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Abstract

This paper brings together two major research streams in economic theory: infor-
mation transmission in networks and strategic communication. The model embeds
“persuasion” games of strategic disclosure by Milgrom (1981) into the communication
network framework by Jackson and Wolinsky (1996). I …nd that the unique optimal
network is a line in which players are ordered according to their bliss points. This
ordered line is also pairwise-stable. This …nding stands in sharp contrast to previous
results in network studies, that identify stars as the optimal and pairwise-stable net-
works when communication is non-strategic and subject to technological constraints.
While stars are the most centralized minimally-connected networks, the line is the
most decentralized one. These results may be especially relevant to political economy
applications, such as networks of policymakers, interest groups, or judges.
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1 Introduction

This paper proposes the marriage of two major research streams in economic theory: infor-

mation transmission in networks and strategic communication. The model embeds “per-

suasion” games of strategic disclosure by Milgrom (1981) into the “social communication”

network framework introduced by Jackson and Wolinsky (1996). My analysis yields results

that overturn established insights in both the strategic communication literature, which

usually assumes that experts communicate directly to decision-makers, and the informa-

tion transmission in networks literature, which typically does not consider how strategic

misrepresentation of information in‡uences its transmission in a network.1

Speci…cally, I …nd that the insight from direct strategic communication, that veri…able

information is fully disclosed in equilibrium, extends to strategic communication in net-

works if and only if all players on the path that connects an expert to a decision-maker are

biased in the same direction relative to the decision-maker. As a consequence, the optimal

network for strategic information turns out to be the “ordered line” in which each player

forms a link only with the players with the most closely aligned preferences. This is the

most economical network that ensures no veri…able information is strategically withheld

in communication. This result stands in sharp contrast to established …ndings that opti-

mal communication networks are highly centralized when abstracting from the possibility

of strategic misrepresentation of information. Further, I show that such an ordered line

endogenously forms as a Nash Equilibrium of a game of bilateral link sponsorship based on

Myerson (1991), and is pairwise stable.

In order to describe my model and results in more detail, let us start by brie‡y re-

viewing social communication in networks. Consider a symmetric network, where each

link represents who may communicate with whom within a group of players. Each player

enjoys a bene…t from being connected with any other player, possibly through a path of

intermediaries in the network. Such a bene…t represents, in reduced form, the value of the

other players’ information for the player when called to make decisions. The value of an

indirect connection may decay exponentially with the length of the connecting path. Each

player bears a cost when forming a link with any other player.

The optimality and stability of networks depend on the link costs. If they are very high,

1In both cases, there are only a few exceptions, which I discuss in the literature review (Section 2).
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no links form, and the optimal network is empty. If costs are very low and there is decay

in communication, a fully connected network is optimal and stable. For intermediate costs,

if there is no information decay along the network, then any minimally optimal network

(tree) is optimal. But if there is any decay, then only star networks are optimal: one

player (center) is connected to all others (periphery), and no other links form. In fact,

stars are the trees that minimize the sum of the lengths of the paths, and hence aggregate

communication decay.

Turning to describe persuasion games, consider an uninformed agent who makes a

decision based on the information provided by a perfectly informed expert. The former

would like to match her decision with the state of the world. The expert would like

the decision to match the state plus a constant “bias.” The information transmitted by

the expert is veri…able, hence the expert cannot lie, but he can withhold information.

Despite the expert’s bias, in equilibrium, he fully discloses all his information, and the

decision-maker makes a perfectly informed decision. This outcome is supported by “worst-

case” beliefs o¤ the equilibrium path. If the expert were to withhold any information, the

decision-maker would believe that the state of the world is the one most contrary to the

expert’s bias, compatibly with the information he released.

My model embeds a persuasion game into a network, and is presented in Section 3. An

expert and a decision-maker are randomly selected from the players in the network, with

each pair of players having a positive probability. Once chosen, their identities become com-

mon knowledge, and a persuasion game is played in the network. The expert’s information

is sent to the decision-maker through any path of players that connects them. Players have

misaligned preferences, meaning that each would like to persuade the decision-maker to

choose a di¤erent action, given the same state of the world.

For each network and pair of realized expert and decision-maker, I determine the value

of the most informative equilibrium in the resulting persuasion game. The average of such

values, weighted by the ex-ante probability of each pair of expert and decision-maker, de-

termines the value that each individual player assigns to the network. The optimality

and stability of networks are assessed using such values. This simple, micro-founded con-

struction captures the main features of both social communication in networks—namely,

that each player bene…ts from the information she may receive from any other player—and

strategic (veri…able) information transmission, where each player may withhold information
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to in‡uence the decision-maker’s choice.

To keep the exposition simple and to highlight the departure from the existing networks

literature, I abstract from non-strategic communication constraints and focus on strategic

persuasion incentives. Also, I frame the analysis within the canonical setup of strategic

communication where the players’ payo¤s follow a quadratic loss function with misaligned

bliss points. I relax these assumptions in Section 5, which shows that my results are

qualitatively the same as long as the players’ payo¤s satisfy mild assumptions, as well as

when multiple experts and decision-makers may be called to play, and experts do not know

the state and only observe noisy signals. Finally, I show that my results are robust when the

information transmitted across the network decays independently of the players’ choices,

as long as the decay probability is small relative to the players’ bliss point misalignments.

My …rst result is that the equilibrium analysis of persuasion games, for a given network

and realized expert and decision-maker, depends on the characteristics of all the players

along the paths that connect the expert with the decision-maker. I introduce the concept

of a “bias reversal” path, which denotes a path where not all players are biased in the same

direction relative to the decision-maker. For example, this occurs if the expert is biased

to the right relative to the decision-maker, but can only communicate with her through an

intermediary that is biased to the left.

In the case where the expert and the decision-maker are linked through only one path, I

show that the state is transmitted precisely in equilibrium if and only if the path has no bias

reversals. Only then, in fact, do all players pass on the expert’s information precisely along

the path, and Milgrom’s (1981) logic extends to communication through intermediaries.

The reason is that there cannot exist o¤-path beliefs that simultaneously punish the expert

and all intermediaries for withholding information, if some are biased to the right and

others are biased to the left. To punish the former, the decision-maker’s choice should

be as leftist as possible, compatibly with the information received, and simultaneously as

rightist as possible to punish the latter. But of course, this is impossible. Hence, the state

is transmitted precisely to the decision-maker in equilibrium if and only if the path from

the expert has no bias reversals. If it does, and the biases are large enough, the decision-

maker receives no information in equilibrium. In this case, the results of persuasion games

without intermediaries are completely overturned.
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This simple result bears important implications for the study of communication in net-

works. Existing analyses based on di¤usion models assume that players learn information

from the players they are linked with (i.e., their neighbors), possibly randomly, but ab-

stract from the possibility that information is strategically misrepresented.2 My results

show that, when explicitly considering strategic communication, whether or not a player

learns another’s information does not only depend on the shape of the network, nor only

on the characteristics of the pair of players considered. Whether one player’s information

reaches another crucially depends on the biases and characteristics of all the players on

the connecting paths. As I explain in Section 2, this implies that existing di¤usion models

cannot appropriately represent strategic communication in networks, where players may

actively withhold or manipulate information based on their biases.

These implications are highlighted by the contrast in terms of the results on network

optimality and stability. I …nd that the unique optimal network is a line in which each

player forms a link only with those with the closest bliss points. This ordered line is also

implemented as an equilibrium of a game of bilateral link sponsorship based on Myerson

(1991), and it is pairwise-stable. These results stand in sharp contrast with fundamental

…ndings in network theory, such as those by Jackson and Wolinsky (1996). If communication

is non-strategic and subject to technological constraints such as information decay, they

…nd that the optimal and stable networks are stars. In terms of network centrality, the

contrast could not be more extreme. The star is the most centralized minimally connected

network, whereas the line is the most decentralized one.

Further, my results hold despite the fact that, unlike in Galeotti, Goyal, and Kamphorst

(2006) and Calvó, de Martí, and Prat (2015), for example, the cost to link agents is the

same across pairs, and (while this assumption is not needed) the value of every player’s

information is the same for each other player. The reason why it is optimal that the

players with the closest bliss points form links is not based on homophily (McPherson,

Miller, and Cook, 2001). Rather, it is that this induces the least costly network where

Milgrom’s (1981) logic kicks in. All veri…able information is disclosed through the ordered

line network in equilibrium because each possible decision-maker would know who to blame

if any information were withheld. The signals of every expert biased to the left (right)

2As I detail in the literature review, this is so even for models of information di¤usion in networks based
on Bayesian learning, because they assume that there are no externalities across agents’ decisions or that
their preferences are aligned. A fortiori, this is the case for models of non-Bayesian learning in networks.
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are transmitted through a path where all players are biased to the left (right). If any

information about such signals does not reach the decision-maker, she would infer that it

must be evidence that would move her decision to the right (left). She reacts by taking the

most leftist (rightist) decision possible compatibly with the information received, and that

deters all the players to her right (left) from ever withholding information.

The contrast with non-strategic information di¤usion models in networks is also re‡ected

in di¤erent applications. Di¤usion models naturally apply to economic problems where

there are no action externalities, or the agents share similar goals. For example, they have

been applied to the study of …rms and other organizations in business economics, where the

various groups in the organization share the same objectives (e.g., pro…t maximization).

As well as the optimality of stars to deal with information decay, hierarchical, centralized

networks are regarded as the optimal structure in this context, for reducing the costs of

information processing (Radner, 1993; Bolton and Dewatripont, 1994), and for preventing

con‡icts between subordinates and their superiors (Friebel and Raith, 2004).

By contrast, my paper studies networks where agents have a strategic incentive to mis-

lead each other because each is a¤ected by everyone’s decision, and their preferences are

not aligned. The main motivation and application of my work are networks of political

decision-makers.3 Social connections are understood to be an important, if not fundamen-

tal, feature of politics.4 While there is now an empirical literature that investigates political

networks,5 systematic theoretical modeling, as provided by network economics, is still in

its infancy.

Possibly quintessential in politics are preference divergences across agents, driven by

ideological di¤erentiation, which often lead agents to try and mislead each other. It is

also common that political agents form alliances with those who are ideologically closest to

them, as predicted by my analysis. Indeed, especially career political agents usually have a

good sense of each other’s ideological views. In this context, the implication of my paper’s

main …nding is that not only do links form among the ideologically closest agents, but this

is also optimal as it ensures the transmission of veri…able information across all political

agents.

3A di¤erent application is to organizations such as companies where distinct divisions have divergent
strategic objectives, risk attitudes, or discount factors.

4This has been recognized as early as the work by Routt (1938).
5An exhaustive review is provided by the handbook edited by Victor, Montgomery, and Lubell (2017).
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The insights provided here about political networks are fully developed in my companion

paper, Squintani (2018). Unlike here, I consider a simple binary signal model. Each agent

receives an i.i.d. signal that is Bernoulli distributed given the state of the world. Of special

interest is the case in which agents are partitioned into ideologically diverse groups, each

composed of agents with similar views.6 My analysis predicts that these groups optimally

organize as stars, and that each center forms a link with the centers of the ideologically

adjacent stars. This gives rise to familiar organizational structures: factions of like-minded

politicians report to a leader (star center), and faction leaders communicate with each other

along ideological lines. While factionalization is often perceived negatively, my analysis

shows that it is the least demanding network architecture that ensures the free ‡ow of

veri…able information.

As I explain in the companion paper in detail, this analysis can be applied to several

di¤erent political networks. For example, think about policymakers in di¤erent jurisdic-

tions. They face similar policy challenges and would bene…t from the experience gathered

by their colleagues. Often, this information takes the form of policy experiments, whose

results cannot be falsi…ed, but can be hidden in the abundance of bureaucratic documents.

To make better decisions, each policymaker consults her network of peers, but these con-

nections are costly to maintain.7 Likewise, members of legislative assemblies greatly value

communication within informal networks.8 Other examples include networks of interest

groups, lobbyists, political experts, consultants, investigative journalists, bloggers, or aca-

demics.9 When one of these agents is called to campaign or provide advice on di¤erent

matters, she will reach out through her peer network to collect information. But again,

6As posited by Hume (1741), and documented since at least Rose (1964), these distributions of ideologies
arise naturally in several political environments.

7The empirical/descriptive literature on networks of policymakers includes work by Zafonte and Sabatier
(1998) on the cooperative links among San Francisco Bay area government agencies, and the study by
Gerber, Henry, and Lubell (2013) on the connections among planning and management agencies in …ve
main California regions.

8In a classical piece, Fiellin (1962) surveys 1961 Democrat representatives about their network of friends
in the New York State House, and documents that “probably the most important functions of informal
groups and relationships result from their use as communication networks.” This work led to many studies,
e.g., Zhang et al. (2008), and Bratton and Rouse (2011).

9Among studies on interest group networks, Laumann and Knoke (1987) and Carpenter, Esterling, and
Lazer (2004) trace the connections among lobbyists, government agencies, and congressional sta¤ in the
1970s health and energy policy domains, König and Bräuninger (1998) investigate the ties among interest
groups, trade unions, governmental agencies, and legislators in the events that shaped 1980s German labor
policies, Koger, Masket, and Noel (2009) study the network of US party candidates, activists, interest
groups, and media outlets using donor and subscriber name data, and Box-Ste¤ensmeier and Christenson
(2014) build a network of interest group coalitions using amicus curiae briefs to the US Supreme Court.
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these connections are costly to maintain. Furthermore, my theoretical analysis can also be

related to the study of informal networks of judges, due to the available network datasets

built by linking judges that cite other judges’ rulings as precedents in their decisions.10

2 Related Literature

Within the large body of literature developed over the years in network theoretical eco-

nomics,11 an important focus is information transmission in networks.12 The di¤usion

approach usually adopted applies to communication among agents who do not have any

incentive to strategically mislead each other. This is also true for so-called “Bayesian

learning” models, where each player learns through equilibrium inference based on their

neighbors’ choices, either in the form of explicit information transmission or just by ob-

serving their actions. This is because such models assume that there are no externalities

across agents’ play and that their preferences are aligned.13

Speci…cally, Bala and Goyal (1998) studied a pioneering model in which there is no

explicit information transmission; players observe the choices of their neighbors and thus

indirectly learn about information (see also Acemoglu, Dahleh, Lobel, and Ozdaglar, 2011).

Acemoglu, Bimpikis, and Ozdaglar (2014) provided an explicit model of information trans-

mission. While in these papers, information originates only among the players in the

network, Egorov and Sonin (2020) study a model where a biased outside sender may also

send a signal to the players. In line with the “Bayesian persuasion” model by Kamenica and

Gentzkow (2011), the sender controls the informativeness of her signal but cannot falsify

it, and information ‡ows through the network with decay.14 Instead, Galperti and Perego

10For example, Caldera (1985) constructs the network of citations across US State supreme courts, and
Fowler et al. (2007) the network of citations across all three levels of US federal courts.

11Such literature is so vast that it is impossible to survey adequately here. A detailed review of network
economics literature can be found in the handbook edited by Bramoullé, Galeotti, and Rogers (2017), for
example.

12Jackson and Yariv (2011) review the literature from both economics and other …elds on the role of
externalities and di¤usion in networks.

13A fortiori, strategic information transmission in networks is covered by so-called “naive” models where
players’ learning is not based on equilibrium beliefs in a game. For example, Golub and Jackson (2010)
study a model where players’ beliefs are assumed to be weighted averages of their neighbors’.

14Although there is no strategic information transmission within the network due to aligned preferences,
the outside sender’s communication is strategic, and so is the decision within the network on whether
to listen. As a result, the outside sender cannot reach high-centrality agents, who prefer to rely on the
information from their network neighbors.
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(2024) consider the case where information does not decay through the network, and only

a subset of networked players can receive the sender’s information.

In all these papers, there are no externalities across players’ choices in the network,

and their preferences are aligned. Hence, the players in the network have no incentive to

strategically manipulate information and mislead each other, which is the research subject

of this paper. Further, a maintained assumption of existing network models is that the

value of connecting a pair of agents i and j is independent of the characteristics of the

other players on the connecting path. This assumption is shown not to hold in this paper’s

full-‡edged analysis of strategic communication. And while this is shown here for the case

of veri…able information transmission, Ambrus, Azevedo, and Kamada (2013) prove an

analogous result for the case of cheap talk. These results clarify why existing network

models do not cover strategic information transmission.15

Building on the seminal papers by Milgrom (1981), Grossman (1981), and Crawford and

Sobel (1982), strategic information transmission has developed into one of the central topics

in the economics of information.16 One of the main insights of this literature is that, while

communication of unveri…able information (cheap talk) generally leads to imprecise deci-

sions, withholding veri…able information is incompatible with equilibrium.17 This insight

is overturned in my analysis of indirect communication. When an expert communicates

with a decision-maker through intermediaries, veri…able information is fully disclosed in

equilibrium if and only if all the players on the communication path are biased in the same

direction relative to the decision-maker.

While the literature on strategic information transmission has branched out theoreti-

cally in several directions, the study of indirect communication through intermediaries is

still underdeveloped.18 Ambrus, Azevedo, and Kamada (2013) study the case of cheap

15Sadler (2020) and Lipnowski and Sadler (2019) do not consider information transmission in networks,
but each player’s action may signal information to her neighbors in the network. Action externalities may
take the form of strategic complementarity or substitution, but they are limited to the choice of neighbors,
and so is the incentive to mislead neighbors through action choice.

16Such literature is so vast that it is impossible to survey adequately here. Strategic communication
models have been applied to several di¤erent …elds of research, including political economy (e.g., Gilligan
and Krehbiel, 1987; Morris, 2001), accounting (e.g., Verrecchia, 1983; Dye, 1985; Skinner, 1994), organi-
zation design (e.g., Dessein, 2002; Alonso, Dessein, and Matouschek, 2008), contract theory and industrial
organization (e.g., Vives 1984; Lizzeri 1999; Dewatripont and Tirole, 1999).

17This result is extended to a model in which the sender has a cost for lying by Kartik, Ottaviani, and
Squintani (2007) and Kartik (2009).

18In fact, most studies of communication are staged in 2-player models with one expert and one decision-
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talk, demonstrating that the analysis is signi…cantly more complex than for the case of

veri…able information disclosure considered here. The result that intermediation cannot

improve information transmission holds only for pure strategy equilibria. They provide a

partial characterization of mixed strategy equilibria, show instances in which intermedia-

tion improves upon direct communication, and provide necessary conditions. For the case

of veri…able information disclosure I consider here, however, intermediation cannot ever

improve upon direct communication, in equilibrium.

Further, Ivanov (2010) considers the intermediation of cheap talk through a strategic

mediator, whereas Patty and Penn (2014) explore sequential decision-making in networks

of three privately informed agents with misaligned preferences. There is no explicit in-

formation transmission in their model, but each agent’s action may signal information to

subsequent decision-makers in the network. While I consider the transmission of multi-

agent (veri…able) information in networks allowing for any pro…le of players’ biases, Bloch,

Demange, and Kranton (2018) study the spreading of possibly false information in a net-

work where agents may either wish correct decisions are made or have a private agenda in

favor of one alternative. Unlike my paper, they do not consider network optimality. In-

stead, Migrow (2019) studies optimal hierarchies of possibly biased agents who strategically

report unveri…able information to a single decision-maker.

Closer to my work, Gieczewski (2022) studies a model of learning in networks with the

transmission of veri…able information among agents with misaligned preferences. Unlike

my paper, he does not consider network formation, stability, or optimality. Experts learn

the state with probability less than one, and this prevents full information disclosure. He

…nds that full learning requires su¢ciently dense networks in his framework. Signals closer

to the mean are more likely to propagate because agents tend to block signals contrary to

their bias, as is the case in my paper. When agents are forward-looking, concerns about

learning cascades cause the players to divide into like-minded, non-communicating groups.

Unlike these papers, Onuchic and Ramos (2023) do not consider indirect communi-

cation, nor networks. They study team production where output is veri…able, and its

disclosure may impact team members di¤erently. They consider all disclosure protocols,

maker. Among exceptions are the studies by Battaglini (2002) on many-to-one communication, Farrell and
Gibbons (1989) on one-to-many communication, and Galeotti, Ghiglino, and Squintani (2013) on many-
to-many communication. None of these or other papers on multi-player communication consider indirect
communication through intermediaries.
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from unilateral to consensual disclosure, and …nd that full disclosure is the unique outcome

only if team members can unilaterally disclose information on output. This result is similar

in spirit to my …ndings on disclosure through intermediaries. They characterize productive

environments where di¤erent protocols maximize e¤ort incentives in teams, …nding that

partial disclosure can boost incentives.

3 The model and preliminaries

This Section provides a simple model of persuasion in networks by putting together the early

model of persuasion in games by Milgrom (1981) with the model of “social communication”

networks by Jackson and Wolinsky (1996). I begin the exposition by brie‡y reviewing these

models and their most important results, and by setting up a common notation.

Jackson and Wolinsky (1996) I now turn to introduce the model of “social communi-

cation” in networks by Jackson and Wolinsky (1996). Such model is a reduced-form model

in which there is no explicit information transmission. Rather, each player i’s payo¤s for

a possibly indirect connection with another player j are interpreted as the value of j’s in-

formation for i. Speci…cally, suppose that a set N of n players is connected in a symmetric

network N, a symmetric n £ n matrix, where Nij 2 f0, 1g, Nii = 1 for all i, j 2 N. The

utility of each player i from graph N is:

ui(N) =
X

j 6=i

(δ(i,j) ¡ cNij),

where (i, j) is the length of shortest path between i and j in N .19 Each link describes

who transmits information to whom. Each link costs c ¸ 0 to player i, and the parameter

δ 2 (0, 1] represents “communication decay.” The idea is that player j may hold information

valuable to player i. When this is the case, i’s information travels to j along one of the

shortest paths that connects them. At each step on the path, the information decays with

probability 1¡ δ. So, j obtains i’s information with probability δ(i,j).

Network optimality trades o¤ how well information is communicated through the net-

work with the cost the players pay to form links. A network N is optimal if it maximizes

19Two agents i and j are linked by the path p = (i, h1, ..., h¡1, j) of length  in network N, if i is linked
to h1, hk is linked to hk+1 for every k = 1, ..., ¡ 2, and h¡1 is linked to j.
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w(N) =
P

i ui(N). Network optimality is characterized through the following de…nitions.

The empty network is such that there does not exist a link between any player i and j.

The complete network is such that every player i is linked with every other player j. A

minimally connected network or tree N is a network such that every pair of players i, j is

connected via a unique path. A star is a minimally connected network in which one player,

called the center, is connected to all other players.

Proposition 1 (Jackson and Wolinsky 1996) There exist thresholds c and c functions

of δ, and n such that: for large link cost c, i.e. c > c, the optimal network is empty; for

small c and δ < 1, i.e. c < c, the optimal network is complete; for intermediate cost c and

δ < 1, i.e. c < c < c, every star is optimal; for δ = 1 and 0 = c < c < c, every tree is

optimal.

The logic behind these results is easy to grasp. When forming links is too costly, it is

optimal not to connect players at all, and the optimal network is empty. If instead forming

links is very cheap, then it is optimal to link all players in a complete graph, as long as

there is decay in communication (δ < 1) . In the case links are neither too costly nor too

cheap, it is optimal to connect all players with a network without redundant paths, i.e.,

with a tree. In the presence of decay, δ < 1, the optimal graph is the star as it is the tree

that minimizes the sum
P

i,j (i, j) of the lengths (i, j) of the paths across every pair of

players i and j.

Jackson and Wolinsky (1996) further prove that for intermediate link costs c and δ < 1,

every star is “pairwise stable.” Informally, stars are the networks with the property that no

link forms that would not be worth the cost to one of the connected player, and every link

forms that would be bene…cial to both the connected players.20 The main message of their

analysis is that optimality and equilibrium stability select highly centralized network such

as the stars, when avoiding information decay is the most important concern in the design

of communication networks. Later, I will show how strategic communication incentives

overturn these insights.

Milgrom (1981) The model of persuasion by Milgrom (1981) considers a biased, in-

formed expert e who may or may not disclose his information to a decision maker d. The

20To avoid the burder of too many preliminaries at this stage, I postpone the formal de…nition of pairwise
stability to the next section.
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information disclosed is veri…able, hence the expert cannot lie, but can withhold informa-

tion. Speci…cally, there is a state of the world x 2 X = [x, x] ½ R.21 The decision maker

does not know x, she only knows the distribution of x, which I assume to have a continuous

density f strictly positive on X. The expert knows x, and may disclose information about

x, in the form of a closed set m̂ µ X, which may be a singleton set. The information m̂ is

veri…able, i.e., the expert is restricted to send a message m̂ such that x 2 m̂. After receiving

m̂, the decision maker chooses an action ŷ 2 R.

The decision maker’s payo¤ is the loss function Ld(x, ŷ) = ¡(ŷ ¡ x)2: she would like to

match her action ŷ with the state x. Relative to the decision maker, the expert is biased:

he would like that ŷ > x. Milgrom (1981) assumes that the expert’s loss function Le(x, ŷ)

is strictly increasing in ŷ for all x. For reasons that will become evident later, I make the

less extreme assumption that the expert would like that action ŷ is matched with x + b,

where b > 0 measures the expert’s bias. Speci…cally, his payo¤ is Le(x, ŷ) = ¡(ŷ ¡ x¡ b)2.

The extreme case considered by Milgrom is captured by b > x ¡ x.

The main result of the analysis is:

Proposition 2 (Milgrom 1981) There is a unique (pure and mixed strategy) perfect

Bayesian equilibrium, in which the biased expert e reveals x precisely, m̂ = fxg, and the

decision maker d chooses ŷ = min m̂ for every set m̂ disclosed by the expert. Hence, on the

equilibrium path, ŷ = x.

Despite her bias, the expert always discloses the state x precisely in equilibrium, and the

decision maker acts fully informed. The equilibrium is supported by “worst-case” beliefs o¤

the equilibrium path. If the expert did not disclose x precisely, i.e., she sent a closed set m̂

that does not coincide with x, the decision maker would believe that the state equalsmin m̂,

and pick action ŷ = min m̂. But because information is veri…able, x 2 m̂, it follows that

min m̂ · x whenever m̂ 6= fxg. The expert does not gain by deviating from the equilibrium

strategy of sending m̂ = fxg.22

21In Milgrom (1981), the state space X consists of the positive reals. For reasons that will become clear
later, it is useful to let X be a closed interval, here.

22The result that there is no other equilibrium is based on the following so-called “unraveling argument.”
Suppose to the contrary that the decision maker chose ŷ = E[xjX̂] whenever x 2 X̂ for some non-degenerate
set X̂ µ X. Because the distribution of x is full support, it must be that E[xjX̂] < max X̂. But then, for
every state x such that E[xjX̂] < x · max X̂, the expert would prefer to send message m̂ = fxg and
disclose x precisely, so that ŷ = x > E[xjX̂], rather than following the equilibrium message strategy and
obtain ŷ = E[xjX̂].
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In sum, the received wisdom of persuasion games where an informed expert directly

transmits veri…able information to a decision maker is that all information is disclosed in

equilibrium. I will later show how this insight is overturned when considering transmission

of veri…able information through intermediaries.

Persuasion in networks In order to study strategic information transmission in net-

works I embed the persuasion game by Milgrom (1981) into the social communication

construction by Jackson and Wolinsky (1996). As a by-product, I also provide a micro-

foundation of social communication networks with an explicit model of information trans-

mission.

Again, suppose that a set N of n players is connected in a symmetric network N, where

Nij = 1 means that i is linked to j, i.e., i can transmit veri…able information to j. After

the network N is formed, a pair of players d and e is randomly selected from N , according

to a full support probability P. Player d takes the role of the uninformed decision maker

and e of the informed expert, she is the unique player who knows the state of the world

x 2 X. Their identities becomes common knowledge among all players in N after they are

selected.

As in Jackson and Wolinsky (1996), player e’s information travels to d through the

network N. But I generalize the construction by allowing information to travel along any

path p(e, d) that connects e and d. As in Milgrom (1981), information is veri…able and takes

the form of closed sets. Speci…cally, letting ¹(e, d) be the length of the longest path p from

e to d, there are T = ¹(e, d) periods of information transmission. At time t = 0, player e

transmits a message ~m0
ej to any one of her neighbors j who belong to a path p from e to

d.23 The expert’s message ~m0
ej is a closed subset of X and it is veri…able, in the sense that

fxg µ ~m0
ej.

Then, for t > 1, communication proceeds as follows. For any path p from e to d and

any player i on p, denote by the ‘distance’ (p(e, i)) between i and e on p, the length of the

subpath p(e, i) from e to i contained in p. At any time t = 1, ..., T ¡ 1, each player i on a

path p from e to d at distance t from e sends a message ~mt
ij µ X to any one of her neighbors

j who are on a path p0 from e to d and are at distance t + 1 from e. Again, for each such

i and j, the message ~mt
ij is closed and veri…able. Speci…cally, for every history ht, letting

23The set Ni of neighbors of i in N is the set of players j with whom i is linked, i.e., such that Nij = 1.
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ωi(h
t) be the information held by player i about the state x, the veri…ability requirement

is that ωi(h
t) µ ~mt

ij. In the …rst period, given the null history h0, the information of the

expert is ωe(h
0) = fxg and every other player i’s information is ωi(h

0) = X.

With probability 1¡δ independently across periods and pairs of players i, j, the message

m̂ij is lost in transmission, and player j learns nothing about X, i.e., she observes m̂t
ij = X.

Else, j observes m̂t
ij = ~mt

ij . I restrict attention to small or no decay, δ close or equal to 1.

Veri…able information ωi(h
t) is updated in the standard manner: if a player j observes the

vector of messages m̂j at history ht, she updates her information at history ht+1 according

to the rule: ωj(h
t+1) = ωj(h

t) \i m̂
t
ij. At time T , given any history hT , player d chooses

ŷd 2 R on the basis of her veri…able information ωd(h
T ) and on equilibrium beliefs.

In line with my speci…cation of persuasion games, each player i would like that any

decision maker d’s choice ŷd matches her realized bliss point x+bi. The “relative bliss point”

bi 2 R identi…es player i’s idiosyncratic preference component, relative to the common state

x. For the sake of realism, I allow for each player i to care about some decisions more than

others. Player i’s loss function for decision ŷd is

Li(ŷd, x) = ¡αid(ŷd ¡ xd ¡ bi)
2,

where the utility weights αid are such that αid > 0 for all i, d and
P

d2N αidP (d) = 1 for all d.

I assume that the ex-ante bliss points are ordered, b1 < ... < bn, and that they are common

knowledge, in line with the motivating applications presented in the Introduction.24

Given N, e and d, I let µedN denote a possibly mixed equilibrium strategy pro…le of

the players i 6= d on any path p from e to d, and yd the associated equilibrium strategy of

player d. Hence, each player i’s expected value of equilibrium (µedN , yd) in the persuasion

game given by network N, expert e, and decision maker d is:

ui(µedN , yd; e, d,N) = ¡αidE[(yd(h
T ;µedN)¡ x ¡ bi)

2],

where the expectation is taken over hT and x. In case multiple equilibria µedN exists in a

persuasion game de…ned by a triple N, e and d, I select the equilibrium µedN that yields

the highest expected value ui(µedN , yd; e, d,N) to all players i (I will later show that the

24While these assumptions capture multi-player persuasion games, the “opposite” case where b1 = ... =
bn ´ b provides a simple micro-foundation of the social communication games by Jackson and Wolinsky
(1996).
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equilibria µedN are Pareto ranked ex-ante for all e, d,N). I de…ne such equilibrium µ¤edN as

the ‘most informative equilibrium.’

Aggregating across the possible realizations of expert-decision maker pairs (e, d) , we

obtain that each player i’s ex-ante value of network N, including the costs of the links in

N, is:

Ui(N) = ¡
X

(d,e)2N 2:d6=e

αidE[(yd(h
T ;µ¤edN )¡ x ¡ bi)

2]P (e, d)¡ c
X

j 6=i

Nij .

As in social communication game presented above, I let the welfare of each network N be

simply the sum of the players’ ex-ante values: W (N) =
P

i Ui(N). Later, I will determine

the relationship between such utilitarian welfare concept and the balance between a network

N ’s information transmission e¢ciency and aggregate link costs.

4 Results

First, I solve for perfect Bayesian equilibrium in the persuasion game with …xed network

N . Then, I will determine optimality and stability. To highlight my point of departure

from models of information di¤usion in networks, I here abstract from any technological

communication constraint and focus on the case of no decay, δ = 1. Also, to simplify the

exposition, I restrict the players’ messages space to rule out partial information disclosure.

Formally, for any N, e and d, at any time t in which a player i 6= d on a path p(e, d) is

called to play, she can only send a message m̂t
ij 2 ffxg, Xg to her immediate successor

j on p(e, d). That is, player i can either disclose x precisely or withhold all information

(and obviously, the former is feasible only if she knows x). To avoid ambiguity, I refer to

the resulting communication game from e to d as a “disclosure game,” reserving the term

“persuasion game” for when partial disclosure is also allowed.

Equilibrium in the Disclosure Game I begin with two simple results that are im-

mediate consequences of the players’ quadratic loss speci…cations. For any d, e, x, in every

equilibrium µ of the disclosure game, in all histories hT , the decision maker d plays

yd(h
T ) = E[xjωd(h

T ), µ] + bd,

and hence each player i’s ex-ante expected equilibrium payo¤ is:

¡αidE(yd(h
T )¡ x¡ bi)

2 = ¡αidE[V ar(xjωd(h
T ), µ)] + (bi ¡ bd)

2. (1)
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The decision maker d chooses a decision equal to the expected value E[xjωd(h
T ), µ] + bd of

her bliss point x+ bd given her information ωd(h
T ) at history hT , together with knowledge

of equilibrium strategies µ. As a result, the expected loss E(yd(h
T )¡x¡ bi)

2 of each player

i can be decomposed into the expected residual variance E[V ar(xjωd(h
T ), µ)] of x given

the information ωd(h
T ) and the equilibrium strategies µ, and the square of the bias bi ¡ bd

of player i relative to the decision maker d. It follows that the players’ ex-ante payo¤s are

aligned in any disclosure game determined by any N, e, d. They would all prefer to minimize

d’s expected residual variance E[V ar(xjωd(h
T ), µ)], i.e., that d makes her decision with as

precise information ωd(h
T ) as possible.

Momentarily restricting attention to minimally connected networks N, I now charac-

terize the equilibrium of the disclosure game on N given realized expert e and decision

maker d. I make use of the following concept. Say that a path p(e, d) from e to d has a bias

reversal if there exists i, j on p(e, d) such that bi < bd < bj. The next result shows that

veri…able information ‡ows along N if and only if the path that connects e to d does not

have bias reversals. And if such bias reversals are su¢ciently large, then no information

reaches the decision maker. In other terms, the result of Milgrom (1981) is fully overturned

when veri…able information is transmitted through intermediaries i with biases bi ¡ bd that

are opposed to the expert’s bias be ¡ bd.

Proposition 3 In any equilibrium of a disclosure game on a tree N, for any expert e and

decision maker d, letting T = (e, d) be the length of the unique path p(e, d) from e to d,

1. if the path p(e, d) has no bias reversals, then the decision maker d always learns x

and plays ŷ = x, so that E[V ar(xjωd(h
T ), µ)] = 0,

2. if p(e, d) has bias reversals, then d does not always learn x: E[V ar(xjωd(h
T ), µ)] > 0;

3. if bd ¡ bi > 0 and bj ¡ bd > 0 are large enough, then d acts with no information:

yd(h
T ) = E[x] + bd for all hT .

These result are quite intuitive. Say p(e, d) has no bias reversals, e.g. bi > bd for all i 6= d.

Then, the logic of Milgrom (1981) generalizes. There exists a perfect Bayesian equilibrium

such that every i relays all information she has about x precisely along the path p(e, d),

formally m̂ij = ωi(h
t) for all i 6= d and history ht at which i is called to play. As a result, the

decision maker d learns x precisely and plays ŷd = x, so that E[V ar(xjωd(h
T ), µ)] = 0. Such

equilibrium is supported by “worse-case” o¤-path beliefs that interpret vague information as
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evidence contrary to agents biases, and hence “punish” players’ for withholding information.

Formally, such beliefs assign probability one to x = minωj(h
t) for every agent j 6= e

and every history ht at which j is called to play. Due to these o¤-path beliefs, each

player i 6= d can only shift the decision ŷd to the left, contrary to her bias bi ¡ bd > 0,

by withholding information at any history ht where she is called to play.25 Therefore,

withholding information only reduces her payo¤, and she will choose to fully disclose in

equilibrium.

Further, it cannot be that E[V ar(xjωd(h
T ), µ)] > 0 in equilibrium, by the following

generalization of the standard “unravelling” argument. If such an equilibrium existed, it

would need to be the case that d does not know x for some history hT . In the set of

states X(hT ) that d considers possible at hT , there would exist states x su¢ciently close

to the upper bound of X(hT ) such that all players i 6= d would like to reveal the state x

precisely, as this moves the decision ŷd to the right, relative to the decision based only on

the information that the state is in X(hT ), and on equilibrium beliefs.

Instead, both the “worse-case beliefs” and the “unravelling” arguments break down

if the (unique) path p(e, d) from the expert e to the decision maker d has bias reversals.

Plainly, there cannot exist o¤-path beliefs, and consequent decisions ŷd, that simultaneously

punish players i biased rightward, bi > bd and players j biased leftward, bj < bd, for

withholding information. There is no equilibrium such that player d learns x precisely, and

hence the loss E[V ar(xjωd(h
T ), µ)] is strictly bounded above zero (the precise bound is

derived in the proof of Proposition 3, in Appendix).

To elaborate, …rst note that every player i 6= d on the path p(e, d) can withhold all

information about x from all successors by sending the message m̂t
ij = X to her immediate

successor j at the time t when she is called to play. When this happens, the decision

maker will not learn anything about x; that is, her information set will be ωd(h
T ) = X,

and she will play ŷd(X) = E[xjX,µ] + bd. Consider any equilibrium belief E[xjX,µ] > x,

and suppose x ¸ x is below E[xjX,µ] but less than bi ¡ bd away from E[xjX,µ]. Every

player i with bi > bd who knows x strictly prefers that d play ŷd(X) = E[xjX,µ] + bd

rather than ŷd(fxg) = x + bd. Hence, she prefers to send m̂t
ij = X rather than reveal x

precisely. Similarly, for any equilibrium belief E[xjX,µ] < x, every player i with bi < bd

25This is because player i cannot lie about her information, because all that d knows about x she learnt it
from the communication path p(e, d), and because all successors of i on p(e, d) will relay their information
precisely along the path, formally ωi(h

t) µ m̂ij = ωd(h
T ) for all i 6= d, and hence min m̂ij · minωi(h

t).
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strictly prefers to withhold x because she is better o¤ if d plays ŷd(X) instead of ŷd(fxg),

for any x 2 (E[xjX,µ],minfx,E[xjX,µ]¡ bi+ bdg). Thus, regardless of the value assigned

to E[xjX,µ], there always exists an interval of states x that is not precisely revealed to the

decision maker in equilibrium.

Further, if the player’s biases bi ¡ bd > 0 and bj ¡ bd < 0 are large enough, then, player

i just wants to maximize ŷ, and player j to minimize ŷ, regardless of the value of the

state x. Indeed, such a case of “transparent motives” as de…ned in Lipnowski and Ravid

(2020) is the case originally studied by Milgrom (1981). Further, every player i on the

path p(e, d) can force the decision ŷd = E[x] + bd simply by withholding all information

(i.e., by sending m̂ij = X) from his neighbor j and hence from all her successors including

player d. So, if the players’ biases on path p(e, d) are su¢ciently large, then the only

possible equilibrium outcome is ŷd = E[x] + bd. The decision maker acts as if she receives

no information, and the expected loss is as if there were no information transmission:

E[V ar(xjωd(h
T ), µ)] = V ar(x).

Proposition 3 bears some important implications for the study of information transmis-

sion in networks. With few exceptions (see Section 2), the study of information di¤usion in

networks abstracts from strategic communication incentives. This is so even in ‘Bayesian’

learning models. Players learn from each other with some probability as long as they are

connected. So, the value of a path that connects two players i, j depends only on the

(possibly weighted) length, and possibly on characteristics of i, j (as in Galeotti, Goyal and

Kamphorst, 2006, for example). My full ‡edged model of strategic communication shows

that the value of a path connecting e and d depends also on characteristics of all the players

i 6= e, d on the path p(e, d). Hence, network analysis based on information di¤usion models

cannot cover strategic communication.

The next part of the Section shows how Proposition 3 leads to my characterization of

network optimality.

Optimal Network I now deliver the most important result of the paper: The unique

optimal network N of my model is the line in which the players are ordered according

to their bliss points, which I de…ne as the ‘ordered line.’ The statement is provided for

meaningful links costs, i.e., costs c that are (i) strictly positive, and (ii) not so large that

the optimal network would not be connected even in the hypothetical case that information
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‡owed unconstrained in the network, and strategic disclosure did not matter. Formally, I

de…ne the cost threshold ¹c as the largest cost c, function of the probability P and weights α,

such that the optimal N would be connected if every d received x along every path p(e, d)

from every e.

Proposition 4 For any cost c 2 (0, ¹c) , utility weights ® > 0, and full support recognition

probability P, the unique optimal network N is the ordered line.

The proof of Proposition 4 is relatively simple and for this reason, I present it here

in the main body. It consists in showing that the ordered line is the unique minimally

connected network such that the signal s of every possible expert e is relayed precisely to

every possible decision maker d, through the unique path p(e, d) that connects them. In

every other tree N, there exists at least one pair e, d that is connected through a path

p(e, d) with bias reversals.26 As a consequence, the ordered line is the unique optimal tree.

Because the link cost c < ¹c, it is suboptimal to consider networks that are not connected,

and because c > 0, non-minimally connected networks are also suboptimal.

Proof of Proposition 4. Suppose momentarily the optimal network is a tree. Evidently,

the ordered line has no bias reversal paths. For any pair of realized decision maker d and

expert e with be < bd, it is the case that bi < bd, for each player i on the path p(e, d) from d

to e, and vice versa when be > bd. By Proposition 3, the state x is always relayed precisely

along the path p (d, e) regardless of the realized identities of players d and e.

Consider every other tree N , focus momentarily on n = 4 players. Interchanging the

players’ identities, there are only two classes of trees: the lines and the stars. Of course,

every non-ordered line contains bias reversal paths. Every 4-player star has at least a bias

reversal path. When the star’s centre is player i = 1, 2, that is the path from e = i+ 2 to

d = i+ 1, see Figure 1. Symmetrically, when the center is i = 3, 4, the path from e = i¡ 2

to d = i ¡ 1 has a bias reversal.For any number of players n ¸ 4, the only tree that does

not contain a 4-player star or a non-ordered line is the n-player ordered line. (The same is

true, trivially, for n = 2, and also for n = 3, where stars and lines coincide.) So, for every

n, because ® > 0, the unique tree N in which x is transmitted precisely for every realized

26Note that this is not an immediate consequence of the concept of bias reversal, as it is easy to …nd
paths such as p = (2, 1, 3) in which the players are not ordered and yet there are no bias reversals.
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1

2 = d

3 = e4

2

3 = d

4 = e1

Figure 1: 4-player stars

d, e is the ordered line. By Proposition 3, the ordered line is the unique tree N such that

for all e, d, the expected variance of d’s decision is E[V ar(xjωd(h
T ), µ)] = 0.

Using the mean-variance decomposition (1), write welfare

W (N) = ¡
X

(e,d):e 6=d

nE[V ar(xjωd(h
T ), µ)]P (e, d)¡

X

i2N

X

(e,d):e6=d

(bi ¡ bd)
2 P (e, d)¡

X

i2N

X

j 6=i

Nijc

The aggregate link cost is
P

i2N

P
j 6=iNijc = (n ¡ 1)c in every tree, hence the tree N

that maximizes the welfare W (N) is the tree that minimizes the sum of expected losses
P

(e,d):e 6=d nE[V ar(xjωd(h
T ), µ)]P (e, d).Therefore, the ordered line is the unique optimal

tree for any full support probability distribution P.

Now, let’s consider networks that are not minimally connected. Because c > 0, adding

links to the ordered line is wasteful. By de…nition of the cost threshold ¹c, unless c > ¹c,

deleting links from the ordered line is detrimental: each realized expert e’s information is

useful to every realized decision maker d.

This concludes that the ordered line is the unique optimal network.

Endogenous Network Formation I now turn to considering what networks would form

endogenously as the equilibrium of a game in which individual players pay the cost of their

links. As is the case for the welfare analysis, also the network formation game is formulated

ex-ante, i.e., before the identities of the expert e and decision maker d are drawn, and before

the state x is realized.

Speci…cally, I model network formation as a ‘bilateral sponsorship’ game a-la Myerson

(1991), in which both linked players i and j need to pay their cost c for any link Nij to form.

For any …xed recognition probability P and utility weights ®, the network N is formed as
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Figure 2: pairwise stable circle

follows. The players i 2 N simultaneously submit a list i 2 f0, 1gNnfig of players j 6= i

they wish to link to at cost c, where ij = 1 means that i commits to pay. For every pair

of players i and j, it is the case that Nij = Nji = 1 if and only if both players commit to

pay: ij = 1 = ji. Once the network N is formed, an expert e and decision maker d are

drawn, the state x is realized and revealed to e, and the disclosure game is played on the

network N. As is fairly obvious, the ‘bilateral sponsorship’ game is such that players can

mis-coordinate in Nash Equilibrium: a player i can play ij = 0 only because she knows that

j also plays ji = 0 although the link between i and j would bene…t both in the disclosure

game. I focus the analysis on Nash equilibria networks N with the extra requirement that

if Nij = Nji = 0, then at least one among players i and j would gain less than c if forming

a link, i.e., Ui(N + ~Nij) < Ui(N) or Uj(N + ~Nji) < Uj(N), where ~Nij is a n £ n matrix in

which all entries ~n are equal to zero, with the exception of ~nij = ~nji = 1. I call such Nash

equilibria ‘pairwise stable’ in line with a terminology introduced by Jackson and Wolinsky

(1996).

With these de…nitions, I can now deliver my main result on endogenous network for-

mation. Unless the link cost c is too high, the ordered line is the unique pairwise stable

minimally connected network. Other pairwise stable networks exist, but they must have

loops. As demonstrated in the Appendix, a minimal example of a pairwise stable network

di¤erent from the ordered line is a 4-player is the circle portrayed in …gure 2, in which both

1 and 4 are linked with 2 and 3.

Proposition 5 For every utility weights ® > 0, and full support recognition probabilities

P, there exists a cost threshold ĉ such that for all c 2 (0, ĉ), the ordered line is a pairwise

stable Nash network, there are other pairwise stable networks but they all entail a higher

aggregate link cost.

Qualitatively, this result parallels the welfare outcomes described in Proposition 4, and
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the proof is largely analogous. Because the ordered line ensures that every player d receives

signal x precisely from every possible expert e, no player is willing to pay for extra links, as

c > 0, nor anyone wishes to delete any link, for c small enough. But there are two important

caveats. First, the ordered line is uniquely optimal but not the unique pairwise stable

network. Players can mis-coordinate and form excessively costly non-minimally connected

pairwise stable networks to ensure that every player d receives precise information from

every expert e. Undo such networks and replace them with the more e¢cient ordered line

would entail coordination in deleting and reforming links by more than 2 players.

Second, the range of link costs (0, ĉ) for which the ordered line is pairwise stable can

be signi…cantly narrower than the range (0, ¹c) for which it is uniquely optimal. This dis-

crepancy arises because ĉ is the maximal cost c such that every pair of players i and j are

willing to pay to ensure that every player d receives precise information from any possible

expert e, whereas ¹c is the maximum cost at which the total link cost of a minimally con-

nected network is justi…ed by ensuring that every d receives accurate information from any

e. Clearly, when players do not care equally about di¤erent decision makers d’s decisions

(i.e., αid is not the same across i), some pairs of players may be willing to pay less than

others to ensure that a speci…c d receives information from a particular e, and this results

in ĉ < ¹c.

As well as studying endogenous network formation for small link cost c and …xed utility

weights ® > 0, it is also interesting to consider the case in which the players’ payo¤s ui is

primarily in‡uenced by their own decision ŷi, i.e., …xing (small) cost c, I take αij arbitrarily

small for all players i and j 6= i.

Remark 1 For every full support recognitions probability P, there exists a cost threshold

~c such that for all c 2 (0, ~c), there exists a threshold α̂ > 0 such that for all ® such that

αij 2 (0, α̂) for all players i and j 6= i, the ordered line and every star are pairwise stable.

Indeed, the ordered line is pairwise stable for the same reasons as in Proposition 5: every

player d cares about receiving the signal x precisely from every possible expert e and so

none of them is willing to delete any link for c small enough, nor anyone is willing to add

links as c > 0. But now, also all stars are pairwise stable. The reason is that, although for

any star network N, there exist pairs of players e and d such that the path p(e, d) from e

to d has bias reversals, there does not exist any pair i, j such that both paths p(i, j) from
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i to j and p(j, i) from j to i have bias reversals.27 Hence, for any pair i, j either i receives

x precisely from j, or vice versa. For αij su¢ciently small for all i and j 6= i, they will be

both willing to upset N by forming a direct link (if they do not already have one).

The next part of the Section shows how my results can be generalized, beginning by

introducing small decay, to then consider general functional forms for the players’ utility

functions and information, and …nally by allowing that all players may be experts and

decision makers.

5 Generalizations

Small Decay and Partial Disclosure I consider the case of small decay, δ < 1 but close

to one, and return to fully developed persuasion games, where partial disclosure is allowed,

through messages ~mt
ij : ωi(h

t) µ ~mt
ij 6= X. The welfare and stability results, Propositions 4

and 5, generalize. The proofs of these generalizations are based on the following extension

of Proposition 3, which characterizes equilibrium in a persuasion game with small decay

when there is a unique path from the expert e to the decision maker d. This generalizes to

persuasion on networks the analysis by Dye (1985), who studied strategic disclosure by an

expert who may or may not informed of the state x, or equivalently whose chosen message

may not reach the decision maker with positive probability.

Proposition 6 In every equilibrium of the persuasion game on a tree N, for any realized

pair d, e, letting T = (e, d),

1. if the path p(e, d) has no bias reversals, then there exists an equilibrium µ such that

E[V ar(xjωd(h
T ), µ)] ! 0 for δ ! 1; speci…cally, if bi > (<)bd for all i 6= d, then there

exists a threshold x̂, function of δ such that every i 6= d on p(e, d) discloses every x > (<)x̂,

so that player d learns x precisely, and further, limδ!1 x̂ = x (respectively, limδ!1 x̂ = x);

2. if p(e, d) has bias reversals, then d cannot learn x precisely in equilibrium, and

E[V ar(xjωd(h
T ), µ)] ! ¢ > 0 for δ ! 1.

27Suppose that p(j, i) has a reversal of bias. Hence it must be that neither j nor i are the centre of the
star N. Letting k be the centre, say without loss of generality that bk > bj . Then, for p(j, i) to have a bias
reversal, it must be that bi < bj . Hence, bi < bj < bk, so that the path p(j, i) from j to i does not have
bias reversals.
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The intuition behind this result mirrors the intuition behind Proposition 3. While the

latter showed that the logic and results of Milgrom (1981) generalize if and only if the path

p(e, d) from the expert e to the decision maker d has no bias reversals, Proposition 6 shows

that the logic and results of Dye (1985) generalize under the same conditions on p(e, d).

Speci…cally, suppose that bi > bd for all i 6= d on p(e, d), and let x̂ (δ) be the state that

solves
¡
1¡ δT

¢
E[x] + δTE[xjx · x̂] = x̂. (2)

Because δ < 1, there exist terminal histories hT on path such that ωd(h
T ) = X. Suppose

that all players i 6= d on p(e, d) disclose x if and only if x > x̂, and otherwise do not disclose

anything, i.e., send mij = X. Then, player d’s equilibrium expectation of x upon observing

ωd(h
T ) = X is equal to the left-hand side of (2). Because this is equal to x̂, the decision

maker plays yd(X;µ) = x̂ + bd. Since bi > bd for all i 6= d on p(e, d), all such players i

strictly prefer to disclose x than to send mij = X if and only if x > x̂, thus supporting the

conjectured equilibrium strategy. (As in Milgrom (1981), partial disclosure messages are

ruled out by “worst-case” o¤-equilibrium-path beliefs that x = minωj(h
t) for all histories

ht and ωj(h
t) 6= X.) Further, it is immediate that limδ!1 x̂(δ) = x, and hence that d always

learn x in the limit.

In practice, when all players i 6= d on p(e, d) are biased to the right relative to d, the

decision maker’s strategy ensures that they disclose x unless the state is very close to its

left bound x by taking an action x̂ close to x when not receiving any information. The

action x̂ leads to an equilibrium in which indeed x is disclosed unless x < x̂, whenever x̂

satis…es equation (2). Conversely, when bi < bd for all i 6= d on p(e, d), then all such players

i disclose x if and only if x > x̂ such that
¡
1¡ δT

¢
E[x] + δTE[xjx ¸ x̂] = x̂. And since

limδ!1 x̂ = x, again d always learn x in the limit for δ ! 1.

Armed with Proposition 6, I now generalize my welfare and stability results, Proposi-

tions 4 and 5. For small decay, there exist a range of ‘intermediate’ costs such that the

unique optimal network N is the ordered line. Further, as decay vanishes, the optimality of

the ordered line covers the whole meaningful range of costs (0, ¹c) . Likewise, for small decay

the ordered line is pairwise stable in a di¤erent intermediate costs range, that converges to

(0, ĉ) for vanishing decay.

Proposition 7 For all ® > 0, and full support P, there exist a decay threshold ¹δ < 1, as
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well as intermediate cost ranges (c¡, c
+) and (ĉ¡, ĉ

+) with limδ!1 c¡(δ) = limδ!1 ĉ¡(δ) = 0,

limδ!1 c
+(δ) = ¹c and limδ!1 ĉ

+(δ) = ĉ, such that for all δ 2 (¹δ, 1] and c 2 (c¡, c
+), the

unique optimal network N is the ordered line, and for all c 2 (ĉ¡, ĉ
+), the ordered line is

pairwise stable.

The proof of Proposition 7 is essentially the same as the proof Propositions 4 and 5,

once determined in Proposition 6 that the expected loss E[V ar(xjωd(h
T ), µ)] ! 0 for δ ! 1

in (the best) equilibrium of the persuasion game given any e, d,N if and only if the path

between e and d has no bias reversals. By continuity, exactly the same results holds in the

limit for δ ! 1. But because of decay, δ < 1, networks that are not minimally connected

may outperform the ordered line when the link cost c is very small, i.e., 0 < c < c¡, because

they allow to transmit information from extreme experts, e.g., e = 1, to oppositely extreme

decision makers such as d = n through shorter paths than the ordered line. Likewise, when

the link cost c is very close to the upper bound ¹c that makes connected networks optimal

with frictionless communication, it may that optimal networks are not connected because

of decay.

I conclude this Section by taking a detour to consider the model of ‘unilateral spon-

sorship’ endogenous network formation by Bala and Goyal (2000). In such a framework,

every link can be fully paid by one of the linked players. The game form is similar to the

bilateral sponsorship game presented in Section 4. For any …xed recognition probability P

and utility weights ®, the players i 2 N simultaneously submit a list i 2 f0, 1gNnfig of

players j 6= i they wish to link. Here, ij = 1 means that i commits to pay the whole cost

2c of link Nij . For every pair of players i and j, it is thus the case that Nij = Nji = 1 if and

only if ij + ji > 0, i.e., at least one among i and j commits to pay. Once the network N

is formed, an expert e and decision maker d are drawn, the state x is realized and revealed

to e, and the persuasion game is played on the network N.

Unlike the case of pairwise stability, I now show that the unilateral sponsorship game’s

results di¤er dramatically when moving from no decay to considering small decay. Suppose

that the recognition probability P (e, d) is the same for all pairs e, d, and each player i cares

mostly about her own decision, i.e., αij is small for all j 6= i. If there is any information

decay, the ordered line fails to be a Nash equilibrium (when there are more than 5 players).
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1 32 4 65

Figure 3: unilateral sponsorship network

Proposition 8 For all ® > 0, and full support P, there exists cost threshold ~c such that

for link costs c 2 (0, ~c), the ordered line is a Nash equilibrium of the unilateral sponsorship

game when there is no decay (δ = 1). For any decay, δ < 1, and any link cost c, the ordered

line is not a Nash equilibrium when n ¸ 6, the recognition probability P is uniform, and

αij is su¢ciently small for all i and j 6= i

Some intuition for the result can be gleaned through Figure 3, where, as customary, the

sponsor of each link is denoted by vertical dash. Of course, when there is no decay, either

among 3 and 4 would sponsor a direct link. Instead, for any δ < 1, neither player 3 nor

player 4 are willing to sponsor that link. Player 3 can access the same information with

less decay by forming a link with 5, and so does player 4 by connecting to 2.

General Functional Forms The analysis in Section 4 was undertaken under the as-

sumption that the expert e knew precisely the state x, and that the players’ loss functions

Li followed a simple quadratic form Li (y, x) = ¡ (y ¡ x ¡ bi)
2 with state-independent bias

bi. I now show how to dispense of these assumptions and generalize my …ndings.

Suppose that, instead of knowing x, player e observes a signal s 2 S ½ R, where

S = [s, s] is a closed interval. The distribution of s given x is determined by the density

g (sjx) which I assume to be strictly positive on S. The signal s is informative of x in the

sense that it satis…es the monotone likelihood ratio property: If s0 > s and x0 > x, then

g (s0jx0) /g (sjx0) > g (s0jx) /g (sjx) . Further, I consider any loss function Li (y, x) that is

twice continuously di¤erentiable and that satis…es concavity, ∂2Li/∂y
2 < 0, and single-

crossingness: ∂2Li/∂y∂x > 0 and ∂Li+1/∂y > ∂Li/∂y. Hence, every player i’s expected

value of equilibrium (µedN , yd) in the disclosure game given network N, expert e, decision

maker d is:

ui(µedN , yd; e, d,N) = αidE[Li(yd(h
T ;µ, e), x)].

Concavity of Li and the monotone likelihood ratio property guarantee that, for any sig-

nal s 2 S, there exists a unique decision yi(s) that maximizes player i’s expected payo¤
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E[Li(y, x)js] given s in the disclosure game. Together with single-crossingness, they guar-

antee that the expected payo¤ E[Li(y, x)js] of each player i > (<)d is strictly increasing

(decreasing) in y for all y · (¸)yd(s). So, for any signal s, player i > d would always like

to bias d’s decision to the right, and vice versa. I denote by ELi(x, s) the expected loss

Li (x, y) when y = yi(s). I say that a path p(e, d) from e to d has bias reversals if there

exist i, j on p(e, d) such that i < d < j.

Unlike with quadratic loss and constant bias, a mean-variance decomposition analogous

to (1) is not available. The players’ ex-ante equilibrium payo¤s ui(µedN , yd; e, d,N) cannot

be decomposed into a common part such as the residual variance E[V ar(xjωd(h
T ), µ)], and

an idiosyncratic part such as (bi ¡ bd)
2 independent of the equilibrium. My concept of

network optimality trades o¤ how well information is aggregated with the aggregate link

costs. I earlier represented a network N information e¢ciency as the sum of the players’

expected equilibrium payo¤s ui(µedN , yd; e, d,N) in disclosure games given realized expert

e, and decision maker d, weighted by the probability P of pairs (e, d) . Because expected

equilibrium payo¤s in the disclosure game need now not be aligned across players, this

representation is no longer appropriate, and hence neither is expressing welfare simply as

W (N) =
P

i Ui(N).

Equilibrium informativeness is usually represented in strategic communication games as

the ex-ante payo¤ of the decision maker, the rationale being that she is the one who mini-

mizes loss using the information transmitted in equilibrium. In line with this convention,

I now let the information e¢ciency of a network N be the sum of the players’ expected

equilibrium payo¤s in disclosure games when they take the role of decision makers. Again

the best equilibrium given N is selected in case of multiplicity. Hence, I write the welfare

function as follows:28

Ŵ (N) = max
(µ,yd)

X

d2N

"
X

e 6=d

E[Ld(yd(h
T ;µ, e), x)]P (ejd)¡ c

X

j 6=d

Ndj

#

.

I say that a network N is optimal if it maximizes Ŵ (N).

The following result generalizes Proposition 3, the equilibrium characterization of dis-

closure games played on a (minimally-connected) network N given expert e and decision

28This welfare function also approximates the sum of players utilities in the network N -optimal equilib-
rium (µ, yd) when the utility weights ® are such that αij is su¢ciently small for all i and j 6= i, i.e., each
player i cares mostly about her own decision.
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maker d. If the path p(e, d) from e to d has no bias reversals, then d always learns s

on the equilibrium path and plays yd(s). As a result, the expected equilibrium payo¤

E[Ld(y, xjωd(h
T ), µ)] achieves its maximum Es[ELd (xjs)] based on the information con-

tained in the signals s. Instead, if the path p(e, d) has bias reversals, then d does not learn

s precisely on a positive probability set Ŝ, and the expected payo¤ E[Ld(y, xjωd(h
T ), µ)]

stays smaller than the maximum Es[ELd (xjs)].

Proposition 9 Suppose that a randomly drawn expert e observes a signal s that satis…es

the monotone likelihood ratio property, and that each player’s loss function Li is concave

and single crossing. In every equilibrium of the disclosure game on a tree N, for any realized

pair d, e, letting T = (e, d),

1. if the path p(e, d) has no bias reversals, then the decision maker d learns s precisely

in equilibrium and plays ŷ = yd(s), so that E[Ld(y, xjωd(h
T ), µ)] = Es[ELd (xjs)];

2. if p(e, d) has bias reversals, then d cannot learn s precisely in equilibrium, and

E[Ld(y, xjωd(h
T ), µ)] < Es[ELd (xjs)].

The logic behind this result is analogous to Proposition 3, once realized that concavity

and single crossing of the payo¤ functions Li(y, x) for each i, together with the monotone

likelihood ratio property of g(sjx), imply that for each signal s, player i would like to

persuade a decision maker d < i to make a decision to the right of her bliss point yd(s), and

vice versa for d > i. When the path p(e, d) has no bias reversals, e.g., i > d for all i 6= d

on p(e, d), the o¤-equilibrium beliefs that s = minωj (h
t) for all i’s successors j ensures

that i discloses all her information ωj (h
t). Instead when the path p(e, d) has bias reversals,

there does not exist o¤-equilibrium beliefs that simultaneously induce the players i > d

and j < d on the path p(e, d) to fully disclose their information.

With the use of Proposition 9 in lieu of Proposition 3, I prove the following result, which

generalizes my earlier optimality and stability results, Propositions 4 and 5.

Proposition 10 Suppose that a randomly drawn expert e observes a signal s that satis…es

the monotone likelihood ratio property, and that each player’s loss function Li is concave

and single crossing. Then, for every utility weights ® > 0, and full support recognitions

probability P, the unique optimal network N is the ordered line for any link cost c 2 (0, ¹c) ,

and there exists a threshold ĉ such that the ordered line is a pairwise stable Nash network

for any c 2 (0, ĉ).
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Many Experts and Decision Makers I …nally consider the case where multiple players

may have information on x and may be called to make decisions. A non-empty set E µ N

of experts and a non-empty set D µ N of decision makers are randomly drawn from a

full support distribution P over the set ℘2+(N ) ´ f(E,D) : ? 6= E µ N , ? 6= D µ N ,

D \E = ?g.

Every player e 2 E holds a signal se 2 S and every d 2 D is called to make a decision

ŷd 2 R after communication takes place in network N. I maintain that each player i’s loss

function Li take the quadratic form of Section 3: Li (ŷD, x) = ¡
P

d2D αid (ŷd ¡ x¡ bd)
2 .

In line with the ideas of Jackson and Wolinsky (1996), the signal se of each expert e is

valuable to every decision maker d and cannot be replicated by the information of others

in the network. Speci…cally, for any set of experts E, I assume that the distribution gE

of the signal pro…le sE satis…es the monotone likelihood ratio property, and that for any

signal pro…le sE, any player e 2 E and signal se, and any set Se : feg ( Se µ S, knowing

se is more informative that knowing only Se in the sense that it induces a lower expected

quadratic loss. This is the case, for example, when the signals se are i.i.d. conditional on

x.

Assumption 1 For any set of experts E µ N , the distribution gE is such that, if s0E ¸ sE

and x0 > x, then gE (s
0
Ejx0) /gE (sEjx0) > gE (s

0
Ejx) /gE (sEjx) ,and, for any signal pro…le

sE, any player e 2 E and signal se and any set Se : feg ( Se µ S,

E[V ar(xjfsEnfegg £ Se)] > E[V ar(xjfsEg)]. (3)

Given a network N, and realized sets E and D, information transmission of the signals

se of the experts e 2 E to decision makers d 2 D is de…ned as in Section 3, with the

quali…cation that each player i’s information set ωi(h
t) at any history ht is a possibly

proper subset of SE. Let ¹(E,D) = maxe2E,d2D ¹(e, d) be the length of the longest path p

from some e 2 E to some d 2 D, and say there are T = ¹(E,D) periods of information

transmission. For every pair (e, d) such that e 2 E, d 2 D, and any path p from e to d, at

any time t = 0, ..., (p)¡1, the player i on the path p at distance (p(e, i)) = t from e sends

a veri…able message m̂ij µ SE, i.e., such that ωi(h
t) µ m̂ij , to any one of her neighbors j

who are on a path p0 from e to d and are at distance t+ 1 from e.29 At time T, all decision

29We note that this construction implies that not only the content of each signal se is veri…able, but also
the identity of the expert e that originated it. My results extend qualitatively to the case in which only
the content of each signal se is veri…able.
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makers d 2 D make their decisions ŷd.

The following result restates Proposition 4 for this generalized environment.

Proposition 11 Suppose that ® > 0, nature selects at random a non-empty set E µ N of

experts and a non-empty set D µ N of decision makers, with a full support distribution P

over ℘2+(N ), and that Assumption 1 holds: all signals se are informative of x and none is

redundant. Then, the unique optimal network is the ordered line for any link cost c 2 (0, ¹c),

and there exists a threshold ĉ such that the ordered line is pairwise stable for any c 2 (0, ĉ).

The core of the proof is to show that, for all realized sets of experts E and decision-

makers D, the information of all the experts reach all decision makers when the network N

is the ordered line. The logic behind this result is a similar to that of Proposition 9. Each

possible decision-makers d knows how to interpret if she is not fully disclosed a signal se.

Information on signals se of experts e < d biased to the left is transmitted to d through

players i : e · i < d biased to the left. Suppose one such signal se is not disclosed to d. Then

d reasons that the withheld information must be evidence that would move her decision ŷd

to the right, i.e., she formulates the (o¤-equilibrium-path) belief that se = minωd(h
T )je.

This leads d to take the most rightward decision ŷd possible compatibly with the information

ωd(h
T )je received. Such behavior deters all players i < d from withholding any information

about any signal se with e · i < d along the path from e to d. An analogous, symmetric,

argument concludes that all signals se of experts e > d biased to the right are transmitted

to d precisely, in equilibrium.

The above arguments conclude that the information of each experts reach all decision

makers when N is the ordered line. The suboptimality of any other network, and the result

that N is pairwise stable, follow from the same arguments used for Proposition 10, once

noticed that, because the recognition probability P is full support on ℘2+(N ), every pair

of one expert e and one decision maker d can be the only players in the disclosure game,

E = feg and D = fdg, with positive probability P.

Because the assumption that the recognition probability P is full support on ℘2+(N )

plays a major role in the proof of Proposition 11, I conclude this section by considering

the case in which every player is an expert and a decision maker with probability one,

E = D = N . The following example shows that, in this case, the ordered line need not be

the unique optimal network.
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Example 2 Suppose that there are 4 players at equidistant bliss points bi = ib, for

i = 1, ..., 4. All the players are simultaneously experts and decision makers: E = D = N ,

with equal weights αi ´ αij for j 6= i. That is, every player i cares about the decision of every

other player j equally. Suppose that the state is x » U [0, 1], and the signals si, i = 1, ..., 4

are i.i.d. from a continuous Bernoulli of shape x, that is g(sijx) = k(x)xsi(1 ¡ x)1¡si for

si 2 [0, 1]. As these distributions belong to an exponential family,30 the expected value

E[xjs] of the state x given any pro…le of signals s is linear in s1, . . . , and sn (e.g., Jewel,

1974). As it is immediate that the sum of the signals §(s) ´
nP

i=1

si is a su¢cient statistic

for the joint distribution g(sjx), it follows that E[xjs] is linear in §(s), and I write it as

E[xjs] = a§(s) + z.

Consider the following line network N :

1 ———— 3 ———— 2 ———— 4

I will now show that there exists an equilibrium in which each player i transmits all infor-

mation ωi(h
t) precisely to his neighbor j on every path p(e, d) at any history ht at every

time t she is called to play. Such an equilibrium is supported by o¤-equilibrium-path beliefs

that assign probability one to se = minωi(h
t)je if be > bi and se = maxωi(h

t)je if be < bi, as

has by now become customary in this paper. Hence, each player d at every history terminal

history hT plays ŷd = E[xjωd(h
T )] + bd such that E[xjωd(h

T )] = a§(ŝ(ωd(h
T ))) + z, where

ŝe(ωd(h
T )) = minωd(h

T )je if e > d, ŝd(ωd(h
T )) = sd, and ŝe(ωd(h

T )) = maxωd(h
T )je if

e < d.

To see that this is an equilibrium, consider …rst players 1 and 4, who are called to play

only at time t = 0. Evidently, player 1 is willing to transmit her signal s1 precisely to player

3. This is because all decision makers i are such that bi > b1, and hence the logic of Milgrom

(1981) applies. Analogously, also player 4 transmits her signal s4 precisely to player 2.

Players 2 and 3 are called to play multiple times. At time 0, they are called to transmit

information about their own signals to each of their neighbors, at time 1 they communicate

information about their neighbors signals, and at time 2 about their neighbor at distance 2.

Focus on 3, as the argument for 2 is symmetric. Again, the logic of Milgrom (1981) implies

that 3 transmits every signal se precisely to player 1. Consider the choice of 3 to relay

30See Loaiza-Ganem and Cunningham (2019), where it is also derived that k (x) = 2 tanh¡1(1¡2x)
1¡2x if

x 6= 1/2 and k (x) = 2 if x = 1/2.
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information on either signal s1 or s3 to player 2. Player 3 anticipates that such information

will also reach 4 precisely. Because player 3 cares about the decision of 2 and 4 equally,

and the bias b3 is exactly equal to the average of b2 and b4, player 3 relays her information

about s1 and s3 precisely to 2.

In fact, although by withholding information about signal s1, player 3 could bias the

decision of 2 and 4 in the same direction, what she would gain by biasing 2’s decision to

the right would be more than lost by also biasing 4’s decision, and vice versa. A fortiori,

3 also reveals s3 precisely, as by withholding any information, she would wind up biasing

2’s decision to the left and 4’s decision to the right, both of them away from his bliss point

x+ b3. The formal arguments are in Appendix.

6 Conclusion

This paper has studied strategic communication in networks by building on classical models

of veri…able information transmission, such as Milgrom’s (1981). The analysis has revealed

that the unique optimal network is a line where players are ordered according to their

preferences. This ordered line network is also pairwise stable, meaning no player has an

incentive to unilaterally delete links, nor any pair of players to form an extra direct link in

the network. These results contrast sharply with …ndings from earlier network studies such

as those by Jackson and Wolinsky (1996). They identi…ed star networks as both optimal

and pairwise-stable in non-strategic communication settings with technological constraints

such as information decay. In terms of network centrality, the contrast could not be more

extreme. The star is the most centralized minimally connected network, whereas the line

is the most decentralized one.

These results are particularly relevant in political economy applications, where strategic

communication often shapes interactions between political agents. A star network will

disrupt the ‡ow of information, when the players have incentives to manipulate or withhold

it. Instead, the line in which political agents form links with those with the closest views

ensures that no veri…able information can be withheld in equilibrium. If that were the case,

each decision maker will know which political side to blame for the withheld information,

and would react by moving her decision in the opposite direction.

This study opens several avenues for future research. One potential extension could

32



explore the implications of multi-dimensional states and decisions. Another area of interest

is the endogenous formation of networks in environments of uncertainty, where players lack

full information about each others’ preferences. Future research could also incorporate

repeated models of strategic communication, as well as the possibility that networks evolve

over time.
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Appendix: Omitted Proofs

Proof of Proposition 3. Part 1. Say the path p(e, d) has no bias reversals, e.g. bi > bd

for all i 6= d. Then I claim there is a perfect Bayesian equilibrium, in which every such player

i reveals her information mij(h
t) to her successor j on the path p(e, d), mij(h

t) = ωi(h
t),

in every history ht at the time t in which she is called to play, and every player j 6= e holds

beliefs that the state is minωj(h
t) with probability one at every history ht at which j is

called to play (j’s beliefs at the other times is irrelevant), and the decision maker d chooses

yd(h
T ) = minωd(h

T ) + bd, for every history hT . As a result, the message m̂ij = fxg travels

along the path p(e, d) from e to d on the equilibrium path, and d chooses yd(h
T ) = x+ d,

so that E[V ar(xjωd(h
T ), µ)] = 0.

In order to prove this, …rst note that the beliefs of every player j 6= e are admissible in

perfect Bayesian equilibrium, because admissibility constrains beliefs only on information

sets ωj(h
t) on the equilibrium path. For every state x, the unique information set on path

is ωj(h
t) = fxg and minωj(h

t) = x, consistently. Further, d’s strategy yd is clearly optimal

given her beliefs.

Now consider the decision of any player i 6= d on the path p(e, d) at time t = (p(e, i))

and at any history ht, and let j be i’s immediate successor on the path p(e, d). I …rst note

that ωj(h
t) = X and ωi(h

t) µ ωj(h
t+1) for any history ht+1 that contains ht. Intuitively,

j knows nothing before i communicates with her, and it cannot be that j knows more at

time t+1 than i knows at time t, as anything that j knows she has been told by i. Further,

because the expected utility E[ui (ŷ, x) jωi(h
t), µ] is an integral of quadratic loss functions

ui (ŷ) = ¡ (ŷ ¡ x)2 , it is a also a quadratic loss function.

I now show that player i does not gain by deviating from the equilibrium strategy

mij (h
t) = ωi(h

t). Proceeding backwards, consider any history hT¡1 and the last player

i 6= d on the path p(e, d). Recall that for any history hT that includes hT¡1, it is the

case that ωi(h
T¡1) µ ωd(h

T ), and that E[ui (ŷ, x) jωi(h
T¡1), µ] is a quadratic loss func-

tion. Then, because y
¡
ωd(h

T )
¢
= minωd(h

T ) + bd, minωd(h
T ) · minωi(h

T¡1) by set

inclusion, and minωi(h
T¡1) · E[xjωi(h

T¡1), µ] by veri…ability, I obtain that the bliss

point E[xjωi(h
T¡1), µ] + bi of i’s expected utility E[ui (ŷ, x) jωi(h

T¡1), µ] given information

ωi(h
T¡1) and equilibrium beliefs µ is such that E[xjωi(h

T¡1), µ] + bi > minωi(h
T¡1)+ bi >

minωi(h
T¡1)+ bd ¸ minωd(h

T )+ bd. Hence, the expected utility E[ui (ŷ, x) jωi(h
T¡1), µ] of
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player i increases in ŷ, for ŷ > E[xjωi(h
T¡1)] + bi. As a result, i would like to maximize ŷ

and, by veri…ability, this can be done by sending message m̂T¡1
id = ωi(h

T¡1).

For any t = 0, ...T ¡1, let it be the player on the path p(e, d) at distance t from e. I have

proved above that at any history hT¡1 player iT¡1 sends message m̂iT¡1iT = ωiT¡1(h
T¡1) to

iT = d. I now proceed by induction. For any t < T ¡ 1, suppose that at any history ht+τ ,

τ = 1, ..., T ¡ 1 ¡ t, player it+τ sends message m̂it+τ it+τ+1 = ωit+τ (h
t+τ ) to his immediate

successor it+τ+1 on the path p(e, d). Then the choice faced by player it at any history ht

is exactly the same faced by the last player i 6= d on path p(e, d) at any history hT¡1,

considered above. The reason is because, again, ωit(h
t) µ ωit+1(h

t+1) for any history ht+1

that contains ht and because the induction argument implies that ωit+1(h
t+1) = ωid(h

T ) on

the equilibrium history that contains ht+1. So, again, because bit > bd, it is a best response

for player it at history ht to reveal all information and send message m̂itit+1 = ωit(h
t).

I now show that in every equilibrium µ, it is the case that the message m̂ij = fxg travels

along the path p(e, d) from e to d on the equilibrium path, and the decision maker chooses

ŷ = x+bd, so that E[V ar(xjωd(h
T ), µ)] = 0 for all terminal histories hT . Suppose not: there

exists states x and terminal histories hT such that y(ωd(h
T )) 6= x+ bd. In such a case, there

must be a non-null set of states X̂ µ X such that for all x 2 X̂ the same information set

ω̂d is reached with positive equilibrium µ probability, i.e., there exist di¤erent equilibrium

path histories hT that include all x 2 X̂ and such that ωd(h
T ) = ω̂d. Further, it must be

that y(ω̂d) = E[xjω̂d, µ] + bd. By the intermediate value theorem, there exist a non-null

measure set ~X of x 2 X̂ such that x > E[xjω̂d, µ]. Pick any such a state x, and (using the

same notation introduced above) suppose that any history hT¡1, player iT¡1 knows that

the state is x, i.e., ωiT¡1(h
T¡1) = fxg. Then, because x > E[xjω̂d, µ] and biT¡1 > bd, player

iT¡1 prefers to induce decision y (fxg) = x+ bd closer to her bliss point x+ biT¡1 > x+ bd

than E[xjω̂d, µ] + bd. Hence, player iT¡1 strictly prefers to send m̂iT¡1 = ωiT¡1(h
T¡1) = fxg

over any message m̂iT¡1 that induces decision E[xjω̂d, µ]. Using an induction argument

analogous to the one above, it follows that or any t = 0, ..., T ¡ 1, player it strictly prefers

to send message m̂it = ωit(h
t) at any history in which ωit(h

t) = fxg over any message that

eventually induces decision E[xjω̂d, µ] with positive equilibrium µ probability. This include

the expert e = i0, therefore the information set ω̂d cannot reach the decision maker for any

x 2 ~X. But this contradicts that ~X is a subset of X̂.

Part 2. Suppose now that the path p (e, d) has bias reversals. Consider terminal histories
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hT such that ωd(h
T ) = X, and let x̂(X) = E[xjX,µ]. For the moment, suppose that x̂(X)

is arbitrary (the proof will show that ωd(h
T ) = X must be on the equilibrium path, and

hence that it is determined by Bayes rule.)

Pick any player i 6= d on p (e, d) , and let t by the distance of i from e (for i = e, I let

t = 0). Every player i’s message m̂t
ij is restricted so that m̂t

ij 2 ffxg, Xg. Hence, for any

history ht, the information ωi(h
t) that player i has on x may either be that ωi(h

t) = fxg or

that ωi(h
t) = X, either i knows x or she knows nothing. If ωi(h

t) = X, then veri…ability,

ωi(h
t) µ m̂t

ij implies that m̂t
ij = X and that ωd(h

T ) = X for every terminal history hT that

contains ht.

Consider any player i 6= d on p (e, d) such that bi > bd. Consider any state x ¸ x such

that x̂(X)+2(bd ¡ bi) < x < x̂(X), and suppose that ωi(h
t) = fxg. In any terminal history

hT such that ωi(h
t) = fxg, player d’s decision is ŷd = x+bd. Because 2(bi¡ bd) > x̂(X)¡x,

it follows that

uid(x̂(X) + bd, x)¡ uid(x+ bd, x) =

= ¡αid(x̂(X) + bd ¡ x¡ bi)
2 + αid(bd ¡ bi)

2

= ¡αid(x̂(X)¡ x) [(x̂(X)¡ x)¡ 2 (bi ¡ bd)] > 0.

Player i strictly prefers that d receives no information about x and plays ŷd = x̂(X) + bd,

rather than d learns x and plays ŷd = x+bd. Indeed, player i can insure that d is not disclosed

x by sending message m̂t
ij = X, as this implies that ωd(h

T ) = X for every terminal history

hT that contains ht. Hence, there cannot exist any equilibrium in which ωd(h
T ) = fxg on

the equilibrium path, for any x ¸ x such that x̂(X) + 2maxi>d(bi ¡ bd) < x < x̂(X).

An analogous, symmetric, argument implies that there cannot exist any equilibrium

in which ωd(h
T ) = fxg on the equilibrium path, for any x · x such that x̂(X) < x <

x̂(X) + 2mini<d(bi ¡ bd).

As a consequence, the expected loss can be bounded as follows:

E[V ar(xjωd(h
T ), µ)] ¸ min

x̂2X

Z minfx̂+2(bn¡bd),xg

maxfx,x̂+2(b1¡bd)g

(x̂ ¡ x)2f(x)dx > 0.

Part 3. The third result follows from the second one as a corollary, after noting that

if bi ¡ bd > (<)0 is su¢ciently large, then the state space X is a subset of both sets

(x̂(X) + bd ¡ bi, x̂(X)) and (x̂(X), x̂(X) + bd ¡ bi). Hence, every player i 6= d on p (e, d) at
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distance t such that bi¡bd > (<)0 knows that x̂(X)+bd¡bi < x < x̂(X), respectively that

x̂(X) < x < x̂(X) + bd ¡ bi for every x 2 X and history ht. As a result, the expected loss

of each equilibrium µ is E[V ar(xjωd(h
T ), µ)] ¸

R
X
(x̂(X)¡ x)2f(x)dx > 0, and this can be

so if and only if player d’s decision is y(ωd(h
T )) = x̂(X)+ bd = E[xjωd(h

T ) = X,µ] + bd for

almost every terminal history hT . That is to say, player d almost always makes her decision

(as if) without any information on x.

Proof of Proposition 5. The proof that for any c small enough the ordered line is a

pairwise stable Nash network is immediate. Because the ordered line has no bias reversal

paths, by Proposition 3, the state x is always relayed precisely along the path p (e, d)

regardless of the realized identities of players e and d. Because each realized expert e’s

information is useful to every realized decision maker d, there exists a cost threshold ĉ1 > 0

such that for all link costs c 2 (0, ĉ1), deleting links from the ordered line is detrimental.

Consider any network N such that there exists a pair of players e and d that are not

connected through a path p(e, d) without bias reversals. By Proposition 3, player d does

not receive x precisely from e, so that E[V ar(xjωd(h
T ), µ)] > 0. Because αed > 0, αdd > 0

and P (e, d) > 0, there exists a there exists a cost threshold ĉ2 > 0 such that for all link

costs c 2 (0, ĉ2) player e and d each bene…t more than c by sponsoring a direct link between

themselves, so as to secure that d receives x from e, and that E[V ar(xjωd(h
T ), µ)] = 0.

Finally, consider any network N di¤erent from the ordered line but such that every

player e and d is connected through a path with a bias reversal. The proof of Proposition

4 implies that N is not minimally connected, hence, it has a higher aggregate link cost.

Hence picking ĉ = minfĉ1, ĉ2g concludes proof that ordered line is the unique minimal

aggregate cost pairwise stable network.

A minimal example of a pairwise stable network di¤erent from the ordered line is a

4-player is the circle portrayed in …gure 2, in which both 1 and 4 are linked with 2 and

3. Every pair (e, d) is connected through a path without bias reversals: this is obvious for

d = 1 and d = 4, whereas d = 2 (or d = 3) is directly connected to e = 1 (e = 4, resp.)

and e = 4 (e = 1) and to e = 3 (e = 2) through i = 4 (i = 1). Hence for any c > 0, there

is no pair of players who …nd it mutually bene…cial to form any additional link. Removing

the link from 1 to 2 (or the one from 1 to 3) removes the only path without bias reversals

from 1 to 2 (or to 3, respectively), and makes it impossible that d = 2 (d = 3) receives
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precise information from e = 1. Hence, for any ® > 0, there is a link cost threshold ĉ > 0

su¢ciently small such that for all c · ĉ, both 1 and 2 (or 3, respectively) are willing to

pay the cost c to ensure that d = 2 (d = 3) receives precise information from e = 1. A

symmetric argument holds for deleting the link from 4 to 3 and the one from 4 to 2.

Proof of Proposition 6. Suppose that δ < 1 but close to one.

Part 1. If every player i on the path p(e, d) were to relay the message m̂ij = ωi (h
t) for

every information history ht in which she is called to play, the message fxg would reach

player d along the path p(e, d) with probability δT .

Say the path p(e, d) has no bias reversals, e.g. bi > bd for all i. For any δ, let x̂ (δ) solve
¡
1¡ δT

¢
E[x] + δTE[xjx · x̂] = x̂. Further, for δ ! 1, it is the case that x̂ ! E[xjx · x̂],

and because E[xjx · x̂] < x̂ for any x̂ > x by the intermediate value theorem, it must be

that x̂ ! x. Take δ such that x̂ (δ)¡ x < minfbi ¡ bdg.

Consider the pro…le of communication strategies m such that each player i 6= d on

the path p(d, e) at any history ht in which she is called to play, discloses her information

ωi (h
t) to his neighbor j on path p(e, d) if and only if minωi (h

t) > x̂; i.e., mij(h
t) = ωi (h

t)

if minωi (h
t) > x̂, and mei(h

t) = X if minωi (h
t) > x̂. Every player j 6= e on the path

p(e, d) at any history history ht in which she is called to play believes that x = minωi (h
t)

with probability one, unless ωi (h
t) = X, in which case she believes that x = x̂ with

probability one. The decision maker d plays yd
¡
ωd

¡
hT

¢
, µ

¢
= x̂+ bd if ωd

¡
hT

¢
= X, and

yd
¡
ωd

¡
hT

¢
, µ

¢
= minωd(h

T ) + bd for every other terminal history information set ωd(h
T ).

This pro…le of strategies is an equilibrium, because d’s decision is clearly sequentially

rational, and no player i on the path p(e, d) wishes to deviate. If d receives an information

set ωd

¡
hT

¢
6= X, then she plays yde

¡
ωe

¡
hT

¢
, µ

¢
= minωd

¡
hT

¢
+ bd. Because x 2 ωd

¡
hT

¢
,

every set such that x = minωd

¡
hT

¢
yields the same outcome ωd

¡
hT

¢
= fxg, and every

set such that x < minωd

¡
hT

¢
yields a worse outcome for every player i than the set

ωd

¡
hT

¢
= fxg. For every state x > x̂, each player i is obviously better o¤ if d plays x+ bd

rather than x0+bd with x0 < x, including x0 = x̂, so none of the players gains from deviating

from equilibrium and they all disclose x whenever they know it. For every state x < x̂,

because x̂ ¡ x < bi ¡ bd for all players i on p(e, d), none of them has any incentive in

deviating. Each player i is better o¤ if d plays x̂ + bd than if d plays ŷ < x̂ + bd, because

x+ bi > x̂ (δ) + bd for all x 2 [x, x̂].
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Because limδ!1 x̂(δ) = x, E[V ar(xjωd(h
T ), µ)] = E(E[xjωd(h

T ), µ]¡x)2 =
R
x·x̂
(E[xjωd(h

T )]¡

x)2f(x)dx ! 0 for δ ! 1.

Part 2. Suppose now that the path p (e, d) has bias reversals. Consider any player i 6= d

on p (e, d) . Because δ < 1, the information ωi(h
t) = X is held by player i at the time t in

which she is called to play with strictly positive probability on the equilibrium path. De…ne

x̂(X) = E[xjωd(h
T ) = X,µ]. Because on the equilibrium path i and d must hold common

beliefs E[xjωi(h
t), µ] = E[xjωd(h

T ) = X,µ] = x̂(X).

Suppose without loss of generality that be > bd. Pick any player i 6= d on p (e, d) such

that bi > bd, and let t by the distance of i from e (for i = e, I let t = 0). There are two

possibilities to consider.

Suppose …rst that there exists a non-null measure set ~Xi µ (x̂(X) + bd ¡ bi, x̂(X))

such that for all x0 2 ~Xi, player i learns that x̂(X) + bd ¡ bi < x < x̂(X) at some

histories ht that contain x0 and that are on the equilibrium path with strictly positive

probability µ. That is, player i’s information ωi(h
t) is such that there does not exist any

state x /2 (x̂(X) + bd ¡ bi, x̂(X)) from which a history ĥt that does not contradict ωi(h
t)

can be reached with positive equilibrium µ probability. (Note that this is the case with

~Xi = (x̂(X) + bd ¡ bi, x̂(X)) and every histories ht that any contain x0 2 ~Xi when i = e, as

the expert knows x at time 0.)

Then, i would prefer that d plays ŷ = x̂(X) + bd rather than any action ŷ < x̂(X) + bd.

This is because the bliss point E[xjωi(h
t), µ]+bi of i’s expected utility E[ui (ŷ, x) jωi(h

t), µ]

given information ωi(h
t) and equilibrium beliefs µ is such that E[xjωi(h

t), µ]+ bi > x̂(X)+

bd ¡ bi + bi = x̂(X) + bd.

Indeed, i can secure that d plays ŷ = x̂(X) + bd by blocking the transmission of any

information on x, i.e., by sending message m̂ij = X to his immediate successor j on the

path p(e, d) at time t. By doing so, i makes it impossible for any successor j 6= d on the path

p(e, d) to send any message m̂jk other than m̂jk = X along the path p(e, d). Hence, for every

terminal history hT on any equilibrium path that contain such histories ht where i learns

that x̂(X) + bd ¡ bi < x < x̂(X), the decision maker d’s action yd(ωi(h
t), µ) ¸ x̂(X) + bd.

As a result, the realized loss is (E[xjωd(h
T ), µ] ¡ x)2 ¸ (x̂(X) ¡ x)2. Integrating over ~Xi,

and the histories ht where i learns that x̂(X) + bd ¡ bi < x < x̂(X), the expected loss is:

E[V ar(xjωd(h
T ), µ)] ¸

Z

~Xi

(x̂(X)¡ x)2µ(ĥtjx)f(x)dx > 0,
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because ~Xi has non-null measure.

Second, suppose that for almost all x 2 (x̂(X)+bd¡bi, x̂(X)), and µ-almost all histories

ht, player i does not learn that x̂(X)+ bd ¡ bi < x < x̂(X) at ht. In such a case, also player

_d will not learn that x̂(X) + bd ¡ bi < x < x̂(X) at any history hT that contains any

such history ht, as everything that d learns must be known also to all players on the

path p(e, d) and equilibrium beliefs on the equilibrium path must be common across all

players. As a result, it will be the case that the realized loss is (E[xjωd(h
T )] ¡ x)2 ¸

minf(x̂(X) + bd ¡ bi ¡ x)2, (x̂(X)¡ x)2g for almost all x 2 (x̂(X) + bd ¡ bi, x̂(X)), and the

expected variance will be again strictly positive:

E[V ar(xjωd(h
T ), µ)] ¸

Z x̂(X)

maxfx,x̂(X)+bd¡beg

minf(x̂(X)+bd¡bi¡x)2, (x̂(X)¡x)2gf(x)dx > 0.

Analogous arguments conclude that, for every player i 6= d on p (e, d) such that bi < bd,

letting t by the distance of i from e. There are two possibilities. Either player i learns that

x̂(X) < x < x̂(X)+ bd ¡ bi on some non-null measure set ~Xi and some histories ht on path,

and then

E[V ar(xjωd(h
T ), µ)] ¸

Z

~Xi

(x̂(X)¡ x)2µ(ĥtjx)f(x)dx > 0,

or player i almost never learns that x̂(X) < x < x̂(X) + bd ¡ bi when this the case, and

then

E[V ar(xjωd(h
T ), µ)] ¸

Z minfx,x̂(X)+bd¡beg

x̂(X)

minf(x̂(X)¡x)2, (x̂(X)+bd¡bi¡x)2, gf(x)dxf(x)dx > 0.

Because these arguments hold for any i and for any x̂(X), I obtain that, regardless of the

(possibly o¤ equilibrium path) equilibrium value of x̂(X), the expected loss E[V ar(xjωd(h
T ), µ)]

of any equilibrium µ is strictly positive, even as δ ! 1.

Proof of Proposition 7. Suppose momentarily the optimal network is a tree. By the

proof of Proposition 4, the ordered line is the only tree in which every pair of players e

and d are connected through a path p(e, d) without bias reversals. Using Proposition 6

and proceeding as in the proof of Proposition 4, I conclude that for all full support P,

there exists a threshold ¹δ1 < 1 such that for all δ 2 (¹δ1, 1], the ordered line is the unique

maximizer of welfare W (N) among all trees N.

Now, let’s compare the ordered line to networks that are not minimally connected. For

δ su¢ciently close to 1, unless the link cost c is too small, no connected network with loops
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can dominate the ordered line in terms of welfare, as the aggregate link cost is strictly

higher. Likewise, for δ su¢ciently close to 1, unless the link cost c is too high, any network

that is not connected cannot dominate the ordered line, as some decision maker d would

not receive some expert e’s information.

So, there exist ¹δ < 1 and an intermediate link cost range (c¡, c
+), with limδ!1 c¡(δ) = 0

and limδ!1 c
+(δ) = ¹c, such that for all c 2 (c¡, c

+) and δ 2 (¹δ, 1], the unique optimal

network N is the ordered line.

Turning to prove pairwise stability, because the ordered line has no bias reversal paths,

Proposition 6 allows us to conclude that for all d, it is the case thatE[V ar(xjωd(h
T ), µ)] ! 0

for δ ! 1. Hence, for δ su¢ciently close to one, there is no pair of players i and j who …nd

it bene…cial to form direct link, unless the cost c is too low. Proceeding as in the proof of

Proposition 5, I obtain that for δ close enough to one, deleting links from the ordered line

is detrimental unless the link c is too large. Hence, I obtain there exist a decay threshold

¹δ < 1, and an intermediate cost range (ĉ¡, ĉ
+) with limδ!1 ĉ¡(δ) = 0, and limδ!1 ĉ

+(δ) = ĉ,

such that for all c 2 (ĉ¡, ĉ
+) and δ 2 (¹δ, 1], the ordered line is pairwise stable.

Proof of Proposition 3. Suppose that δ = 1 and consider a pro…le of lists i, for i 2 N

such that ijji = 0 for all pairs i, j, and ij + ji = 1 if and only if jj ¡ ij = 1, i.e. i and

j are consecutive indexes. The ordered line obtains, and by Proposition 3, each decision

maker x decides fully informed. Because c > 0, no player i wishes to deviate from ij = 0

for any j. Unless c is too large, no player i wants to deviate from ij = 1 for any j either.

Suppose now that δ < 1 and P (e, d) = 1
n(n¡1)

for all e, d. Suppose by contradiction that

the ordered line obtains in a Nash equilibrium when n ¸ 6 and the utility weights ® > 0

are such that αij is arbitrarily small for all i and j 6= i, for some costs c. Consider the

choices of players 3 and 4 to form a link with each other. By sponsoring a link with 4,

player 3 gains access to the expert e’s information when e ¸ 4. For each such an expert

e, the probability that x reaches player 3 is δe¡3. Hence, because P (e, d) is uniform across

e, d, the total probability that x reaches 3 is P (xj34 = 1) =
1

n(n¡1)

Pn
e=4 δ

e¡3. Player 3 can

gain access to all experts e ¸ 4 with less decay by forming a link with player 5, as in this

case the total probability that x reaches 3 is P (xj35 = 1) =
1

n(n¡1)
(2δ +

Pn
e=6 δ

e¡2), which

is clearly larger than P (xj34 = 1). Hence, player 3 would not be willing to sponsor a link

with 4, as she prefers to sponsor a link with 5. For the same reasons, player 4 is not willing
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to sponsor a link with 3, as she prefers to sponsor a link with 2.

To complete the analysis, I note that, for all n < 6 and utility weights ® > 0 with αij

arbitrarily small for all i and j 6= i, there is a range of intermediate costs for which the

ordered line results as a Nash Equilibrium in which each link is sponsored by the “most

moderate” player, i.e. i+1,1 = 1 if i · n/2, i¡1,1 = 1 if i ¸ n/2, and ij = 0 for all other i

and j. For n = 6, instead, the optimal Nash equilibrium of the unilateral sponsorship game

is as depicted in Figure 3, where the sponsor of each link is denoted by vertical dash.

Proof of Proposition 9. Part 1. Say the path p(e, d) has no bias reversals, e.g. i > d

for all i 6= d on p(e, d). Then, proceeding as in the Proof of Proposition 3 there is a perfect

Bayesian equilibrium, in which every i 6= d plays mij(h
t) = ωi(h

t) at every history ht at

the time t she is called to play, every player j 6= e holds beliefs that s = minωj(h
t) with

probability one at every history ht when j is called to play, and the decision maker d chooses

yd(h
T ) = yd(minωd(h

T )), for every history hT . As a result, the message m̂ij = fsg travels

along the path p(e, d) from e to d on the equilibrium path, and d chooses yd(h
T ) = yd(s),

so that E[Ld(y, x)jωd(h
T );µ] = Es[ELd (xjs)].

In order to prove this, …rst note that, as in Proof of Proposition 3, the beliefs of every

player j 6= e are admissible in perfect Bayesian equilibrium, and that d’s strategy yd is

clearly optimal given her beliefs.

Now consider the decision of any player i 6= d on the path p(e, d) at time t = (p(e, i))

and at any history ht, and let j be i’s immediate successor on the path p(e, d). I …rst

note that ωj(h
t) = S and ωi(h

t) µ ωj(h
t+1) for any history ht+1 that contains ht. Fur-

ther, because the expected utility E[Li(y, x)jωi(h
t);µ] is an integral of strictly concave loss

functions Li(y, x), it is a also a strictly concave loss function.

Then, I show that player i does not gain by deviating from the equilibrium strategy

mij (h
t) = ωi(h

t). Proceeding backwards, consider any history hT¡1 and the last player

i 6= d on the path p(e, d). Recall that for any history hT that includes hT¡1, it is the

case that ωi(h
T¡1) µ ωd(h

T ). Then, because yd
¡
hT

¢
= yd(minωd(h

T )), and minωd(h
T ) ·

minωi(h
T¡1) by set inclusion, I obtain that the bliss point yi(ωi(h

T¡1);µ) of i’s expected

utility E[Li(y, x)jωi(h
T¡1);µ] given information ωi(h

T¡1) and equilibrium beliefs µ is such

that yi(ωi(h
T¡1);µ) ¸ yi(ωi(h

T¡1)) > yd(ωi(h
T¡1)) ¸ yd(ωi(h

T )), where the …rst inequality

follows from veri…ability, s 2 ωi(h
T¡1) and monotonicity of yi in s, the second inequality
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follows from i > d. As the expected utility E[Li(y, x)jωi(h
T¡1);µ] is concave, it increases

in y for y > yi(ωi(h
T¡1)). As a result, i would like to maximize y and, by veri…ability, this

can be done by sending message m̂T¡1
id = ωi(h

T¡1). Proceeding by induction as in Proof of

Proposition 3, I obtain that each player i 6= d plays mij(h
t) = ωi(h

t) at every history ht at

the time t she is called to play.

I omit the proof that in every equilibrium µ, it is the case that the message m̂ij = fsg

travels along the path p(e, d) from e to d on the equilibrium path, and the decision maker

chooses ŷ = yd(s), so that E[Ld(y, xjωd(h
T ), µ)] = Es[ELd (xjs)] for all terminal histories

hT . This proof is an obvious generalization of the proof the same results in Proposition 3.

Part 2. Suppose now that the path p (e, d) has bias reversals. Consider terminal histories

hT such that ωd(h
T ) = S, which may or may not be on the equilibrium path. Consider

decision yd(S;µ), in case ωd(h
T ) = S if o¤ the equilibrium path, then yd(S;µ) is arbitrary,

else it is determined by Bayes rule. Every player i 6= d’s message space is restricted to

M t
ij = ffsg, Sg. Hence, for any history ht, the information ωi(h

t) that player i has on s

may either be that ωi(h
t) = fsg or that ωi(h

t) = S. If ωi(h
t) = S, then by veri…ability

m̂t
ij = S and ωd(h

T ) = S for every terminal history hT that contains ht.

Pick any player i > d on p (e, d) , and let t by the (possibly zero) distance of i from

e. Consider the set Si(S;µ) = fs : yd(s) < yd(S;µ) < yi(s)g, for all s 2 Si(S;µ), player

i would rather that d plays ŷd = yd(S;µ) than ŷ = yd(s). Suppose that s 2 Si(S;µ), and

suppose that ωi(h
t) = fsg. In any terminal history hT such that ωi(h

t) = fsg, player

d’s decision is ŷd = yd(s). Because yd(s) < yd(S;µ) < yi(s), player i strictly prefers that

d receives no information about s and plays ŷd = yd(S;µ), rather than d learns s and

plays ŷd = yd(S;µ). Indeed, player i can insure that s is not disclosed to d by sending

message m̂t
ij = S, as this implies that ωd(h

T ) = S for every terminal history hT that

contains ht. Hence, there cannot exist any equilibrium in which ωd(h
T ) = fsg on the

equilibrium path, for any s 2 Si(S;µ). An analogous, symmetric, argument implies that

there cannot exist any equilibrium in which ωd(h
T ) = fsg on the equilibrium path, for any

s 2 Si(S;µ) = fs : yi(s) < yd(S;µ) < yd(s)g and any i < d. Hence, the expected loss can

be bounded in a manner analogous to the proof of Proposition.3.

Proof of Proposition 10. The proof is omitted as it is the same as the proofs of

Proposition 4 and 5, using Proposition 9 in lieu of Proposition 3.
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Proof of Proposition 11. I …rst prove that if the network N is the ordered line, then

there exists a perfect Bayesian equilibrium such that for all sets E of experts and D of

decision makers, every d 2 D receives the signal se of every e 2 E.

De…ne the set I¡(E,D) = fi : e · i · d, for some e 2 E and d 2 Dg, I+(E,D) =

fi : d · i · e, for some e 2 E and d 2 Dg. Because N is the ordered line, I+(E,D)

identi…ed the players i who are involved in information transmission and decision from

experts in E on the right to decision makers in D on the left, and I¡(E,D) vice versa. Let

I(E,D) = I¡(E,D) [ I¡(E,D) be the set of players that are not idle in the game.

Consider a pro…le of strategies in which every player i 2 I+(E,D) reveals all her infor-

mation ωi(h
t)je µ S, mij(h

t)je = ωi(h
t)je, for all e 2 E such that e ¸ i to her successor

j = i ¡ 1 2 I+(E,D) in every history ht at which she is called to play. (What i communi-

cates for se : e < i to j = i¡1 2 I+(E,D) is irrelevant.) Symmetrically, every i 2 I¡(E,D)

reveals all her information ωi(h
t)je, mij(h

t)je = ωi(h
t)je, for all e 2 E such that e · i to

her successor j = i + 1 2 I¡(E,D) in every history ht at which she is called to play. At

period T, every player d 2 D, chooses yd(h
T ) = E[xjsEd(ωd(h

T ))] + bd, where sEd(ωd(h
T ))

is the pro…le of signals se such that se = minωd(h
T )je for all e 2 E such that e > d and

se = maxωd(h
T )je for all e 2 E such that e < d. Note that because N is the ordered line,

on the equilibrium path, every signal se of every e 2 E travels precisely to any d 2 D, who

chooses yd(h
T ) = E[xjsE] + bd, so that E[V ar(xjωd(h

T ), µ)] = E[V ar(xjsE)].

For any player e 2 E, let the equilibrium beliefs of every player j 2 I(E,D) in every

history ht at which j is called to play be such that se = minωj(h
t)je with probability one

if j < e, and that se = maxωj(h
t)je with probability one if j > e.

In order to prove that this is a perfect Bayesian equilibrium, …rst note that, as in the

proof of Proposition 3, these beliefs are admissible. Consider any player e 2 E and player

j 2 I(E,D) with j 6= e and every signal se, the unique information set ωj(h
t) at any history

ht on the equilibrium path at which j is called to play is such that ωj(h
t)je = fseg, and

minωj(h
t)je = maxωj(h

t)je = fseg consistently. Further, d’s strategy yd is clearly optimal

given her beliefs.

To continue with the proof, consider any i 2 I(E,D), note that because N is the ordered

line, for any history ht, e 2 E with e ¸ i, and j < i, it is the case that ωi(h
t)je µ ωj(h

t+1)je

for any history ht+1 that contains any history ht: as in the proof of Proposition 3, everything
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that j < i learns about signal se for which e ¸ i, she learns from i. Further, decompose

player i’s expected utility E[Li (ŷD, x) jωi(h
t), µ] =

P
d2D αidE[Li (ŷd, x) jωi(h

t), µ] at his-

tory t and note that for any d 2 D, the expression E[Li (ŷd, x) jωi(h
t), µ] is a a quadratic loss

function, as it is the integral of the quadratic loss functions Li (ŷd, x) = ¡ (ŷd ¡ x ¡ bi)
2 .

I now show that no player i 2 I+(E,D) gains by deviating from the equilibrium strategy

mij (h
t) je = ωi(h

t)je for all e 2 E with e ¸ i and j = i ¡ 1 2 I+(E,D). The proof that no

player i 2 I¡(E,D) gain by deviating from the equilibrium strategy mij (h
t) je = ωi(h

t)je

for all e 2 E with e · i and j = i+1 2 I¡(E,D) is its mirror like image and hence omitted.

In order to show this result, I proceed backwards along the set I+(E,D), let T̂ (E,D) =

maxE ¡ minD be the length of the path from the most right-wing expert to the most

leftist decision maker, consider any history hT̂ (E,D)¡1 and let d = minD and i = minD+1.

Using a result just above above, for any history hT̂ (E,D) that includes hT̂ (E,D)¡1, it is the

case that ωi(h
T̂ (E,D)¡1)je µ ωd(h

T̂ (E,D))je for all e 2 Enfdg, because d < i and all e ¸ i for

e 2 Enfdg.

Further, because i > d and N is the ordered line, it follows that i is not on the path

p(e, d) from any e 2 E such that e < d. As consequence, i has no in‡uence on the in-

formation that d receives about signals se such that e < d. In equilibrium, i knows that

every signal signals se such that e < d will reach d precisely. Because by construction,

T̂ (E,D)¡ 1 is the last round of transmission to d of any information of any signal se such

that e > d, player i knows that in equilibrium, d’s decision will be E[yd(h
T )jωi(h

T̂ (E,D)¡1)] =

E[E[xj
¡
s+Ed(ωd(h

T )), s¡Ed
¢
]jωi(h

T̂ (E,D)¡1)]+bd, where s¡Ed is any pro…le of signals (se)e·d and

s+Ed(ωd(h
T )) is the pro…le of signals (se)e>d such that se = minωd(h

T )je for all e > d, and

the external expectation is taken with respect to s¡Ed.

Proceeding as in the proof of Proposition 3, I now note that, for every e > d,minωd(h
T )je ·

minωd(h
T̂ (E,D)¡1)je by set inclusion, E[xj

¡
s+Ed(ωd(h

T )), s¡Ed
¢
] · E[xj

³
s+Ed(ωd(h

T̂ (E,D)¡1)), s¡Ed

´
]

by single-crossingness, andE[xj
³
s+Ed(ωd(h

T̂ (E,D)¡1)), s¡Ed

´
] · E[xjωd(h

T̂ (E,D)¡1)je¸d£s
¡
Ed, µ]

by veri…ability. Integrating across s¡Ed, I obtain thatE[E[xj
¡
s+Ed(ωd(h

T )), s¡Ed
¢
]jωi(h

T̂ (E,D)¡1)] ·

E[xjωd(h
T̂ (E,D)¡1), µ].

Hence, I have obtained that the bliss point E[xjωi(h
T̂ (E,D)¡1), µ] + bi of i’s expected

utility E[Li (ŷd, x) jωi(h
T̂ (E,D)¡1), µ] given information ωi(h

T̂ (E,D)¡1) and equilibrium beliefs

µ is such that E[xjωi(h
T̂ (E,D)¡1), µ] + bi > E[E[xj

¡
s+Ed(ωd(h

T )), s¡Ed
¢
]jωi(h

T̂ (E,D)¡1)] + bd =
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E[yd(h
T )jωi(h

T̂ (E,D)¡1)], where the …rst inequality is because bi > bd.

As in the proof of Proposition 3, the expected utility E[Li (ŷd, x) jωi(h
T̂ (E,D)¡1), µ] of

player i from d’s choice ŷd increases in ŷd, for ŷd > E[yd(h
T )jωi(h

T̂ (E,D)¡1)]. As a result,

i would like to maximize ŷd and, by veri…ability, this can be done by sending message

m̂
T̂ (E,D)¡1
id je = ωi(h

T̂ (E,D)¡1)je for all e ¸ i.

The argument by induction is then similar to the one in the proof of Proposition 3.

For any t = 0, ...T̂ (E,D) ¡ 1, let it be the player in the set I+(E,D) at distance t from

maxE. I have proved above that at any history hT̂ (E,D)¡1 player iT̂ (E,D)¡1 sends message

m̂iT̂ (E,D)¡1iT̂ (E,D)
je = ωiT̂ (E,D)¡1

(hT̂ (E,D)¡1)je to iT̂ (E,D) = d for all e 2 E with e ¸ i. I

now proceed by induction. For any t < T̂ (E,D) ¡ 1, suppose that at any history ht+τ ,

τ = 1, ..., T̂ (E,D) ¡ 1¡ t, player it+τ sends message m̂it+τ it+τ+1 je = ωit+τ (h
t+τ )je to it+τ+1

for all e 2 E with e ¸ i.

Now, consider the choice faced by player it at any history ht with respect to the trans-

mission to it+1 of information about se such that e 2 E and e ¸ i. Again, for any e 2 E

with e ¸ i, and d < i, it is the case that ωi(h
t)je µ ωd(h

t+1)je for any history ht+1 that

contains history ht. Because of the induction hypothesis, for any e 2 E with e ¸ it, and

d < it, it is the case that ωd(h
T )je = m̂itit+1je. Because N is the ordered line, all play-

ers d0 2 D that are connected to it through it+1 are such that d0 < it+1 < i, and hence

bd < bi. The same arguments applied to iT̂ (E,D)¡1 and d implies that also for all such d0, the

expected utility E[Li (ŷd0 , x) jωi(h
t), µ] of player it from d0’s choice ŷd0 increases in ŷd0 for

ŷd0 > E[yd0(h
T )jωi(h

t)]. So, again, it is a best response for player it at history ht to reveal

all information and send message m̂itit+1 = ωit(h
t).

I have therefore concluded that the stated conjectured equilibrium pro…le is indeed a

Perfect Bayesian Equilibrium.

The proof that the ordered line N is the unique optimal network is then concluded from

the following results. First, for every realized E and D it achieves the minimal expected loss
P

d2D αidE[V ar(xjωd(h
T ), µ);N ] =

P
d2D αidE[V ar(xjsE)]. Second, for every other tree N,

I proved in the proof of Proposition 4 that there exist singleton realizations E = feg and

D = fdg such that the expected loss is E[V ar(xjωd(h
T ), µ);N ] > E[V ar(xjse)]. Third, and

…nal, for any link cost c > 0, adding links to the ordered line is wasteful, whereas for any

link cost c < ¹c, deleting links from the ordered line is suboptimal, as it leads to decision
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makers d 2 D to lose all information about signal se for some e 2 E, for some realizations

of E and D.

Completion of Example 2. Consider the choice of player 3 of reporting information

m̂32j3 about signal s3. The equilibrium payo¤ of player 3 from the choices of players 2 and

4 as a function of m̂32j3 is:

u3(m̂32j3js3)j2,4 = ¡α3E[(a§(min m̂32j3, s¡3) + z + b2 ¡ x ¡ b3)
2

+(a(max m̂32j3, s¡3) + z + b4 ¡ x ¡ b3)
2 js3],

where the expectation is taken with respect to s1, s2, s4 and x. Instead, the equilibrium

payo¤ of player 3 from the choices of players 2 and 4 as a function of 3’s message m̂32j1

about signal s1 is:

u3(m̂32j1jω3(h
2))j2,4 = ¡α3E[(a§(max m̂32j1, s¡1) + z + b2 ¡ x¡ b3)

2

+(a§(max m̂32j1, s¡1) + z + b4 ¡ x ¡ b3)
2 jω3(h

2)].

Consider the latter …rst. For any history h2 at which 3 is called to reveal information

ω3(h
2)j1 about s1 to 2, it is optimal for 3 not to withhold information, and send m̂32j1 =

ω3(h
2)j1. In fact, simplifying the expression of u3, and using the short-hand notation §̂1 =

§(max m̂32j1, s¡1), I obtain:

u3(m̂32j1)j2,4 = ¡α3E

·³
a§̂1 + z ¡ x ¡ b

´2
+

³
a§̂1 + z + b¡ x

´2
jω3(h

2)

¸

= ¡2α3E

·³
a§̂1 + z ¡ x

´2
jω3(h

2)

¸

¡ 2α3b
2.

On the equilibrium path, 2 knows s1 at t = 2, and by de…nition of E[xjs], the ex-

pression u3(m̂32j1)j2,4 is maximized by setting a§̂1 + z = E[xjs], i.e. by revealing s1

through the message m̂32 such that m̂32j1 = fs1g. O¤ the equilibrium path, for any

history h2, the expression u3(m̂32j1)j2,4 is maximized by sending message m̂32 = ω3(h
2).

In fact, the expected state given information ω3(h
2) is E[E[xjω3(h

2)j1, s¡1]jω3(h
2)] <

E[E[xjmaxω3(h
2)j1, s¡1]jω3(h

2)] · E[E[xjmax m̂32j1, s¡1]jω3(h
2)], where the …rst inequal-

ity follows from by the intermediate value theorem, and the second inequality because

ω3(h
2) µ m̂32.

A fortiori, player 3 maximizes the expression u3(m̂32j3js3)j2,4 by revealing s3 through

the message m̂32 such that m̂32j3 = fs3g. By withholding information through a message

50



m̂32 such that fs3g ( m̂32j3, player 3 would bias the decisions of both 2 and 4 away from

his bliss point E[xjs] + b3, for any realizations of s¡3. In fact, player 3 would bias 2’s

decision ŷ2 = E[xjmin m̂32j3, s¡3] + b2 leftward away from E[xjs] + b3, and 4’s decision

ŷ4 = E[xjmax m̂32j3, s¡3] + b2 rightward also away from E[xjs] + b3.
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