε P (3,1) = 0.16ε

m1,1 = 0 m2,1 = 1 m3,1 = 1.8

i = 1 i = 2 i = 3

Define the mixed strategy G as follows: G1(m1,1)−G1(m1,1)
− = α, G1(m1,2)−G1(m1,2)

− =
1 − α, G2(2) − G2(2)− = 1, and G3(m3,3) − G3(m3,3)

− = 1, and set α = 0.8 and H = G. That
is, after signal 1, the candidates mix between two conditional medians, m1,1 and m1,2; after sig-
nal 2, the candidates adopt the platform 2 (which does not correspond to a conditional median);
and after signal 3, the candidates adopt the conditional median m3,3. Reny’s (1999) diagonal
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better reply security requires that if (G,H) is not a mixed strategy Bayesian equilibrium, then
candidate A has a mixed strategy deviation that is profitable, even if B’s mixed strategy is al-
lowed to vary within some open set. Specifically, there must exist a mixed strategy Ĝ for A and
an open set H of mixed strategies for B such that H ∈H and inf

Ĥ∈H ΠA(Ĝ, Ĥ ) > 1/2.8

Note that this strategy is clearly a best response following signal 3, if we set ε > 0 sufficiently
small. Following signal 2, candidate A would tie with candidate B in case B received signal 1
and positioned at m1,1 = 0, would lose to B in case B received signal 1 and positioned at 1, and
would tie with B in case B received signals 2 or 3: A’s expected payoff would be

P(2)ΠA(G,H |2) = αP (1,2)(0.5) + (1 − α)P (1,2)(0) + P(2,2)(0.5) + P(2,3)(0.5)

= ε(0.225α + 0.23) = 0.41ε,

where we weight the interim payoff by the marginal probability of signal 2. If candidate A moved
to the left following signal 2, then the candidate could move a small enough amount to x′

2 ∈
(1.8,2) to win against candidate B in case B received signal 1 and positioned at m1,1 = 0 or
received signal 2, but would then lose against B in case B received signal 3: A’s expected payoff
would again be

P(2)ΠA(X′,H |2) = αP (1,2)(1) + (1 − α)P (1,2)(0) + P(2,2)(1) + P(2,3)(0)

= ε(0.45α + 0.05) = 0.41ε.

Moving further to the left, A could do no better than locate at m1,2 = 1, which yields an expected
payoff of

P(2)ΠA(X′,H |2) = αP (1,2)(1) + (1 − α)P (1,2)(0.5) + P(2,2)(0) + P(2,3)(0)

= ε(0.225α + 0.225) = 0.405ε.

Moving to the right, the best A could do would be to win against B in case B received signal 3
and lose otherwise, which yields an expected payoff of

P(2)ΠA(X′,H |2) = αP (1,2)(0) + (1 − α)P (1,2)(0) + P(2,2)(0) + P(2,3)(1) = 0.41ε.

Thus, G is a best response to H following signal 2 as well.
Define G′ as G, but with G′

1(m1,1) − G′
1(m1,1)

− = 1; that is, according to G′, candidate A

plays as in G but chooses the conditional median m1,1 with probability one following signal 1.
Letting X be the pure strategy with x1 = m1,2, we have

P(1)ΠA(X,H |1) = P(1,1)
(
α(0) + (1 − α)(0.5)

) + P(1,2)(1) + P(1,3)(0.5)

= ε(0.1α + 0.53) = 0.61ε

and

P(1)ΠA(G′,H |1) = P(1,1)
(
α(0.5) + (1 − α)(1)

) + P(1,2)(0.5) + P(1,3)(0)

= ε(0.6α + 0.225) = 0.705ε.

Since G1 puts positive probability on x1 = m1,2, we conclude that (G,H) is not a Bayesian
equilibrium. Thus, diagonal better reply security requires Ĝ and H, as described above. Note that
H ∈H, and that G2 and G3 are best responses to H conditional on signals 2 and 3, respectively.

8 Here, we give candidate B’s strategy space the product topology, where each factor, the set of distributions over the
real line, is given the weak* topology.
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Furthermore, we claim that the only position that increases A’s expected payoff conditional
on signal 1 is, in fact, x1 = m1,1. If A took a position x′

1 ∈ (m1,1,m1,2) following signal 1, then
A’s expected payoff would be

P(1)ΠA(X′,H |1) = P(1,1)
(
α(0) + (1 − α)(1)

) + P(1,2)(1) + P(1,3)(0)

= ε(1.25 − 0.8α) = 0.61ε.

If A took a position x′
1 ∈ (m1,2,2) following signal 1, then A’s expected payoff would again be

P(1)ΠA(X′,H |1) = P(1,1)
(
α(0) + (1 − α)(0)

) + P(1,2)(1) + P(1,3)(1)

= 0.61ε.

And positioning further to the right would yield an even lower expected payoff. Therefore, Ĝ

must involve the transfer of probability mass from m1,2 to m1,1 following signal 1.
The difficulty for diagonal better reply security is that such a change no longer delivers an ex

ante expected payoff for A above one half if we perturb H slightly to Ĥ by specifying that Ĥ2
put probability one on a point to the left of, and close to, 2: In that case, A loses to B when A

receives signal 1 and locates at m1,1 and B receives signal 2. To see the claim, consider Ĝ = G′.
Then A’s ex ante expected payoff in excess of one half, ΠA(Ĝ, Ĥ ) − 1/2, is

P(1)ΠA(G′, Ĥ |1) + P(2)ΠA(G′, Ĥ |2) + P(3)ΠA(G′, Ĥ |3) − 0.5

= [
P(1,1)

(
α(0.5) + (1 − α)(1)

) + P(1,2)(0) + P(1,3)(0)
]

+ [
P(1,2)(α(0.5) + (

1 − α
)
(0)) + P(2,2)(0) + P(2,3)(0.5)

]
+ [

P(1,3)
(
α(1) + (1 − α)(0.5)

) + P(2,3)(1) + P(3,3)(0.5)
] − 0.5

= α
[
(0.5)(0.8ε) − 0.8ε + (0.5)(0.45ε) + 0.16ε − (0.5)(0.16ε)

]
+ 0.8ε + (0.5)(0.41ε) + (0.5)(0.16ε) + (0.41ε) + (0.5)(1 − 2.89ε) − 0.5

= ε
[
α(−0.095) + 0.05

]
= −0.026ε,

which is negative. Thus, diagonal better reply security is not fulfilled by Ĝ = G′.
Reny’s diagonal better reply security condition does not require that Ĝ = G′, as in the above

calculation: Candidate A could, for example, move probability mass from 2 or m3,3 following
signals 2 and 3, respectively; as already confirmed, this would not increase A’s ex ante expected
payoff when B uses H , but it could conceivably mitigate the problem illustrated in the preceding,
“protecting” A from B’s slight move to the left following signal 2. A closer look shows, however,
that no such protection is available. Following signal 3, of course, any change in G′

3 will lead
to a discontinuous decrease in A’s expected payoff, weighted by 1 − 2.89ε, which can be made
arbitrarily close to one. Following signal 2, A might move probability mass from 2 to the left
to defeat candidate B in case B also receives signal 2, but such a change means that A would
lose to B in case B received signal 3, and we have seen that the two effects cancel. Finally,
after signal 1, A might move probability mass from m1,1 to the right in order to defeat B when
B receives signal 2, but we have seen that such a move does not increase A’s interim expected
payoff conditional on signal 1. This completes the example. �
Proof of Theorem 4. We prove lower semi-continuity of vA at γ . A symmetric argument proves
lower semi-continuity of vB = 1 − vA, which, in turn, gives us upper semi-continuity of vA. Let
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γn → γ , and suppose vA(γ ) > lim infvA(γn). Let Πn
A denote A’s ex ante expected payoff func-

tion corresponding to γn, and let ΠA denote the ex ante payoffs corresponding to γ . Let Mn

denote the interval M(γn), let M = M(γ ), and let M̂ be any compact set containing M in its
interior. By continuity, therefore, Mn ⊆ M̂ for high enough n. For each n, let (Gn,Hn) be an
equilibrium with support in Mn for the electoral game indexed by γn, so Πn

A(Gn,Hn) = vA(γn)

and Πn
B(Gn,Hn) = vB(γn). By compactness of M̂ , there exists a weakly convergent subse-

quence of {(Gn,Hn)}, also indexed by n, with limit (G,H). Going to a further subsequence if
necessary, we may assume {vA(γn)} converges to limit v < vA(γ ). Let (G∗,H ∗) be an equilib-
rium of the electoral game indexed by γ , so G∗ is an optimal strategy for A, which guarantees a
payoff of at least vA(γ ) in game γ . Thus, ΠA(G∗,H) � vA(γ ). In particular, there exists a pure
strategy X∗ such that ΠA(X∗,H) � vA(γ ) > v. We claim that as a consequence, there exists a
pure strategy X′ such that

Πn
A

(
X′,Hn

)
>

ΠA(X∗,H) + v

2
,

for high enough n. But this, with vA(γn) → v, contradicts the assumption that Gn is a best
response to Hn for candidate A. We establish the claim in three steps.

Step 1. By Lemma A.1, for every s ∈ S, either∑
t∈T

P (t |s)[Ht

(
x∗
s

) − Ht

(
x∗
s

)−][
Fs,t

(
x∗
s

)]
� 1

2

∑
t∈T

P (t |s)[Ht

(
x∗
s

) − Ht

(
x∗
s

)−]
(A.5)

or ∑
t∈T

P (t |s)[Ht

(
x∗
s

) − Ht

(
x∗
s

)−][
1 − Fs,t

(
x∗
s

)]
� 1

2

∑
t∈T

P (t |s)[Ht

(
x∗
s

) − Ht

(
x∗
s

)−]
. (A.6)

Let S− be the set of s ∈ S such that (A.5) holds, and let S+ be the set of s ∈ S \ S− such that
(A.6) holds. For s ∈ S−, let {xk

s } be a sequence increasing to x∗
s , and for s ∈ S+, let {xk

s } be a
sequence decreasing to x∗

s . In addition, we choose each xk
s to be a continuity point of Ht for all

t ∈ T ; this is possible because T is finite and each Ht has a countable number of discontinuity
points. Thus, Ht(x

k
s ) − Ht(x

k
s )− = 0 for all t ∈ T . For each k, define the strategy Xk = (xk

s ) for
candidate A.

Step 2. We now argue that Xk satisfies lim infΠA(Xk,H) � ΠA(X∗,H). For each t ∈ T ,
let λt denote the probability measure generated by the distribution Ht , let μt denote the degen-
erate measure with mass Ht(x

∗
s ) − Ht(x

∗
s )− on each x∗

s , and let νt = λt − μt . Let π∗
s,t (z) =

πA(x∗
s , z|s, t) denote A’s probability of winning using x∗

s conditional on signal s when B re-
ceives signal t and chooses platform z, and let πk

s,t (z) = πA(xk
s , z|s, t) denote A’s analogous

probability of winning using xk
s . Note that

ΠA

(
Xk,H

) − ΠA(X∗,H) =
∑
s∈S

P (s)
∑
t∈T

P (t |s)
∫ [

πk
s,t (z) − π∗

s,t (z)
]
λt (dz)

=
∑
s∈S−

∑
t∈T

P (s, t)
[
Ht

(
x∗
s

) − Ht

(
x∗
s

)−][
Fs,t

(
x∗
s + xk

s

2

)
− 1

2

]

+
∑
s∈S+

∑
t∈T

P (s, t)
[
Ht

(
x∗
s

) − Ht

(
x∗
s

)−][
1 − Fs,t

(
x∗
s + xk

s

2

)
− 1

2

]

+
∑∑

P(s, t)

∫ [
πk

s,t (z) − π∗
s,t (z)

]
νt (dz).
s∈S t∈T
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Since πk
s,t − π∗

s,t → 0 almost everywhere (νt ), the corresponding integral terms above converge
to zero. Thus, by construction of Xk , lim infm→∞ ΠA(Xk,H) � ΠA(X∗,H) > v, as desired.

Step 3. Choose k such that ΠA(Xk,H) > (ΠA(X∗,H) + v)/2 and set X′ = Xk . To prove the
claim that Πn

A(X′,Hn) > v for high enough n, define the functions

φ′
s,t (z) = πA

(
x′
s , z|s, t

)
and φn

s,t (z) = π
γn

A

(
x′
s , z|s, t

)
.

Note that

ΠA(X′,H) =
∑
s∈S

∑
t∈T

P (s, t)

∫
φ′

s,t (z)Ht (dz),

and, letting P n = P γn ,

Πn
A

(
X′,Hn

) =
∑
s∈S

∑
t∈T

P n(s, t)

∫
φn

s,t (z)H
n
t (dz).

Since ΠA(X′,H) > v, it suffices to show that∫
φn

s,t (z)dHn
t →

∫
φ′

s,t (z)dHt,

for each s ∈ S and t ∈ T . To prove this, fix ε > 0. Because x′
s = xk

s is not a mass point of Ht ,
we may specify an interval Z = [z, z] with x′

s ∈ (z, z) such that Ht(z) − Ht(z)
− < ε/4. By weak

convergence, Hn
t (z) − Hn

t (z)− < ε/2 for sufficiently high n. Furthermore, {φn
s,t } is a sequence

of functions that are non-decreasing on [m,z] and converge pointwise to φ′
s,t on this interval,

so they converge uniformly to φ′
s,t on the interval. Similarly, each φn

s,t is non-increasing on
[z,m], so the functions converge uniformly to φ′

s,t on this interval. Choosing n high enough that
|φn

s,t (z) − φ′
s,t (z)| < ε/2 for all z ∈ [m,z] ∪ [z,m], we have∣∣∣∣

∫
φn

s,t (z)dHn
t −

∫
φ′

s,t (z)dHt

∣∣∣∣ < ε,

as required. �
Proof of Theorem 5. Since Γ and BS∪T are metrizable, we may restrict attention to se-
quences, rather than nets. Let γn → γ , let (Gn,Hn) ∈ E(γn) for each n, and suppose that
(Gn,Hn) → (G,H). If (G,H) /∈ E(γ ), then, using the notation from the proof of Theorem 4,
one candidate, say A, has a pure strategy X such that ΠA(X,H) > vA(γ ). But then, as in the
proof of Theorem 4, we can find a strategy X′ satisfying the latter inequality such that no x′

s is a
mass point of any Ht , and then we can show that

Πn
A

(
X′,Hn

)
>

ΠA(X,H) + vA(γ )

2
,

for high enough n. But vA(γn) → vA(γ ) by Theorem 4, so it follows that Πn
A(X′,Hn) > vA(γn)

for high enough n, contradicting the assumption that Gn is a best response to Hn for A in the
electoral game indexed by γn. �
Proof of Theorem 6. Let (G,H) be a mixed strategy Bayesian equilibrium, let xi = sup{x ∈ � :
Gi(x) = 0} be the lower bound of the support of Gi for each i ∈ I , and let x = mini∈I xi be the
minimum of these lower bounds. Suppose that x < m, and take i such that xi = x. By symmetry
and interchangeability, (G,G) is also an equilibrium, so we may assume that H = G. Consider
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a sequence of pure strategies {Xn} satisfying the following. If Gi puts positive probability on x,
i.e., Gi(x) − Gi(x)− > 0, then let xn

i = x for all n. Otherwise, let {xn
i } be a sequence decreasing

to x such that each xn
i is in the support of Gi . Furthermore, choose xn

i so that ΠA(Xn,H |i) =
ΠA(G,H |i) for all n. To see that this can be done, set x0

i > x arbitrarily and, if possible, let xn
i

be any continuity point of A’s expected payoff function in the support of Gi and in the interval
[x, (x + xn−1

i )/2] to satisfy the desired condition. Since there is at most a countable number of
discontinuity points of A’s payoff function, such a policy can be found unless the support of Gi

in [x, (x + xn−1
i )/2] is countable. In that case, however, any policy in the support of Gi in this

interval satisfies the desired condition, and there is at least one such policy since xi = x. In any
case, we have ΠA(Xn,H |i) = ΠA(G,H |i) for all n and limn→∞ Gi(x

n
i )− = 0. Now consider a

pure strategy X′ satisfying x′
i = m, and note that for n such that xn

i < m,

ΠA(X′,H |i) − ΠA

(
Xn,H |i)

=
∑
j∈I

P (j |i)
[ ∫
[x,xn

i )

[
Fi,j

(
xn
i + z

2

)
− Fi,j

(m + z

2

)]
Hj(dz)

+ (
Hj

(
xn
i

) − Hj

(
xn
i

)−)[1

2
− Fi,j

(
xn
i + m

2

)]
(A.7)

+
∫

(xn
i ,m)

[
1 − Fi,j

(m + z

2

)
− Fi,j

(
xn
i + z

2

)]
Hj(dz) (A.8)

+ (
Hj(m) − Hj(m)−

)[1

2
− Fi,j

(
xn
i + m

2

)]
(A.9)

+
∫

(m,∞)

[
Fi,j

(m + z

2

)
− Fi,j

(
xn
i + z

2

)]
Hj(dz)

]
.

For each j ∈ I , the first integral goes to zero, since limn→∞ Hj(x
n
i )− = limn→∞ Gj(x

n
i )− = 0.

Further, the last integral is clearly non-negative. So, too, the other terms are non-negative, because
Fi,j (

w+z
2 ) < 1/2 for all w � m and all z < m. This establishes that the right-hand side is non-

negative. It is strictly positive because, when j = i, the bracketed terms in (A.7)–(A.9) have
strictly positive limits; and the total probability mass on these terms is strictly positive since
limn→∞ Hj(m) − Hj(x

n
i )− = Gi(m) − Gi(x)− = Gi(m) > 0. Because P(i|i) > 0 by (C3), we

conclude that ΠA(X′,H |i) > ΠA(Xn,H |i) = ΠA(G,H |i) for high enough n, contradicting the
premise that (G,H) is an equilibrium. An analogous argument establishes that the supports of
equilibrium strategies are bounded from above by m. �
Proof of Lemma 2. Let (G,H) be a symmetric mixed strategy Bayesian equilibrium, and take
any z ∈ M . Define the set I ′ = {i : Gi(z) − Gi(z)

− > 0}. Lemma A.2 establishes that for all
signals i ∈ I ′, z must solve

∑
j∈I

αjFi,j (z) = 1

2
, (A.10)

where the non-negative weights,

αj = [Gj(z) − limw↑z Gj (z)]P(j |i)∑ [G (z) − lim G (z)]P(l|i) ,
l∈I ′ l w↑z l
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sum to one. Under (C4*), signals are ordered. If I ′ contains multiple signals, then let i and i

denote the minimum and maximum of I ′, respectively. Accordingly,∑
j∈I

αjFi,j (z) =
∑
j∈I

αjFi,j (z). (A.11)

Suppose in order to show a contradiction that Fi,i(z) = 0. Then, by (C4*), we have Fj,i(z) = 0

for all j > i, which implies
∑

j αjFi,j (z) = 0. This contradicts (A.10) with i = i, as desired. An
analogous argument establishes that 0 < Fi,i(z) < 1. Since z ∈ M , condition (C4*) then implies
that Fi,i(z) is both the uniquely smallest element of {Fi,�(z) | � ∈ I ′} and the uniquely largest
element of {Fi,�(z) | � ∈ I ′}. Condition (A.11) therefore implies that αi = αi = 1, a contradiction.
We conclude that I ′ is a singleton. Taking i such that I ′ = {i}, condition (A.10) therefore reduces
to Fi,i(z) = 1/2, i.e., z = mi,i . �
Example A.2 (Upper Hemicontinuity Violated with Discontinuous Conditional Distributions).
Let I = {−1,0,1}, with uniform priors, i.e., P(i, j) = 1

9 for each i, j ∈ I . For each i, j ∈ I ,
let Fi,j be the point mass on mi,j , and let {Fn

i,j } be a sequence of uniform distributions with
density n, where all conditional medians are depicted below.

j = 1 m−1,1 = 0 m0,1 = 0 m1,1 = 0
mn−1,1 = 1

n mn
0,1 = 0 mn

1,1 = 1
n

j = 0 m−1,0 = 0 m0,0 = 0 m1,0 = 0
mn−1,0 = 0 mn

0,0 = 0 mn
1,0 = 0

j = −1 m−1,−1 = −1 m0,−1 = 0 m1,−1 = 0
mn−1,−1 = −1 mn

0,−1 = 0 mn
1,−1 = 1

n

i = −1 i = 0 i = 1

Thus, each n defines an instance of the Canonical Model, and the conditional distributions Fn
1,−1,

Fn
−1,1, and Fn

1,1 converge weakly to the degenerate distributions F1,−1, F−1,1, and F1,1, respec-
tively. Furthermore, the supports of Fn

−1,0 and Fn
−1,1 are contiguous, as are the supports of Fn

0,−1
and Fn

1,−1. For each n, define the pure strategy Xn as follows: xn
−1 = −1, xn

0 = 0, and xn
1 = 1/n,

and let Yn = Xn. Then (Xn,Y n) is a Bayesian equilibrium of the nth game in the sequence. To
see this, note that following signal −1, xn

−1 = −1 produces a tie if B receives signal −1, a loss
if B receives signal 0, and a loss if B receives signal 1, yielding a conditional expected payoff
for candidate A of 1/6. Moving from xn

−1 = −1 to the right, A’s conditional expected payoff is
maximized for x′−1 ∈ [0,1/n], which yields

(
1

3

)
(0) +

(
1

3

)
F−1,0

(
x′−1 − xn

0

2

)
+

(
1

3

)(
1 − F−1,1

(
xn

1 − x′−1

2

))
= 1

6
,

and thus xn
−1 = −1 is a best response. Following signal 0, xn

0 = 0 produces a win if B receives
signals −1 or 1 and a tie if B receives signal 0, and this is clearly a best response. Following
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signal 1, xn
1 = 1/n produces a win if B receives signal −1, a loss if B receives signal 0, and a tie

if B receives signal 1, and this is also a best response, establishing the claim. Clearly, (Xn,Y n)

converges to (X,Y ) defined by x−1 = y−1 = −1, x0 = y0 = 0, and x1 = y1 = 0. But this is not
an equilibrium of the limiting model, because x−1 = −1 is not a best response: while x−1 = −1
produces a tie and two losses, moving to x′−1 = 0 produces two ties and one loss, increasing A’s
expected payoff.
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