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Abstract

Limitations to workers’ spatial job mobility reduce access to productive jobs, misal-
locating labour and lowering output and welfare. Several policies aim to mitigate this
misallocation by bringing workers closer to productive firms. Nevertheless, they substan-
tially differ in how they affect the local costs firms face. For example, reducing planning
regulations in productive locations lowers local rental costs. In contrast, making productive
locations more attractive increases them by fostering congestion. I show that the effective-
ness of these policies crucially depends on which firms are more sensitive to changes in
local costs. I call this sensitivity localness. Using UK microdata, I find that productiv-
ity and localness are negatively correlated. I evaluate the effectiveness of different types
of policies using a spatial general equilibrium model that, as a novelty, accounts for the
observed joint distribution of productivity and localness. I find that accounting for local-
ness heterogeneity dampens, by up to 35%, the aggregate welfare gains from policies that
decrease costs in productive locations. Intuitively, lower rental costs lead to the creation
of low-productivity jobs rather than productive ones, as productive firms are less local.
Conversely, policies that indirectly increase local costs in productive locations are more
effective, since not many productive jobs are destroyed. Finally, I show that localness het-
erogeneity has broader implications for how these policies shape the distribution of wages.
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1 Introduction

Limitations to workers’ spatial mobility, such as commuting costs, have detrimental effects on

the economy: they reduce access to productive jobs (Hsieh and Moretti, 2019), create conges-

tion (Schmutz and Sidibé, 2021) and increase local monopsony power (Heise and Porzio, 2023).

Hence, they misallocate labour, reducing output and welfare.

Three policies are commonly proposed to mitigate these issues: attracting workers to produc-

tive regions by reducing land use regulations (Hsieh and Moretti, 2019), attracting productive

firms towards deprived regions (Moretti, 2022), and directly reducing mobility costs, such as

commuting costs (Monte et al., 2018). These policies affect workers’ labour market outcomes

both directly and by changing the local demand and costs firms face. Intuitively, attracting

more consumers to a location increases local congestion, affecting firms’ revenues and costs

(e.g. rents) and, thus, employment decisions. However, changes in congestion may not affect

all firms within a location equally.

In this paper, I argue that evaluating the effectiveness of these policies requires understanding

which firms are the most sensitive to local congestion. I call this sensitivity “localness”. Firms

differ considerably in how much they benefit from local demand (e.g. restaurants versus global

tech firms) or suffer from higher local costs, such as rents (e.g. manufacturing plants versus

offices). Therefore, firms differ in how they respond to changes in local congestion. Hence,

understanding the consequences of the distribution of localness across firms is paramount when

discussing policies that tackle spatial labour misallocation.

I fill this gap in two steps. First, I introduce new empirical measures of localness at the firm

level. Using UK microdata, I find that low-productivity firms are approximately three times

more sensitive (“more local”) to local demand and rental costs than high-productivity ones.

Second, I quantify the effectiveness of the aforementioned policies given the observed distri-

bution of localness across firms and locations. For this purpose, I build a spatial general equi-

librium model that accounts for the negative correlation between productivity and localness.

Accounting for the joint distribution of productivity and localness considerably dampens (by
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up to 35%) the welfare gains from policies that reduce congestion costs in productive locations,

such as reducing land use regulations (Hsieh and Moretti, 2019) or moving productive firms to

deprived areas. Intuitively, since productive firms have low localness, these policies have small

positive externalities, limiting the creation of new productive jobs. Conversely, directly reduc-

ing spatial frictions (such as making commuting cheaper and faster) has larger welfare gains:

although high-amenity regions (which, in the UK, are also high-productivity ones) would at-

tract more residents, not many productive jobs would be lost to congestion thanks to the low

localness of productive firms.

My first contribution is empirical. I use UK firm microdata to unpack localness. I focus on

two components of localness that are particularly salient for spatial frictions: the exposure of

a plant to local demand and the importance of local rental costs relative to value added. These

dimensions are highly relevant to the study of spatial frictions, as workers’ location choices

contribute to local demand and rental prices through local congestion externalities.1 I show that

these components of localness are highly heterogeneous across firms and negatively correlated

to productivity. Sorting firms by mean wages per worker, I find that firms representing the top

25% of employment are 70% less likely than those in the bottom 25% to mainly sell at the

regional level or below. Moreover, their floorspace costs are 60% smaller, relative to their total

wage bill (10% vs 28%).2 This suggests that productive firms may be less affected by changes

in the local environment.

My second contribution is theoretical. To study the labour misallocation effects of spatial fric-

tions in the presence of congestion externalities on firms, I augment the spatial General Equi-

librium search framework (Schmutz and Sidibé, 2018; Heise and Porzio, 2023),3 with indepen-

dent residence-work location choices to separate the direct labour market and indirect conges-

tion effects of workers’ location choices. Moreover, I allow firms to be heterogeneous in both

1Moreover, accounting for these dimensions provides a good benchmark, as they are often jointly used in
spatial general equilibrium models to account for local congestion effects (on either residents, or both residents
and firms).

2Similar results are derived using firms’ size, which in most search models maps one-to-one with productivity
and gross value added per worker.

3Lindenlaub et al. (2023) follow a similar approach, but with a continuum of location and free mobility.
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productivity and localness. Hence, firms differ in how spatial frictions affect both their employ-

ment (from differences in monopsony power) and, due to congestion effects, their value added

per worker (from differences in agglomeration effects, non-tradeable revenue, and floorspace

costs).

I prove that the novel unobservable parameters of interest, i.e. those that characterise firms’

productivity and localness, are identified given estimates of spatial frictions, search friction

and amenities. As standard, I obtain those estimates from the spatial distribution of workers,

job moves, wage gains, and value added per worker. Importantly, this step does not require

any assumptions about productivity and localness. Then, I prove that the joint distribution of

localness and value added observed in the data and the model market clearing conditions can

identify the productivity and localness parameters.

My third contribution is quantitative. I estimate the model using UK data. I find that when

localness heterogeneity is taken into account, spatial frictions reduce output by 26% more (1.1

percentage points of GDP) and welfare gains by 1.3 percentage points more, relative to assum-

ing all firms have the same localness. Highly productive businesses are less exposed to conges-

tion effects. Accounting for this fact yields smaller negative externalities from congestion in

the housing market of productive locations and, thus, larger aggregate gains.4

Finally, the most important contribution goes towards understanding the importance of account-

ing for localness heterogeneity in the evaluation of public policies. I show that some policies are

less effective at increasing welfare, despite the larger total misallocation of labour. Reducing

housebuilding regulations (as in Hsieh and Moretti (2019)), a policy discussed in both Califor-

nia and the UK, leads to 35% (0.5 pp.) smaller gains in welfare when accounting for localness

heterogeneity. Similarly, reducing the productivity gap between London and the poorest areas

of the UK by one-third, a policy experiment reflected in “levelling-up” in the UK and other

4Since London and the South-East have very high amenities (according to both the structural estimation and
data on the concentration of cultural and commercial activities), relaxing mobility constraints leads to more people
choosing to live in high-amenity locations while holding jobs somewhere else, increasing local house and business
floorspace prices. However, this congestion is less costly when accounting for the fact that productive businesses
have low localness.
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place-based policies around the World, improves welfare by 25% (0.4 pp.) less. The intuition is

that policies that generate positive externalities by “decongesting” productive locations (lower-

ing local rental costs) deliver smaller gains. This is because productive businesses are not very

local and thus do not increase their labour demand even as local costs fall. The newly created

jobs are, instead, low-productivity ones. On the other hand, policies that create congestion in

cities deliver larger gains, as the associated negative externalities are small. In fact, policies

that directly reduce the spatial frictions faced by workers, such as reducing commuting costs

(e.g. through commuting subsidies or infrastructure building), are 10% more effective at im-

proving welfare when accounting for localness heterogeneity, as they cause smaller negative

externalities.

The main takeaway is that measuring and accounting for localness heterogeneity is important for

correctly gauging the effects of congestion externalities. Firstly, the aggregate effects on labour

misallocation are not obvious, both in size and sign, as they depend on the joint distribution of

productivity and different dimensions of localness. Importantly, accounting for within-location

localness heterogeneity is crucial for my results. Accounting only for between-location dif-

ferences in localness misses half of the dampening of congestion externalities. Secondly, the

effects of congestion on other relevant dimensions, such as the wage distribution, can be highly

heterogeneous within and across locations when firms differ in localness. For example, when

accounting for localness heterogeneity, high land use regulations considerably depress wages at

the bottom and middle of the wage distribution.

Relation to the Literature The main contribution of this paper is to the growing literature

on the misallocation of labour due to frictions that limit the spatial mobility of workers (Frey,

2009; Marinescu and Rathelot, 2018; Hsieh and Moretti, 2019; Herz and van Rens, 2019; Elsby

and Gottfries, 2021; Bilal et al., 2022; Martellini, 2022; Bilal, 2023; Auerbach et al., 2023).5 I

show - through an agnostic decomposition - how assessing the costs of spatial frictions requires

5The literature finds that spatial mismatch unemployment is small (Şahin et al., 2014; Manning and Petrongolo,
2017; Marinescu and Rathelot, 2018; Herz and van Rens, 2019). However, large effects are found in the literature
accounting for the mismatch into less productive jobs due to spatial differences in the distribution of productivity
Hsieh and Moretti (2019); Elsby and Gottfries (2021); Auerbach et al. (2023); Heise and Porzio (2023).
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accounting for how spatial frictions change the value added per worker and size (employment)

of firms. This is reminiscent of the concepts of spillovers and congestion in Fajgelbaum and

Gaubert (2020), but at the firm level. That is, I allow for heterogeneity in congestion effects

within locations, a potentially relevant margin of misallocation when firms differ in productiv-

ity.6

Heise and Porzio (2023) show how labour is misallocated within locations due to heterogene-

ity in local monopsony power across firms (“size effect”, in terms of my decomposition). My

and their results are closely related to contributions that study the effects of local monopsony

power (Azar et al., 2019; Bamford, 2021; Datta, 2023; Caldwell and Danieli, 2023). I build on

their spatial general equilibrium framework with job-to-job transitions (based on Burdett and

Mortensen (1998)), showing how (heterogeneous) congestion spillovers can further misallo-

cate labour between and within locations by affecting firms’ value added per worker, and thus

profitability and labour demand along the productivity distribution.7

My work is also related to the literature studying how spatial frictions affect inequalities by

shaping the spatial allocation of skills and firms (Moretti, 2013; Diamond, 2016; Schmutz and

Sidibé, 2021; Diamond and Gaubert, 2022; Card et al., 2023).8 I show how firms mainly em-

ploying low-skilled workers have different localness than those mainly employing high-skilled

workers. This fosters the spatial sorting of jobs, as the negative congestion effects of cities

affect productive low-skilled jobs more than high-skilled ones. These results also relate to the

urban-biased growth literature, showing how productive manufacturing employment has shrunk

6However, in this paper, I focus on the role of spatial frictions with respect to workers’ mobility rather than
frictions with respect to shipping of goods and barriers (or congestion effects) to regional trade.

7Mechanically, other contributions fail to account for this channel for two reasons. Either due to assuming zero
effects of congestion on firms’ value added, as in Heise and Porzio (2023), or due to assuming identical effects
along the productivity distribution, as in Bilal (2023) (who uses a Cobb-Douglas for land). van der List (2023) uses,
in an extension, a location-specific, but identical across firms, land cost per employee. Similarly, Fajgelbaum and
Gaubert (2020) use a model of between-location congestion spillovers, but no localness heterogeneity. Exceptions
are contributions that discuss “dilation” effects of agglomeration economies, such as De La Roca and Puga (2016)
and Combes et al. (2012). Lindenlaub et al. (2023) assume firms use one unit of land each, thus creating a
negative correlation. I complement these contributions by discussing heterogeneous value-added effects arising
from susceptibility to local revenues and cost and calibrating the distribution of localness to the data.

8Even when not explicitly stated, assuming that workers need to live where they work, hence having to face
higher local prices to work in big cities, implicitly assumes infinitely high commuting costs, hence frictional worker
mobility.
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in cities but not in less congested locations (Chen et al., 2023).

Finally, I contribute to the literature studying policies aimed at improving the allocation of

labour across and within locations (Saks, 2008; Ahlfeldt and Feddersen, 2017; Herkenhoff et al.,

2018; Monte et al., 2018; Hsieh and Moretti, 2019; Fajgelbaum and Gaubert, 2020; Gaubert

et al., 2021; Moretti, 2022). I find that the relative effectiveness of different policies is pro-

foundly affected by localness heterogeneity. Relative to models with congestion spillovers on

firms, I find that some policies become considerably less effective at reducing misallocation, as

very productive firms have low localness. However, these results should be interpreted in the

opposite way when compared to a model where congestion does not affect value added, as con-

gestion has some effects on productive businesses too. In this sense, this paper provides not only

quantitative estimates of relative policy effectiveness, but also a firm-level mental framework to

think about the misallocation effects of spatial frictions.

Outline of the paper. The rest of the paper is organised as follows. In Section 2, I provide

empirical evidence of the relevance of spatial frictions. I then define localness, and its relevance

for understanding spatial labour misallocation, and provide empirical evidence of its hetero-

geneity. In Section 3, I rationalise this evidence using a structural model. In Section 4, I discuss

the identification and estimation of the model and present the results in Section 5. Section 6

discusses the policy implications of this framework. Section 7 takes stock of the findings.

2 Data and Motivating Facts

2.1 Data and Definitions

I employ three main data sources from the UK: the Annual Survey of Hours and Earning

(ASHE); the Annual Business Survey (ABS), and the National Employer Skill Survey. All

of these datasets are linkable through firm identifiers. I now describe in detail each of these

datasets and their use in this work.
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ASHE. ASHE9 is a matched employer-employee panel dataset, with sample size equivalent

to 1% of the population.10 It provides detailed information on pay and hours, occupation,

contract type (part-time, apprenticeship, youth pay rates, covered by collective agreements) and

demographic information about employed individuals. Importantly, it contains information on

both the location of residence and employment. I use ASHE to track workers’ earnings across

space and their spatial mobility patterns.

ABS. ABS11 is composed of two parts. The first is a yearly dataset of the universe of plants

(local units), with information on employment, revenues, and activity status. The other is a large

yearly survey (60,000 responding units) with detailed information on firms’ activities, such as

employment costs, value added, and taxation. I use this dataset to obtain additional information

about the employers in ASHE, as well as to estimate the value added and floorspace costs of

each firm.12

NESS. NESS13 is a survey of individual plants, with around 90,000 plants being interviewed

every odd year. The survey collects detailed information on employment and vacancies by

occupation. Half of these plants are asked questions about the nature of their activity, including

whether they obtain their revenue from local sales.

2.2 Firms and wages across space

Among high-income countries, the UK has one of the most unequal spatial distributions of

income and production (Arnold et al., 2019). As illustrated in Figure 1, the GDP per capita of

the North of England is 50% smaller than London’s and one-third smaller than that of the South-

9Office for National Statistics, released 11 May 2023, ONS SRS Metadata Catalogue, dataset, Annual Survey
of Hours and Earnings Longitudinal - UK, https://doi.org/10.57906/nz2h-kc10

10The panel is selected according to the last two digits of the national insurance number (NIN). All individuals
born in England receive a NIN on their 16th birthday. Immigrants are included if they have applied for a NIN.

11Office for National Statistics, released 27 July 2023, ONS SRS Metadata Catalogue, dataset, Annual Business
Survey - UK, https://doi.org/10.57906/ks2s-qx24

12The floorspace is obtained from the “non-domestic (business) rates” tax, a tax paid in proportion to the current
market value of rental prices for that type of firm in a narrow geographical area.

13Department for Education, released 06 March 2023, ONS SRS Metadata Catalogue, dataset, Employer Skills
Survey and Investment in Training - UK, https://doi.org/10.57906/zs9p-gw83
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East region. Furthermore, these regional gaps have not narrowed for the last 25 years.

Figure 1: GDP per capita (England and Wales = 1)
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Note: regional GDP per capita (in volume at chained 2019 prices), relative to the England and Wales mean. The
graph covers 1998 to 2019. “North” includes “North East”, “North West”, and “Yorkshire and The Humber”
regions. “Midlands and Wales” includes “East Midlands”, “West Midlands” regions and “Wales”. “Rest of South”
includes “East” and “South-West” regions.

These phenomena have been linked to the presence of limitations to workers’ spatial mobility

(“spatial frictions”), such as commuting or relocation costs. Even though part of the observed

inequalities reflects sorting,14, spatial frictions prevent workers from moving to better but dis-

tant jobs (Hsieh and Moretti, 2019) and further reduce average productivity in less productive

regions (Heise and Porzio, 2023).

I visualise one of the indirect consequences of spatial frictions by estimating the compensating

differential of longer commutes. I regress the wage gains of job movers i, moving at time t,

against the change in their commuting distance:

∆ ln(wit) = ∑
s∈S

β
sds

it +BXit + εit

where ds
it is a set of dummies representing nine groups of commuting distance changes (no

change, 0-10km, 10-20km, 20-30km, 30-40km, and the equivalent negative intervals), and Xit

are controls.15 The coefficients of interest, {β s}s∈S, represent the mean wage premium of

14See for example models of natural advantage such as Ciccone and Hall (1996) and model of endogenous
spatial sorting (Diamond, 2016; Bilal, 2023; Kuhn et al., 2022; Lindenlaub et al., 2023; Schmutz and Sidibé, 2018)

15Commuting distance is measured as the great circle distance between work and residence MSOAs. The
controls include a sex dummy, a set of age dummies in 5-years intervals, an interaction between pre- and post-
move 2-digits occupation, a dummy indicating whether the worker also moved residence during the job move, and
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changing commuting distance relative to the omitted category (ds
it = 0). I plot the results in

Figure 2. On average, increasing commuting distance by 40km is associated with a 0.031 log-

points higher wage gain, relative to workers who do not change commuting distance.

Figure 2: Wage gains of job movers, by change in commuting distance
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Note: The figure plots the (residualised) mean log-wage gains of job movers by their change in commuting distance
after the move. The mean estimate for the omitted category (x = 0) is 0.018 log-points. Grey bands represent 95%
confidence intervals. Each point represents one β s. The horizontal positions of the points represent the lowest
value in the commuting distance change bin.

This evidence is consistent with large frictions to workers’ spatial mobility. However, to un-

derstand how spatial frictions impact the aggregate allocation of labour, it is necessary to un-

derstand how such choices affect firms. For example, through their residence location choices,

individuals can increase local residential and business rents, demand for local services and local

labour supply. Hence, by affecting local demand, prices and costs, spatial frictions can affect

firms’ profitability and employment decisions. In the next section, I present a general approach

to assess the misallocation effects of spatial frictions.

2.3 Decomposing labour misallocation

I propose a decomposition of the misallocation of labour induced by workers’ frictional spatial

mobility. Dividing the economy into j ∈L locations, aggregate value added Y can be expressed

year fixed effects.
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as the sum of local value added Yj:

Y ≡ ∑
j∈L

Y j.

Assuming there are N j firms in location j, indexed by n ∈ {1, . . . ,N j}, each with value added

per worker p̃ j,n and employment e j,n (so that Yj,n = p̃ j,ne j,n),16 Y can be expressed as:

Y = ∑
j∈L

N j

∑
n=1

p̃ j,ne j,n.

Hence, the question of whether labour is misallocated can be answered by asking: (how much)

does value added change when making infinitesimal changes in spatial friction x (for example,

commuting costs)?

Assume p̃ j,n(x) and e j,n(x), the functions mapping spatial frictions x into the value added per

worker and size of firm ( j,n), are differentiable in x ∈ X ⊆ R. Then, the change in Y following

an infinitesimal change in spatial friction x is17

∂ ln(Y )
∂x

= ∑
j∈L

N j

∑
n=1

Yj,n

Y︸︷︷︸
Firm

weight

∂ ln(p̃ j,n(x))
∂x︸ ︷︷ ︸

Value added
effect

+
∂ ln(e j,n(x))

∂x︸ ︷︷ ︸
Employment

effect

 . (1)

This decomposition implies that understanding ∂ ln(Y )
∂x requires knowing, for each location, the

whole joint distribution of firm value added Yj,n and the semielasticities ∂ ln(p̃ j,n(x))
∂x (per-worker

value added) and ∂ ln(e j,n(x))
∂x (employment). I now unpack these black-box elasticities into ob-

jects connected to how firms respond to changes in their economic environment due to changes

in spatial frictions.

Assumption 1. Throughout the following definitions, I assume all functions are differentiable

in their arguments.

Definition 1. Global Factors. Define g as the vector of global factors gk,k ∈ G = {1,2, . . .}

that: i) directly affect firms’ value added per worker and/or size ( ∂ p̃
∂gk

̸= 0 or ∂e
∂gk

̸= 0 ), ii) are

affected by changes in spatial friction x (∂ lk
∂x ̸= 0), and iii) do not vary across locations for any

value of spatial frictions x.

16For clearness of exposition, assume N j includes all the firms that could be active in location j, but currently
have size ≈ 0.

17For N j → ∞, see Appendix A.1.
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Definition 2. Local Factors. Define lj as the vector of local factors l jk,k ∈ L = {1,2, . . .} that:

i) directly affect firms’ value added per worker and/or size ( ∂ p̃
∂ l jk

̸= 0 or ∂e
∂ l jk

̸= 0 ), ii) are affected

by changes in spatial friction x (∂ lk
∂x ̸= 0), and iii) are not global.18

Assumption 2. Assume spatial frictions x only affect p̃ and e through g and lj.

Using definitions 1 and 2, assumption 2, and applying the chain rule yields:
∂ ln(p̃ j,n(x))

∂x
= ∇lj ln(p̃ j,n)

∂ lj
∂x

+∇g ln(p̃ j,n)
∂g
∂x

.

∂ ln(e j,n(x))
∂x

= ∇lj ln(e j,n)
∂ lj
∂x

+∇g ln(e j,n)
∂g
∂x

.

(2)

That is, the semielasticities of value added per worker and size to spatial frictions can be ex-

pressed as how local (and global) factors are affected by changes in spatial frictions and how,

in turn, these changes affect firms’ value added and employment decisions.19

Equation 2 shows how, in order to assess the effects of spatial frictions on misallocation (or

wages), we need to understand how local (and global) factors affect each firm. This requires

two steps. First, understanding what factors matter for different firms. Second, understanding

how these factors are affected by spatial frictions or policies aimed at tackling labour misallo-

cation.

In this paper, I will focus on the role of local factors.20 For this scope, it is useful to define the

concept of “localness” of a firm to factor l j as follows:

Definition 3. Localness.

Call ∇lj ln(p̃ j,n) “localness of value added per worker”. A firm n in j is defined as “more local

for local factor k” in p̃ than another firm n′ in j′ when |∂ p̃ jn
∂ l jk

|> |∂ p̃ j′n′
∂ l j′k

|.

Call ∇lj ln(e j,n) “localness of firm employment”. A firm n in j is defined as “more local for

local factor k” in e than another firm n′ in j′ when |∂e jn
∂ l jk

|> |∂e j′n′
∂ l j′k

|.

In principle, localness and its heterogeneity across firms can be associated with several existing

18This condition can be formalised as ∃ j ̸= j′ ∈ L , ∃k ∈ L, ∃x ∈ X : l jk(x) ̸= l j′k(x).
19A way to reformulate Equation 2 would be ∂ ln(p̃ j,n(x))

∂x = ∑k∈L
∂ p̃ j,n
∂ l jk

∂ l jk
∂x +∑k∈G

∂ p̃ j,n
∂g jk

∂g jk
∂x .

20I will account for global factors only insofar as they are affected by general equilibrium effects of changes in
local factors.
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concepts (factors), such as: openness and tradeability of goods (Woodland, 2017; Monte et al.,

2018); local monopsony power (Caldwell and Danieli, 2023; Heise and Porzio, 2023; Datta,

2023); local vacancy filling rates (Bilal, 2023; Kuhn et al., 2022); congestion and firm selection

(Fajgelbaum and Gaubert, 2020; Bilal, 2023; Lindenlaub et al., 2023); local taxation (van der

List, 2023), or agglomeration (Combes et al., 2012; Martellini, 2022). While my quantitative

estimation will include several of the aforementioned factors, I will focus on two important

components of localness in value added per worker that are directly affected by workers’ loca-

tion choices.21

2.4 Firm Localness Heterogeneity

I provide direct evidence that firms differ in their value-added per worker exposure to two di-

mensions directly connected to the location of consumers and, hence, to the effects of spatial

frictions. The first dimension relates to the geographical origin of the demand for a plant’s prod-

ucts and services (local or global). This dimension is connected to workers’ location choices

through how they shape the spatial distribution of “local” demand for goods and services. The

second dimension regards the costs of floorspace (rents plus taxes). These are closely con-

nected to local land and housing prices. Since the local prices of non-tradeables and housing

directly depend on workers’ location choices as consumers, these dimensions are crucial for

understanding the labour misallocation arising from spatial frictions.

To understand what local factors matter for what firms, I use firm microdata to measure the

firm-level relevance of these two dimensions and their heterogeneity along the productivity

distribution. This will address the first step: understanding what local factors matter for what

firms. Then, using a spatial general equilibrium model, I put structure on both ∇lj ln(p̃ j,n)

and
∂ lj
∂x

by modelling how local demand, prices, and labour supply respond in equilibrium to

workers’ location choices. This is to assess the misallocation costs of spatial frictions and the

effectiveness of different policies.

21An important literature considers, instead, the role of local and regional transportation costs for goods. In this
paper, I focus on the worker margin, as a commuter and job mover. These two approaches complement each other.
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Sales location. First, I document how firms that pay lower average wages are more likely to

sell their products locally. Using plant-level NESS data, I compute the share of workers of a

firm employed in plants that mainly sell at the local level.22 In Figure 3, I plot the average of

this figure across quantiles of employment, ranked by the mean wage at the firm, obtained by

merging NESS and ABS. Over 50% of workers at below-median firms are employed at plants

that declare that their revenue comes from selling their goods and services mainly at the local

or regional level. However, this share declines to as little as 12.6% for firms in the 90-95th

percentile of employment by wage rank. I interpret this evidence as low-wage firms being more

exposed to local, rather than national or global, demand for goods and services.

Figure 3: Share of employees in plants mainly selling locally
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Note: the figure shows the share of firms reporting that they “mainly sell” their products at the local or regional
level, across quantiles of the per-worker employment cost distribution. Employment costs include wages and
social contributions. For multi-plant firms, the figure is weighted according to the share of workers in each plant
that report selling locally, rather than at the national or global level. Bars indicate 95% confidence intervals.

Floorspace costs. Second, firms lower in the wage rank also spend more on floorspace, rel-

ative to employment costs. Using data on firms’ business rate bills (a tax paid by businesses

as a proportion of the mean market rent of the property they occupy, even if they do not own

it), I estimate firms’ yearly floorspace costs.23 I plot the distribution of per-worker floorspace
22I derived this from one of the survey’s questions, asking the geographical level at which a plant mainly sells

its products at.
23In the UK, properties are taxed at the occupier level. For individuals, this is the Council Tax, which funds

local services. Businesses pay a similar tax, called “non-domestic rates”, based on the mean open-market rental
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costs against the CDF of employment, ordered by wage rank of firms, in Figure 4. On average,

spending on floorspace is about 16% of spending on employment, although the figure varies

considerably across firms, ranging from averages of 30.2% to 7.0% across different quintiles of

the wage distribution. Firms paying higher wages per worker tend to pay lower rents relative to

employment costs (wage plus social security bills), although the relationship flatlines at the top

40% of employment. This relationship is robust also within sectors, with the ratio of rents to

wages falling by 0.78 log-points (95% CI. 0.71 - 0.85) for each one-point increase in log-wages

per worker even after controlling for 3-digit industry fixed effects.24

Figure 4: Ratio of floorspace expenditure to employment cost

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00

Employment CDF, by wage rank

R
en

t (
%

 o
f e

m
pl

oy
m

en
t c

os
ts

)

Note: the figure shows rents and business rates per worker as a share of employment costs per worker, across
quantiles of the employment distribution, ordered by wage rank. Grey bands are 90% confidence intervals.

Taking stock

Firms are heterogeneous in terms of whether they mainly sell locally and in their floorspace

costs. This suggests that productive firms are less “local” than low-productivity ones in both

dimensions.

However, these stylised facts do not clarify two important elements necessary to understand

value of premises in the area that they occupy. In Appendix B, I discuss the advantages of this approach, the
required imputations, and robustness checks.

24This means that larger and more productive businesses use more floorspace or are located in more expensive
neighbourhoods. I discuss how this is indeed the case in Appendix B.2.
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how spatial frictions generate misallocation through localness. First, this analysis cannot assess

whether high-productivity firms are less affected by higher congestion. In principle, the higher

revenues and costs from local congestion effects of workers’ location choices could offset each

other. Hence, it is unclear whether firms that are highly local in both dimensions benefit or

lose from congestion. Second, these facts do not tell us where and how much changes in spatial

frictions affect local factors. Hence, we cannot assess yet their quantitative effects.Ultimately,

answering these questions requires a structural general equilibrium model.

3 A Model of Spatial Misallocation of Labour

In this section, I build a structural model that can account for how, by changing workers’ mobil-

ity and location choice incentives, spatial frictions shape local congestion and how this affects

- through firm localness - the allocation of labour. First, I present the problem of each agent.

Then, I characterise the equilibrium wage schedule. Finally, I show how the semielasticity of

value added per worker - a crucial element for the estimation of labour misallocation, as shown

in Section 2.3 - is characterised in this model.

3.1 Model summary

The model is a generalisation of the Burdett-Mortensen (Burdett and Mortensen, 1998) frame-

work to multiple locations (as in Heise and Porzio (2023)) and skills. In particular, I build on

this framework by explicitly accounting for the heterogeneity in firm localness, and by decou-

pling the location choice of workers into a residence and a workplace choice.

The first key ingredient of the model is the interaction between search and spatial frictions. The

presence of search frictions creates a job ladder and monopsony power for more productive

firms. Spatial frictions make the job ladder more “local”, creating a wedge between acceptable

offers across space. Workers’ locations and mobility change the distribution of local monopsony

power (by making low-productivity businesses less exposed to competition when far away from

productive jobs), and hence the local distribution of wages and employment across firms with
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heterogeneous productivity.

The second, and novel, feature of the model is that firms’ value added per worker depends on

their localness. Changes in local non-tradeables’ and housing prices affect the firms’ revenue

and costs. In turn, this affects profitability, and thus wage and vacancy posting decisions of

the firms. Most importantly, I allow localness to be heterogeneous across firms. Firms differ

in localness due to different shares of labour allocated to the production of non-tradeables,

different use of floorspace per worker in the production process, and different sensitivity of

productivity to agglomeration economies.

The key mechanism through which spatial frictions and localness interact is congestion. Con-

gestion due to higher demand from residents (and firms) leads to higher local prices. This affects

firms’ value added per worker according to their localness in non-tradeables and floorspace. In

turn, this shapes their wage and vacancy posting decisions. Importantly, a firm’s wage posting

decision (and thus employment) depends on the whole distribution of firms’ decisions, as in

Burdett and Mortensen (1998), as - due to search frictions - firms compete with each other to

poach and recruit workers. Hence, understanding how localness acts across the productivity

distribution can be crucial to assess aggregate output losses.

3.2 Fundamentals

Locations. Time is continuous. There is a countable set L of locations. Distances between

locations are given by the matrix DL . Each element dh j represents the distance between loca-

tions h and j, with the largest ones normalised to 1. “h” will indicate residence locations, while

“j” will indicate workplace locations. h′ and j′ will indicate the mobility choice of workers for

their residence and workplace, respectively.

Workers. There is a mass 1 of workers. Workers can be of two types, indexed by i ∈ I =

{L,H} (for Low- and High-skilled). Each type has mass Mw
i : ∑

i∈I
Mw

i = 1 and ability α i, with

αH > αL.
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Firms. There is a mass 1 of firms. Firms are indexed by their type i ∈ I = {L,H}, and i-

type firms only hire i-type workers. All firm heterogeneity can be summed up through their

productivity p, which is distributed with CDF F i(p). The CDF of productivity of i-type firms

within a location is F i
j(p) with pdf f i

j(p). The mass of firms of i-type in location j is M f
i j such

that ∑
j∈L

∑
i∈I

M f
i j = 1. Firms cannot move.

Spatial Frictions. There are three sources of spatial frictions. First, commuting costs (both

monetary d0 and non-monetary d1). Second, the cost of relocating one’s residence, κ . Third,

additional job search frictions when applying to distant locations, ca.

I now present the problem of each agent. Then, I will characterise the steady state equilibrium

of this model.

3.3 Workers

Individuals reside in location h ∈ L (home), potentially different from their workplace j ∈ L .

They consume three types of goods: i) tradables (c), ii) non-tradeables (l), and iii) housing H.

Non-tradeable goods l and housing H cannot be traded across locations, and have local prices

Pl,h and PH,h respectively. Tradeable goods are the numeraire, with their unique global price

normalised to 1. Workers are born unemployed and live forever,25 with lifetime utility

U i
t =

∞∫
t

e−ρ(x−t)Et

[
U i

h(x) j(x)(c(x), l(x),H(x))
]

dx.

At each instant, workers derive utility from living in h, working in j and consuming a bundle

(c, l,H), chosen to maximise instantaneous utility:

max
c,l,H

U i
h j(c, l,H) =

τh

di
1,h j

cη1lη2H1−η1−η2 s.t.


c+Pl,hl +PH,hH ≤ y−d0,h j

c ≥ 0, l ≥ 0, H ≥ 0

where τh represents amenities derived from living in h. y is income, equal to α iw when em-

ployed (for w being the per-ability unit rate of pay) and bi
h when unemployed. d0,h j is the

monetary cost of commuting (working in j while living in h), and di
1,h j the non-monetary cost.

25An equivalent interpretation would be that workers die at rate ρ − r, with r ∈ [0,ρ], and new unemployed are
born in the same location where workers die.

18



A worker of type i living in h and working in j has indirect utility

V i
h j(y) =

τh
(
y−d0,h j

)
Phdi

1,h j
, (3)

where Ph is the local optimal price index, equal to Ph = pη1
c Pη2

l,h P1−η1−η2
H,h = Pη2

l,h P1−η1−η2
H,h .

Search. Individuals can be employed or unemployed. When employed, workers are randomly

unmatched according to an idiosyncratic shock with Poisson arrival rate δ i. Individuals must

spend search effort sx to send ai
hx

s
1+ε0
x

1+ε0
jobs applications to location x. The rate at which effort

is translated into applications, ai
hx, is allowed to depend on both h and x due to the presence of

spatial frictions, which reduces the applications filed per unit of effort when x ̸= h. In particular,

it depends on a “fixed” component ai, and a distance discount ci
a,hx, so that ai

hx = aici
a,hx. This

captures how applying and finding a job can be harder far away from home, for example due to

a lack of social connections or delays in conducting interviews. Total effort S = ∑
x∈L

sx has cost

ψ(S), parameterised as:

ψ(S) =


S1+ε1

1+ ε1
if employed;

v−
ε1−ε0
1+ε0

S1+ε1

1+ ε1
if unemployed.

(4)

I assume ε1 > 0, and ε0 ∈ (−1,0). The former captures the increasing disutility from spending

more effort applying for jobs, while the latter captures the decreasing return from spending

effort in a location. The parameter v > 0 captures differences in the employed and unemployed

search efficiency, as in Moscarini and Postel-Vinay (2016).

Matching. Vacancies of firms in location j with productivity p of type i are denoted as vi
j(p).

Firms post wages, and there is no bargaining. Thus, each (i, j, p) vacancy is associated with the

same wage offer wi
j(p). Within each (i, j) market, total vacancies vi

j and total applications ai
j

are matched according to the matching function M(ai
j,v

i
j) = (ai

j)
χ(vi

j)
−1−χ . Denoting market

tightness as θi, j = vi
j/ai

j, vacancies are matched at rate θ
−χ

i, j , and applications at rate θ
1−χ

i, j .

Worker choice. Consider a worker residing in h and working in j for wage w. When they

receive an offer from a firm in location j′ at wage rate w′, they choose whether to reject or
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accept the offer (and, in the latter case, whether to move residence) according to the rule:

(h∗, j∗,w∗) = argmax
{

W i
h j(w)+ ε, max

h′∈L
W i

h′ j′(w
′)+ ε

′+ εh′ −κ
i
hh′

}
, (5)

where κ i
hh′ represents relocation costs, equal to zero whenever h = h′ and ≥ 0 otherwise, cap-

turing not only the pecuniary costs of moving, but also the disutility from looking for a house,

or moving away from friends.

I assume ε,ε ′,{εh′}h′∈L are distributed according to a Generalised Extreme Value distribution.

Thus, the solution of workers’ offer acceptance problem (and residence location choice) follows

a nested logit.26

3.4 Firm Problem

Production. All firms of type i with productivity p in location j produce both (or either of)

the tradeable and the non-tradeable good according to the production functions:

Tradeables: T i
j (p,n) = AT

j β
i(p)pn,

Non-Tradeables: Ni
j(p,n) = AN

j (1−β
i(p))pn,

where β i(p) ∈ [0,1] represents the amount of labour a firm allocates to produce tradeables, and

n is the amount of labour hired.27 Floorspace does not directly enter the production function

but represents a cost PH, jφ
i(p), where φ i(p) is the floorspace employed for each pn units of

effective labour hired.28 For the sake of exposure, will I assume throughout that β i(p) is an

exogenous characteristic, but provide a microfoundation and additional results in Appendix

K.1.
26The upper-level nest has choices {reject offer; accept offer}. The lower level of the “accept” nest involves

choosing the worker’s residence over all h′ ∈ L . The “reject” nest is degenerate. In Appendix C.2, I derive the
offer acceptance rates and residence move rates, and the workers’ value function.

27This setup is justified by the fact that the workers’ job ladder is more contained within occupations rather
than sectors. For example, a solicitor could work in-house at a retail firm (SIC code 45), or a law firm firm (SIC
code 81).

28This is identical to assuming a Leontieff production function for both tradeables and non-tradeables, with
floorspace representing a minimum requirement for a given production process, but unproductive if bought in
excess. van der List (2023) adopts a similar approach, although without firm heterogeneity in φ(·).
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Profit maximisation. Firms maximise total profits π i
j(p,w,v). Expressing the number of hires

per vacancy as n(w), profits per vacancy π̃ i
j(p,w) are:

π̃
i
j(p,w) = AT

j β
i(p)pn(w)+Pl, jAN

j (1−β
i(p))pn(w)−wn(w)−PH, jφ(p)pn(w)

= (p̃−w)n(w).

With p̃ = p
[
AT

j (p)β i(p)+Pl, jAN
j (1−β

i(p))−PH, jφ
i(p)

]︸ ︷︷ ︸
Value added multiplier = ϕ i

j(p)

.

That is: profits per vacancy are log-linear in the amount of labour hired per vacancy n(w), and

in the profits per labour unit (p̃−w). The value added per worker p̃ depends on productivity

p, and a value added multiplier capturing the relative importance of revenue from tradeables

AT
j (p)β i(p) and non-tradeables Pl, jAN

j (1−β i(p)), and floorspace costs PH, jφ
i(p).29

Wages are chosen to maximise per-vacancy profits:

w∗(p̃) = argmax
w

(p̃−w)n(w).

Finally, given the optimal wage w∗(p), firms choose vacancies to maximise total profits given a

convex vacancy cost function ζi j(v):

v∗i j(p̃) = argmax
v

πi j(p̃,w∗,v) = (p̃−w∗)n(w∗)v−ζi j(v).

3.5 Housing

Local housing services H j, used by both workers (as Hh) and firms (as floorspace φ i(p)pn), are

produced with a Cobb-Douglas production function employing land (in fixed supply L j in each

location j) and capital owned by non-residents, supplied elastically at price r:

H j = A jL j
b jK1−b j = Ã jK1−b j .

Where the second equality, with Ã j = A jL j
b j , follows from land being in fixed supply. b j

is allowed to differ across locations to capture differences in local housing regulations and

geography that affect housing price elasticity of demand (Diamond, 2016).

29p can be interpreted as the “exogenous” productivity/quality level of a firm, which differs from value added
due to: i) local conditions increasing overall productivity (e.g. AT

j > 1), ii) nominal revenue effects from Pl, j, and
iii) “exogenous” floorspace requirements to set up production with productivity p, φ i, shifted by a iv) nominal cost
effect PH, j.
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3.6 Stationary Equilibrium

I study the model in its stationary equilibrium.

Definition 4. Stationary Equilibrium in the Labour Market. A stationary equilibrium in

the labour market consists of a set of wages and vacancy policies {wi
j(p),vi

j(p)} j∈L ,i∈I , search

efforts {sE,i
jhx,s

U,i
hx } j,h,x∈L ,i∈I , wage offer distributions {F i

j(p)} j∈L ,i∈I , acceptance probabilities

{µ
E,i
jhx(w,w

′),µU,i
hx (w′)} j,h,x∈L ,i∈I , move probabilities {mE,i

jhxh′(w,w
′),mU,i

hxh′(w
′)} j,h,x,h′∈L ,i∈I , labour

per vacancy {ni
j(w)} j∈L ,i∈I , unemployment {ui

h}h∈L ,i∈I , and market tightness {θi j} j∈L ,i∈I

such that

1. workers file applications, accept offers, and move their residence location to maximise

their expected present discounted value of work and unemployment, taking as given mar-

ket tightness {θi j} j∈L ,i∈I and the wage offer distribution {F i
j(w)} j∈L ,i∈I

2. firms set wages to maximise vacancy profits, and choose vacancies to maximise firm

profits, taking as given the function mapping wages to per-vacancy size {ni
j(w)} j∈L ,i∈I

3. the arrival rates of offers and the wage distributions are consistent with aggregate appli-

cations, wage policies, and vacancy posting behaviour

4. firm sizes and worker distributions across workplace and residence locations satisfy the

stationary equations

5. each local non-tradeable good market and housing market clears.

Equilibrium Characterisation

I now characterise the stationary equilibrium. Define ai
j the mass of applications of skill i

towards j. Then, the mass of labour units per vacancy hired by a firm of type i in j offering

wage w is

ṅi
jh(w) = α

i
θ
−χ

i j Pi
jh(w)−Qi

h j(w(p))ni
jh(w),

where ni
j(w) = ∑x∈L ni

jx(w). Pi
jh(w) is the probability that a worker matched with a vacancy
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in j (at rate θ
−χ

i j ) accepts the offer and moves to h, while Qi
h j(w) is the flow rate at which

workers who live in H and work in j leave their current job. In Appendix C.3 I characterise the

functional forms for P(·) and Q(·). In steady state, ṅi
jh(w) = 0, so that:

ni
jh(w) =

α iθ
−χ

i j Pi
jh(w)

Qi
h j(w)

. (6)

Proposition 1. If the CDF of p̃ is differentiable, the wage policy of the Stationary Equilibrium

is characterised as the following set of differential equations and initial conditions:

wi
j(p̃) = wi

j(p̃)+

p̃∫
p̃ j

∂wi
j(p̃)

∂ p̃
dF i

j(p),

wi
j(p̃ j) = max

{
R j,argmax

ŵ
(p̃ jn

i
j − ŵni

j(ŵ))
}
,

∂wi
j(p̃)

∂ p̃
=

(p̃−w)

α i
∑

h∈L

 ∂ P̃i
h j(p̃)
∂ p̃ Q̃i

h j(p̃)+
∂ Q̃i

h j(p̃)
∂ p̃ P̃i

h j(p̃)(
Q̃i

h j(p̃)
)2

θ
−χ

i j


α i ∑

h∈L

P̃i
h j(p̃)

Q̃i
h j(p̃)

θ
−χ

i j

.

(7)

With Q̃i
h j(p̃) = Qi

h j(w(p̃)), and P̃i
h j(p̃) = Pi

h j(w(p̃)).

Proof. See Appendix C.4.

3.7 Spatial frictions and misallocation

To show the intuition for how the model can pin down the effects of spatial frictions on the

allocation of labour through localness, I rewrite Equation 1 in terms of the model’s parameters.

The value added per worker at each point of the FTP distribution depends on three compo-

nents:
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∂ ln(p̃i
j(p))

∂x
= Φ

i
j(p)

∂ ln(AT
j )

∂x︸ ︷︷ ︸
Agglomeration

+ Φ
i
l, j(p)

∂ ln(Pl, j)

∂x︸ ︷︷ ︸
Non-tradeable congestion

−Φ
i
H, j(p)

∂ ln(PH, j)

∂x︸ ︷︷ ︸
Floorspace congestion

.

Where Φ
i
j(p) = pAT

β (p)
[
p̃i

j(p)
]−1

,

Φ
i
l, j(p) = pPl, jAN(1−β

i(p))
[
p̃i

j(p)
]−1

,

Φ
i
H, j(p) = pPH, jφ

i(p)
[
p̃i

j(p)
]−1

.

(8)

The first term represents the effects of spatial frictions on local agglomeration effects in the

production of tradeable goods. The second term represents the change in value added arising

from changes in the price of local non-tradeable goods. Finally, the third term captures the

effect of changes in floorspace prices. Each term is simply the derivative of the corresponding

local element (agglomeration, non-tradeable prices, and floorspace prices), weighted by their

importance for total value added per (exogenous) productivity per worker p. In the baseline

results, I will exclude agglomeration effects (which I do not observe directly).

In the following sections, I calibrate the model to UK data and use this general equilibrium

framework to derive the effects of changes in spatial friction on the allocation of labour across

firms and across space. I later discuss the policy implications.

4 Bringing the Model to the Data

I estimate the model’s parameters using data for England and Wales for the period 2011-2018.

In the rest of this section, I describe the estimation procedure and results.

Functional forms I assume the following functional forms for commuting costs, spatial search

decay, relocation costs, and vacancies:
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Table 1: Functional forms for quantitative calibration

Description Functional form

Non-pecuniary commuting cost di
1,h j = edi

1dh j

Pecuniary commuting cost di
0,h j = di

0dh j

Search efficiency decay ci
d,h j′ = eci

ddh j′

Relocation costs κ i
hh′ = κ i + eκ i

ddhh′

Vacancy posting costs ζ i
j(v, p) = (ζ i

0, j)
−ζ i

1π
i
j

v1+ζ i
1

1+ζ i
1

Notes: The table shows how the parameters of the model related to spatial frictions and vacancies are specified
for the quantitative estimation.

For the non-monetary costs of commuting di
1,h j and spatial search decay ci

d,h j′ , I assume ex-

ponential functional forms. These are commonly used in the economic geography and labour

literature. For the monetary cost of commuting di
0,h j, I assume it scales linearly with distance

(reflecting the fact that the marginal cost of one extra mile of travel is mostly linear). Relocation

costs depend on a fixed cost κ i, plus a term that depends on the distance of the move. For the

cost of vacancies ζ i
j(v, p), I follow Heise and Porzio (2023) in scaling the cost by average profits

per vacancy across firms in a location (π i
j) to reduce the effects of increases in profitability on

vacancy posting.30

Locations. I estimate the model using five locations. The first, “London”, includes Greater

London and a few Local Authority Units within its commuting zone. The second, “Bristol”,

includes all LAUs above the 25th percentile of average gross value added per worker outside of

the South-East and London. These represent highly productive locations, such as several urban

agglomerates in the Midlands (Milton Keynes, Warwickshire), South-West (Bath, Bristol), and

some areas of the North-West (Manchester). The third, “Liverpool”, includes all the locations

within 50km of a “Bristol” location that are not located in London or the South-East. These

represent locations that are not highly productive themselves but are within commutable dis-

tance of a productive location. The fourth, “Hull”, includes all the remaining locations outside

of the South-East. The fifth and final location includes all LAUs in the South-East statistical
30This can be rationalised as vacancies being generated by “Human Resources” workers, whose pay scales with

the average profits of the firms in a location.
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region.

Externally Calibrated Parameters. Table 2 summarises the parameters calibrated directly

to the data. Three parameters represent normalisations.31 I assume five parameters. I set

the discount rate to 10% (similarly to Kuhn et al. (2022)); the share of tradeable goods in

consumption to 0.38 (Diamond, 2016), and the minimum wage to 98.2% of the value added

per worker of the least productive and active firms (Heise and Porzio, 2023). Since no data on

workers’ applications across space are available, I assume ε0 = −0.5. Finally, I assume value

added per worker is distributed across skill and location according to a Beta distribution, with

first parameter g1,i j. The remaining parameters listed in Table 2 are calibrated to various data

sources, described in Appendix D.

31χ represents how many matches happen, given applications and vacancies. Since both of are endogenous, χ

can be normalised to 0.5. αL = 1 normalises income relative to wage rates. τ1 = 1 normalises total utility, given
wages.
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Table 2: Externally Calibrated Parameters

Parameter Description Source Value

χ Matching efficiency normalisation (Şahin et al., 2014) 0.5
αL Low skill value normalisation 1
τ1 Amenities in London normalisation 1

ρ Yearly discount rate Kuhn et al. (2022) 0.1
η1 Tradeables share Diamond (2016) 0.38
ι Minimum wage to p Heise and Porzio (2023) 0.982
ε0 Effort return curvature assumption -0.5
g1,i j Distribution of p̃, first parameter Bilal (2023) 1.3

δ i Exogenous unmatching, by i Labour Force Survey Appendix D.1
η2 Non-Tradeables share CPIH index weights (ONS) 0.27
αH High skill value AKM on ASHE (Appendix D.2) 1.29
IH Mass of high-skilled ASHE 0.62
Mi

j Mass of employers, by i,j ABS Appendix D.4
p Minimum productivity ABS Appendix D.5
D Distance Matrix, by L ×L Google Maps travel times Appendix D.6
b j Elasticity of housing price, by j House transactions data Appendix D.7
ci

d Search efficiency decay, by i ASHE Appendix D.8
g2,i j Distribution of p̃, second parameter, by i,j ABS Appendix D.9
v Inverse of unemployed search cost LFS (Appendix D.10) 4.13

Notes: The table lists all the parameters that are directly calibrated to empirical moments or assumed. The
first three represent normalising assumptions. The second group represents assumptions from the literature.
The third group regards calibrated parameters. For each of them, I list a description of their nature, the source
dataset (or paper), and their value (or, due to space limitations, a reference to the section of the Appendix
where they are discussed).

Estimated Parameters. This leaves 39 parameters and two distributions to be estimated inter-

nally, which I report in Table 3. I prove that the parameters can be identified in two steps.

1. I estimate the set of 19 parameters connected to amenities, search frictions, and spatial

frictions by minimising a loss function calculated from over 300 moments, given the

distribution of value added per worker p̃ (between and within locations). The intuition of

the estimation procedure is that within-location moments of job flows and wage gains map

heavily onto search frictions, while between-location moments map onto spatial frictions

(Heise and Porzio, 2023). I discuss the details of the choice of targeted moments in

Appendix E.1, and the algorithm in Appendix G.

2. The remaining 20 parameters (representing vacancy costs and productivity) and two dis-
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tributions (representing firm localness in non-tradeables and floorspace costs) are exactly

identified from i) matching the distribution of localness, and ii) 20 additional moments,

together with applying market clearing conditions. I provide details of the set of simulta-

neous equations that identify the second block’s parameters in Appendix E.2.

The key to separating the estimation into two blocks is knowing the distribution of value added

per worker p̃ across locations. Given this distribution, the estimation of the first block does not

depend on knowing p, β , φ , AT or AN , as these are components of value added p̃ itself. The

parameters are estimated by Simulated Method of Moments. Then, I identify p, β , φ and AN

by perfectly matching another set of moments (prices, value added, and localness), given the

market clearing conditions and the parameters estimated in the first block.

Finally, I exploit the knowledge of the empirical spatial distributions of vacancy mass by skill,

vi
j, to identify the 10 parameters representing vacancy costs ζ i

0, j. I take as given the distribution

of vacancies in the first block and then identify ζ i
0, j by perfectly matching the vacancy mass

given the distribution of equilibrium firm profits and the estimated ζ i
1.

Table 3: Estimated Parameters

I. First Block
Parameter Description Number Parameter Description Number

- Utility - Search Frictions
τh Amenities relative to London 4 ε1 Effort cost curvature 1
σi Offer taste shock, by i 2 ai Efficiency of search, by i 2
σm

i Residence taste shock, by i 2

- Spatial frictions - Firms
κ i Moving cost (fixed), by i 2 ζ i

1 Vacancy cost curvature, by i 2
κd Moving cost (distance) 2
di

1 Commuting cost, by i 2

II. Second Block
Parameter Description Number Parameter Description Number

ζ i
0, j Vacancy cost, by i,j 10 β i(p) Tradeable production distribution .

AH
j Productivity of housing, by j 5 φ i(p) Floorspace use distribution .

AT
j Productivity of non-tradeables, by j 5

Notes: The table lists all the parameters to be endogenously estimated, as they depend on equilibrium objects.
The first block refers to the moments being targeted in the MCMC algorithm to estimate the first 21 parameters.
The second block refers to the moments being targeted, and perfectly fitted, in the second block to identify
localness and local productivity.
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Overall, I target 504 parameters, listed in Table 4. 324 are used in the first block and 180 in

the second block. The first block is overidentified (324 moments for 20 parameters), while the

second block is exactly identified (20 moments for 20 parameters and 160 moments to fit 160

points of two distributions). For each moment, I list the dimensions for which it is computed

(h for residence, j for workplace, i for skill/type, and h′, j′ for post-move locations), the key

parameters they help identify.32

Table 4: Targeted Moments

Moment Dimension Key Parameters Number

Residents h, i τ 10
Jobs h, i τ 10
Commuters h, j, i di 50
Job Movers, within location j, i a 10
Job Movers, between location j, j′, i ai,ci

d 40
Wage gains, within location j, i σ i,ai 10
Wage gains, between location j, j′, i α i

f 40
Wage gains, new commuters j, i di 10
Prob(negative wage gain) j, i σ i 10
Residence movers h,h′, i σ i

m, κ̃
i,κd 50

Firm size distribution j, i, deciles ζ i
1 60

Relative wages, by skill i µ̃ 2
Relative gva of firms j µ̃,ζ i

1 5
Relative wages per worker i, j pµ 10
Unemployment rate h v 5
dln(search effort)/dln(w) i ε1 2

Vacancy mass i, j ζ i
0, j 10

House prices h AH 5
Local good prices h AN 5
Share of local sales to wages i, j, deciles β i 80
Floorspace costs to wages i, j, deciles φ i 80

Total 504

Notes: The table shows the moments being targeted in the estimation. The first block refers to the moments
being targeted in the MCMC algorithm to estimate the first 20 parameters. The second block refers to the
moments being targeted in the second block to identify localness and local productivity.

32See Appendix E.1 for a theoretical discussion of what parameters map more heavily in what moments, and
Appendix G.1.2 for the empirical Jacobian of the model at the estimated parameters, showing how the theoretical
intuition is reflected in the data.
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4.1 Parameter Estimates

I report details on the estimated spatial frictions’ parameters. Relocation costs are estimated

to be, when moving to the locations, 62% of the average value of unemployment. This corre-

sponds, in consumption equivalent terms, to £150,000 (in 2015 British pounds). The minimum

moving cost between regions is £96,000. Giannone et al. (2023) finds for Canada an estimate

of approximately £109,000 for the average mover ($217,000 in 2016 CAD). However, the com-

parison should be taken with a grain of salt, as i) the two models do not nest each other, and

ii) they compare different countries. The spatial decay in search efficiency for distance dh j′ ,

the inverse of exp(ci
ddh j′), is estimated to be approximately 83% (on average across the two

skills). This number is slightly smaller than the 95% of Heise and Porzio (2023), although

comparable.

Table 5: Estimated parameters: spatial frictions

Parameter Description Estimate S.E. Monetary equivalent

Relocation cost (share of value of unemployment, poorest location; b/w furthest locations)

κH Relocation cost (high-skilled) 0.51 (0.05) £133,730
κL Relocation cost (low-skilled) 0.83 (0.06) £171,756

Commuting costs (share of instantaneous utility; b/w furthest locations)

dH
1 Utility cost of commute (high-skilled) 0.52 (0.03) £13,623-33,423†

dL
1 Utility cost of commute (low-skilled) 0.52 (0.04) £10,843-22,341†

Spatial search frictions (share of search efficiency; b/w furthest locations)

cH
d Spatial search efficiency decay (high-skilled) 0.80 (0.04)

cL
d Spatial search efficiency decay (low-skilled) 0.87 (0.03)

†: first figure calculated at minimum wage in “Hull” location, second figure calculated at the best job available
in the economy.
Notes: The table shows the estimates and standard errors of selected parameters from the model. The param-
eters are rescaled to represent the cost paid to travel from the two furthest away locations (London to “Hull”).
Relocation costs are expressed as a share of the value of unemployment in the poorest location. Commuting
costs are a share of the instantaneous utility they are applied to. Search efficiency decay is a share of the
efficiency of applying to the location where one lives.
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5 The cost of spatial frictions

To understand the role of firms’ heterogeneous localness in determining the output, wage and

welfare losses from spatial friction to workers’ mobility, I study two counterfactuals where I

shut down commuting and search costs.

Fixed Value Added Effect Counterfactual. In the first counterfactual, I shut down the het-

erogeneous value added effect of spatial frictions by fixing β i
j(p) = β and φ i

j(p) = φ for all

firms.33 In this case, the value added per worker reacts in the same proportion to a change in

spatial frictions, and thus local prices, along the whole productivity distribution.34

Heterogeneous Localness Counterfactual. In the second counterfactual, I account for het-

erogeneity in the localness of the value added per worker of firms. I fit β (p) and φ(p) to their

empirical distribution across locations and employment of high and low-skilled workers. This

makes it possible to account for how more productive firms are less local than less productive

ones.

Results. I plot the key result from the two counterfactuals in Table 6. By removing commuting

costs and spatial search frictions, real GDP increases by 4.3% in the Fixed VA effect counter-

factual and 5.4% in the Heterogeneous one (26% more). Since the profits from the housing

sector accrue to non-resident agents, it is useful to look also at firms’ value added. Accounting

for localness heterogeneity delivers a 1.4 pp. (£41bn, or $50bn) larger increase in value added.

Similar figures can be found for real wages (+1.7 pp.) and welfare (+1.3 pp.).

33The constants are obtained so that: i) φ =
∑i α i

∑ j Mi
jPH, j

∫
sφ i

j(s)dE i
j(s)

∑i α i ∑ j Mi
jPH, j

∫
sdE i

j(s)
, and ii) β =

∑i α i
∑ j Mi

j
∫

sβ i
j(s)dE i

j(s)

∑i α i ∑ j Mi
j
∫

sdE i
j(s)

. That is, total expenditure on floorspace and the share of effective units of

labour employed in the production of the tradeable good are identical across models. In practical terms, as these
terms depend on knowing p, I obtain φ by matching the share of expenditure to wages across all firms. β is
recovered by using p̃+φ(p)PH as a variable of integration, which is the best an econometrician without access to
firm microdata, but only mean summary statistics would be able to estimate. Using p would not be feasible to an
econometrician who does not know either β , or at least one Al, j.

34Notice that, due to changes in monopsony power, localness in size is allowed to vary across firms as in Heise
and Porzio (2023).
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Table 6: Key variables, real change relatively to baseline

Het. VA (%) Fixed VA (%) Difference (p.p.)

GDP 5.37 4.26 1.11
VA of firms 1.24 -0.11 1.35
VA of firms: per worker -1.44 -2.78 1.34
Wages 1.66 -0.08 1.74
Wages: per worker -1.03 -2.75 1.72
Welfare 30.88 29.6 1.28

Notes: Standard errors in parentheses. All variables are expressed in real terms. Nominal GDP is adjusted to
real terms using a price deflator at the product level. All other variables are adjusted using the average price
index of consumption of all agents. “GDP” is the total value of production, including housing. “VA of firms”
is the total value added of firms. “Wages” are the total wage bill, and “Wages: per workers” are wages by
the mass of employed individuals. “Welfare” is the mean value of the value function of all individuals. The
“Het. VA” and “Fixed VA” column shows the differences between the “Heterogeneous VA effect” and the
“Fixed VA effect” counterfactuals and the baseline calibration, in percentage points. The last column shows
the difference, in percentage points, between the two variations.

Interpretation. To understand the source of the larger misallocation implied by accounting

for firm localness heterogeneity, I propose two exercises. First, I show how the value added

of firms changes, in relative terms, across the two counterfactuals. This makes it possible to

visualise who are the winners and losers in each counterfactual. Then, I perform other coun-

terfactuals where I suppress part of the heterogeneity, in order to show whether this arises from

between-location, skill, or within-location differences in localness.

First, in Figure 5, I plot the grid of value added per worker p̃ of the baseline calibration on the

horizontal axis against its relative value in: i) the baseline estimate (blue line), ii) the fixed VA

effect counterfactual (green line), and iii) the heterogeneous VA counterfactual (red line). To put

the graph in the context of the earlier discussion on the decomposition of the effects of spatial

frictions, this is equivalent to plotting ∂ ln(p̃)
∂x ∆x, the semi-elasticity of value added per worker

to spatial frictions from Equation 8, scaled by the change in frictions. In the fixed VA coun-

terfactual (green line with + marker), all firms are - within each location - equally impacted in

their VA per worker p̃, as they have the same localness. This scenario would be consistent with

models such as Heise and Porzio (2023) and Bilal (2023) or Monte et al. (2018).35 However,
35In Bilal (2023) and Heise and Porzio (2023), firms’ value added coincides with productivity and is exogenous.

In their quantitative calibration, Bilal (2023) extends their model to a φ(p) floorspace cost that is constant, in
relative terms, across the value added per worker distribution. Monte et al. (2018) assume identical firms, hence
no heterogeneity in localness of value added per worker.
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when I introduce heterogeneity in p̃ localness, the results change substantially. High- p̃ firms

experience smaller losses (or gains) than low-p̃ firms since localness is negatively correlated

to value added per worker. Differences in the average localness across locations also shift the

average gain/losses within each location.

Figure 5: Relative VA, baseline (=1) vs counterfactuals
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Second, I calibrate an identical heterogeneous localness counterfactual, but modify the fixed

VA counterfactual in two ways. In the first, I calibrate φ(p) and β (p) to their location averages

instead of the economy-wide averages. In the second, I allow for heterogeneity in localness

across locations and skill groups but not within each of these cells. In the third, I allow for het-

erogeneity also within a location but impose that the negative correlation between value added

per worker and localness must be the same within each location. I plot the results, relative to the

fixed VA counterfactual, in Figure 6. Approximately half of the gains in GDP and wages, and

two-thirds of those of other economic aggregates, arise from between-location misallocation.

Adding between-skill heterogeneity in localness of p̃ is essentially inconsequential for GDP but

has minor effects on the total wages and value added (although in the opposite direction). The

remaining contribution arises from the heterogeneity in localness within location and skill, al-

though failing to account for differences in the negative correlation between localness and value

added per worker within each location would overshoot the total impact.

33



Figure 6: Effects of heterogeneity in localness relative to Fixed VA counterfactual
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Note: the figure shows the change, in percentage points, in key aggregates of the economy under different coun-
terfactuals when removing spatial frictions, as a difference from the change under the “Fixed VA” counterfactual.
“Between-Location Only” refers to a counterfactual calibrated with only between-location heterogeneity in local-
ness in p̃. “Skill and Between-Location” refers to a counterfactual calibrated with heterogeneity in localness in
p̃ across locations and skills, but not within each of these cells. The “Full Heterogeneity” counterfactual refers
to the full counterfactual with heterogeneity within and between locations and skills. The “Same Slope Within”
counterfactual accounts for both within and between-locations differences in localness, but assumes all firms with
the same value added have the same localness across locations (equal to the mean of the localness levels in the
“Full Heterogeneity” counterfactual), instead of calibrating to the actual data.

6 Policy

Although we can quantify the cost of misallocation by modelling the removal of spatial fric-

tions, it does not represent a feasible policy. I analyse three policies that have been proposed

or implemented to mitigate the effects of spatial frictions: i) a reduction in housing planning

restrictions (Hsieh and Moretti, 2019), ii) a place-based policy Moretti (2022) aimed at increas-

ing the average firm productivity of the poorest location by 5 percentage points (“levelling-up”),

and iii) a reduction in commuting costs (Monte et al., 2018).

Reducing planning restrictions (such as high-rise bans, or minimum lots’ size) aims to bring

more workers to productive locations by reducing equilibrium housing prices, making cities

cheaper to live in. Moving firms to deprived areas is often proposed as a way to reduce in-

equalities, but can also have efficiency implications by reducing local monopsony power and
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mismatch unemployment. Finally, reducing commuting costs directly lowers the costs of spatial

frictions for workers, allowing them to climb the job ladder faster or to live in high-amenity but

further-away locations.

In the rest of the paper, I focus on highlighting the role of localness heterogeneity for the pre-

dicted output and welfare gains of these policies. I show that localness heterogeneity can have

profound effects on their relative effectiveness. This is due to different policies acting through

different channels. Each of these channels, by changing workers’ location choice incentives,

changes the spatial distribution (and amount) of congestion in markets for local non-tradeable

goods and housing/floorspace. Thus, accounting for the distribution of localness (firms’ sensi-

tivities to these changes in local congestion) can be crucial for assessing these policies.

For an example of why localness heterogeneity can be important, consider how reducing floorspace

costs in London would make the city cheaper, but would be unlikely to change the size of a large

tech firm’s workforce due to paying somewhat cheaper rents. Accounting for localness hetero-

geneity incorporates this intuitive dynamic in the model.

Table 7 summarises the previous paragraphs, together with a preview of whether accounting

for localness heterogeneity increases (+) or decreases (−) their effectiveness at increasing total

value added and welfare. Reducing planning regulations and levelling-up policies deliver lower

gains. The reason is that - through their general equilibrium effects36 - they reduce congestion

in productive locations (floorspace costs) more than they reduce revenues from non-tradeable

production. Accounting for localness heterogeneity makes it possible to recognise that these

positive externalities do not lead to the creation of productive jobs, as productive firms are

less local. Hence, total gains are lower. Conversely, reducing commuting costs brings more

residents to high-amenity locations. This has negative externalities on local firms, as congestion

makes costs increase faster than local revenues. Accounting for localness heterogeneity makes

it possible to recognise how this additional congestion does not destroy many productive jobs,

as productive firms are less local. Hence, total gains are larger.

36Reducing planning restrictions brings more consumers in cities by lowering local rental prices. Levelling-up
directly moves jobs away from productive locations.
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Intuitively, the aggregate effects of the externalities running from workers’ location choices to

firms’ productivity and employment decisions (due to changes in local costs and demand) are

dampened due to two facts. First, the negative correlation between localness and productivity.

This is true both for positive ones (such as lower rents due to lower planning regulations) and

negative ones (such as those arising from lower commuting costs, as more workers move to

London and the South-East for their better amenities).

Table 7: Policy exercise summary

Counterfactuals’ difference
Policy Reference Aim Value added Welfare

Lower planning restrictions Hsieh and Moretti (2019) workers to cities − −
Levelling-up Moretti (2022) firms to workers − −
Reduce commuting costs Monte et al. (2018) increase mobility + +

Notes: The table shows the three policies taken into consideration. “Lower planning regulations” refers to a
policy that relaxes regulations that cause lower elasticity of housing supply to demand (equivalently, higher
elasticity of prices), as in Hsieh and Moretti (2019). “Levelling up” refers to a place-based policy aimed
at bringing more productive firms in deprived areas. “Reduce commuting costs” refers to a policy aimed
at reducing the cost of commutes. In the third column, I briefly list the aim of the policy. The last two
columns represent the difference between the heterogeneous localness counterfactual, against the Fixed VA
counterfactual. A downward-point arrow signifies that the policy improves the aggregate of interest less when
considering localness heterogeneity.

6.1 Lower planning restrictions

Planning restrictions increase equilibrium house prices at each demand level by reducing land

supply or increasing the costs of, or banning, high-rise buildings. When productive locations

are also very regulated (such as the Bay Area in California or London), reducing regulations can

improve the allocation of labour. First, it can reduce between-location misallocation, making

more people move to markets with higher average productivity. Second, it can reduce business

floorspace costs, making businesses more profitable and thus increasing employment.

Studying this type of policy is particularly relevant for two reasons. Not only it is at the cen-

tre of policymaking discussions both in the UK and in several areas of the US (in the form of

housebuilding targets, removing bans on high-rise buildings, and reducing local councils’ dis-

cretionary powers in planning), but also represents a good setting to study the effects of local-
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ness heterogeneity in the context of the existing literature (Hsieh and Moretti, 2019; Diamond,

2016).

I simulate a policy bringing planning regulations to the level of the median Local Authority. To

identify the effects of regulations on house price elasticities, I follow the approaches of Hilber

and Vermeulen (2016) and Diamond (2016). If the housing sector follows a Cobb-Douglas

production function in land and capital,37 the equilibrium house prices PH, jt can be written as a

function of interest rates rt , local construction costs C jt , and housing expenditure HD
jt :

ln(PH, jt) = ln(rt)+b j ln(HD
jt )+ ln(C jt)+ ε jt ,

b j = b+bgeoxgeo
j +bregxreg

j .

(9)

Here, b j represents the elasticity of local price to local demand. I assume it can be decomposed

into a constant factor b, a geography factor bgeoxgeo
j , and a regulation factor bregxreg

j . The goal

is to estimate bregxreg
j .

Estimation. I estimate bregxreg
j by following Hilber and Vermeulen (2016). They use the

share of rejected planning applications on large projects (10 houses or more) as a proxy for

xreg
j , instrumented using a 2002 policy that briefly changed the incentives of restrictive planning

authorities to reject applications.38 I estimate the regression using data for 1998 to 2008 at the

Local Authority Unit level. I report the results in Table 8. In my preferred IV specification (Col-

umn 2), a one standard deviation increase in regulations (captured by “ln(income) × Refusal

share”) increases the elasticity of house prices to demand by 0.173 log-points. The estimates

are stable across other IV specifications.39

37This equation originates from the Cobb-Douglas production function of housing, standard in the literature
and shared by my and their model. However, it can considered as a first-order approximation to several different
formulations of the housing sector and its equilibrium.

38The source of endogeneity Hilber and Vermeulen (2016) worry about is the fact that developers may apply
less in authorities known for being strict. Hence, this would reduce rejection rates, suggesting that OLS estimates
are downward biased. Moreover, strict authorities may further “dilate” response times to postpone rejections, and
hence appeals. The instrument takes care of these dimensions. OLS are lower than IV estimates in 8, as the
direction of endogeneity would suggest.

39In Appendix I, I provide additional robustness checks, using real estate expenditure (which includes business
floorspace rents), and - following Diamond (2016) - shift-share instruments.
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Table 8: Estimation of regulation impact on housing price elasticity

ln(house price)
OLS IV
(1) (2) (3) (4)

ln(income) 0.049∗ 0.038 0.036 0.039
(0.026) (0.061) (0.069) (0.060)

ln(income) × Refusal share 0.112∗∗∗ 0.173∗∗∗ 0.188∗∗∗ 0.171∗∗∗

(0.013) (0.008) (0.017) (0.009)

Observations 3,444 3,444 3,444 3,444
R2 0.788 0.732 0.702 0.735
Within Adjusted R2 0.565 0.451 0.389 0.456
Kleibergen-Paap 95.3 145.9 58.0

Year fixed effects ✓ ✓ ✓ ✓
Instruments All Delay Labour votes
Endogenous Refusal Refusal Refusal

Notes: p-values: ∗∗∗ ≤ 0.01, ∗∗ ≤ 0.05, ∗ ≤ 0.10. Standard errors are Conley spatial standard errors, with a
cut-off of 100km. Observations are Local Authority Unit × year, for the period 1998-2019. The dependent
variable is ln(house price) in each specification. Controls include: Share of land built in 1990 within the LAU,
delta elevation of terrain within the LAU, ln(income) × Share of land built in 1990, and ln(income) × delta
elevation.

Model calibration. I average the LAU-level estimates across the model’s five locations, weight-

ing by population. The most regulated location is the South-East, with a regulation-induced

additional elasticity bregxreg
j of 0.179 (one-third of its total elasticity), followed by London with

0.158 (one-fourth of its total elasticity). My policy counterfactual is to bring the regulation of

all above-median Local Authority Units to the median level (0.136). In Table 9, I compare the

baseline elasticities against the counterfactual values.

Table 9: Estimated house price elasticity from regulations (bregxreg
j )

Model Location Median LAU
London Bristol Liverpool Hull South-East

Baseline 0.158 0.106 0.123 0.127 0.179 0.136
(0.023) (0.025) (0.024) (0.023) (0.023) (0.025)

Counterfactual 0.126 0.098 0.113 0.114 0.132

Notes: Standard errors estimated from the IV specification reported Column 2 in Table 8. The first row shows
the baseline estimation. The second row shows the counterfactual where the bregxreg

j parameter, capturing the
elasticity of house price to demand, of each Local Authority Unit part has its regulatory elasticity set to the
median value (0.136), if higher than their baseline value.
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Results. I show the results of the two counterfactual exercises in Table 10. Accounting for

heterogeneity in localness (first column) leads to lower gains in all dimensions. Relaxing hous-

ing regulations increases GDP by 0.6% (0.5 pp. less than without localness heterogeneity),

value added of firms by 0.9% (0.4 pp. less), and real wages per worker by 1.1% (0.5 pp. less).

Not accounting for heterogeneity in localness leads to overestimating welfare gains by over

40% (0.46 percentage points out of 0.97).

Table 10: Housing regulation policy effects

Het. VA (%) Fixed VA (%) Difference (p.p.)

GDP 0.58 1.09 -0.52
VA of firms 0.88 1.29 -0.41
VA of firms: per worker 0.84 1.25 -0.40
Wages 1.13 1.63 -0.50
Wages: per worker 1.09 1.58 -0.50
Welfare 0.97 1.43 -0.46

Notes: All variables are in real terms, adjusted by the average price index of consumption of all agents. “GDP”
is the total value of production, including housing. “VA of firms” is the total value added of firms. “Wages”
are the total wage bill, and “Wages: per workers” are wages by the mass of employed individuals. “Welfare”
is the mean value of the value function of all individuals. The “Het. VA” and “Fixed VA” column shows the
differences between the “Heterogeneous VA effect” and the “Fixed VA effect” counterfactuals and the baseline
calibration in percentage points. The last column shows the difference, in percentage points, between the two
counterfactuals.

Why is the sign of the relative gain between the two counterfactuals flipped, relative to simply

removing spatial frictions (Section 5)? Figure 7 provides a first intuitive explanation. Ignoring

the negative correlation between productivity and localness leads to overestimating the effects

of lowering local rental prices on the value added of productive firms, in particular in London

(where the drop in prices is largest). Hence, employment shifts less towards higher-productivity

firms (Figure 8). This implies smaller aggregate output, welfare, and wage gains in the econ-

omy.

Conceptually, the average productivity of the jobs created for location movers is lower when

I account for localness heterogeneity, as low-productivity businesses expand their employment

and wages (Figure 9) more than high-productivity ones in response to the lower local floorspace

costs.
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Figure 7: Relative VA, baseline (=1) vs counterfactuals
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Figure 8: Relative employment, baseline (=1) vs counterfactuals
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Figure 9: Relative wages, baseline (=1) vs counterfactuals
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6.2 Levelling-up

I consider a policy where I increase the average productivity of high-skilled firms in “Hull”

by 5 percentage points by moving firms from London. This is equivalent to reducing the 28

percentage point gap of average value added per worker of high-skilled firms by one-third.40

This is reminiscent of the UK Government efforts to “spread out” skilled civil service jobs, but

also policies that tend to favour deprived areas in the allocation of economic incentives and tax

breaks.

The rationale for this policy is twofold. For policymakers, this type of policy is often associated

with reducing inequalities or providing employment in areas with a high number of job seekers.

From an economic point of view, moving jobs closer to people can deliver efficiency gains by

i) reducing commuting costs and ii) reducing monopsony power in areas where there are few

(Caldwell and Danieli, 2023; Datta, 2023) or bad (Heise and Porzio, 2023) outside options, due

to being too far away from productive locations, and iii) reduce inefficient (rather than “high”)

unemployment (Kline and Moretti, 2013).

For this counterfactual, I recalibrate the model as follows. I fit the distribution of firms’ pro-

ductivity in “Hull” to a Beta distribution with a second parameter chosen to that the average

productivity of firms is 5 percentage points higher than in the baseline. Then, I perform the

procedure for London, reducing the average productivity of local firms by an amount such that

the average productivity across all firms (across all locations) is unchanged relatively to the

baseline.41

Results. I show the results in Table 11. Levelling up increases GDP, value added, real wages,

and welfare. However, these gains are between 15% (value added and wages) and 42% smaller

(welfare) when accounting for localness heterogeneity.

The reason for these results is similar to the insight derived for the housing regulation policy.

40Notice that this figure refers to the gap in average value added per worker of firms. Since more productive
firms tend to be larger, the gap in the average productivity of jobs is considerably larger.

41This corresponds to reducing London’s average productivity by xi =
5

100
Mi

London

Mi
Hull

.
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By moving some productive firms from London to Hull, local demand and rental costs fall

as - due to commuting costs - some residents move towards Hull, where now there are more

jobs. However, congestion increases in Hull. Accounting for localness heterogeneity implies

that, in the quantitative exercise, the lower congestion in London favours the creation of low-

productivity jobs. On average, productivity (and thus wages and welfare) increase less.

Table 11: Levelling-up policy effects

Het. VA (%) Fixed VA (%) Difference (p.p.)

GDP 0.26 0.30 -0.04
VA of firms 0.86 1.02 -0.17
VA of firms: per worker 0.88 1.03 -0.16
Wages 0.87 1.14 -0.27
Wages: per worker 0.89 1.15 -0.26
Welfare 0.43 0.76 -0.32

Notes: All variables are in real terms, adjusted by the average price index of consumption of all agents. “GDP”
is the total value of production, including housing. “VA of firms” is the total value added of firms. “Wages”
are the total wage bill, and “Wages: per workers” are wages by the mass of employed individuals. “Welfare”
is the mean value of the value function of all individuals. The “Het. VA” and “Fixed VA” column shows the
differences between the “Heterogeneous VA effect” and the “Fixed VA effect” counterfactuals and the baseline
calibration, in percentage points. The last column shows the difference, in percentage points, between the two
counterfactuals.

6.3 Commuting cost reduction

I study a policy reducing commuting costs by 21%, similar to the 75th percentile of bilateral

county-level commuting cost reductions the US experienced between 1990 and 2010 (Monte

et al., 2018). I interpret this reduction in commuting costs in the sense of lower pecuniary com-

muting costs (d0), such as making public transport cheaper, utility commuting costs (d1), such

as making commuting faster, and distance-related relocation costs (κd), as making commuting

cheaper/faster can also reduce the utility costs of moving residence (for example, due to being

able to see distant family and friends, or search for new accommodation, at a lower pecuniary

and time cost).
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Results. Reducing commuting costs increases welfare by 0.75 percentage points, 9% more

(0.06 pp.) than when not accounting for localness heterogeneity.42 GDP falls slightly as the

outside option of workers increases, but by half as much with localness heterogeneity. The

value added of firms grows by just 0.12 percentage points, but this is 33% larger than the gains

obtained without localness heterogeneity. The discrepancy between wages and welfare arises

from the fact that less costly commutes allow firms to pay lower nominal wages (as making the

job attractive to commuters becomes less expensive), while still delivering welfare gains for the

average worker due to a fall in commuting costs and an increase in employed persons.

Table 12: Commuting cost reduction counterfactual

Het. VA (%) Fixed VA (%) Difference (p.p.)

GDP -0.11 -0.27 0.15
VA of firms 0.12 0.09 0.03
VA of firms: per worker 0.02 -0.01 0.02
Wages -0.29 -0.38 0.09
Wages: per worker -0.39 -0.48 0.09
Welfare 0.75 0.69 0.06

Notes: All variables are in real terms, adjusted by the average price index of consumption of all agents. “GDP”
is the total value of production, including housing. “VA of firms” is the total value added of firms. “Wages”
are the total wage bill, and “Wages: per workers” are wages by the mass of employed individuals. “Welfare”
is the mean value of the value function of all individuals. The “Het. VA” and “Fixed VA” column shows the
differences between the “Heterogeneous VA effect” and the “Fixed VA effect” counterfactuals and the baseline
calibration, in percentage points. The last column shows the difference, in percentage points, between the two
counterfactuals.

7 Conclusions

Frictions limiting workers’ mobility have been shown to prevent workers from obtaining bet-

ter jobs far away from home, reducing both output and welfare. Several policies have been

proposed to tackle the costs of spatial frictions.

In this paper, I have shown that the relative effectiveness of these policies depends on which

firms react to changes in local congestion. Using UK microdata, I have contributed to unpack

42This differs from Monte et al. (2018), who finds a 6 pp. increase in the US from a similar policy, because -
having calibrated the model to five locations - I am considering interregional commuting, rather than county-level.
That is, I am missing how improvements in commuting costs would actually benefit a much larger share of workers
who commute within locations.
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the black box of congestion externalities and found that high-productivity firms are less likely

to be exposed to changes in local demand and rental costs. That is, these firms have low “local-

ness”.

Accounting for localness heterogeneity in a spatial general equilibrium model yields 26% larger

estimates of output losses (1.1 percentage points). Welfare losses are 1.3 percentage points

larger. Moreover, accounting for localness heterogeneity considerably affects the relative effec-

tiveness of different policies. Reducing land use regulations (as in Hsieh and Moretti (2019))

or “levelling-up” deprived areas yields 35% and 25% lower welfare gains, respectively. Reduc-

ing commuting costs (as in Monte et al. (2018)) yields 10% larger gains. The reason is that

the former two policies reduce congestion in productive locations, while the latter increases it

(since productive locations are also high-amenity ones). Since the low localness of productive

businesses dampens congestion effects towards zero, lowering (increasing) congestion does not

have large positive (negative) aggregate effects.

This paper has three main takeaways. First, the effects of congestion are much more unequal

within locations. For example, when accounting for localness heterogeneity, high land use

regulations considerably depress wages in the bottom half of the wage distribution. This is due

to low-productivity firms having low monopsony power: higher costs lead to lower employment

and wages rather than lower profits.

Second, the losses arising from the congestion externalities on firms are small in aggregate.

Hence, failing to account for the heterogeneous effects of congestion may lead to severely

overestimate, or underestimate, the effects of policies with considerable general equilibrium

effects on workers’ location choices. This holds true also for realistic values of “dilation”

effects of agglomeration (Combes et al., 2012).

Third, accounting for within-location firm heterogeneity is crucial for these results. Calibrating

firm localness to location averages misses around half of the dampening of congestion external-

ities relative to a counterfactual where all firms have the same localness. Hence, the availability

of detailed microdata is crucial when deviating from assumptions of zero congestion spillovers
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to firms’ activity or when giving structural interpretations to reduced-form estimates of conges-

tion effects.
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A Additional details on decomposition

A.1 Continuum of firms

For N j → ∞ the problem can be easily recasted as an integration problem. Suppose all firm

heterogeneity can be summarised by A. For example, if firms are identical given their produc-

tivity, A can be though as productivity. I will proceed with this example for readability, but the

problem can be similarly specified by integrating across any number of types of firm hetero-

geneity that determine value added and size regardless of spatial frictions, and a dimension that

summarises their susceptibility along this joint distribution.

Suppose there is a continuum of firms, heterogeneous in productivity A, and with value added

per worker p̃ j(A). Suppose E j(A) is the cumulated mass of employment in j up to productivity

A, and that it can be written as the product of a function e j(A) and the CDF of local productivity

Fj(A): E j(A) = e j(A)Fj(A). Call VA j(A)≡ p̃ j(A)e j(A). Then,

VA = ∑
j∈L

∫
A

p̃(x)e j(x)dFj(x). (10)

The derivative of VA to s is then

∂VA
∂ s

= ∑
j∈L


∫

A

∂ ln(e(x))
∂ s

VA j(A)dFj(x)︸ ︷︷ ︸
Size

effect

+

∫
A

∂ ln(p̃(x))
∂ s

VA j(A)dFj(x)︸ ︷︷ ︸
Value added

effect


. (11)

A.2 Wage decomposition

A similar decomposition can be carried out for wages. Call ω j,n the wages paid by firm n in

location j as a proportion of value added per worker.43 The average wage per employee is

w ≡ 1
∑

j∈L
E j

∑
j∈L

N j

∑
n=1

ω j,n p̃ j,ne j,n =
1

∑
j∈L

E j
∑

j∈L

N j

∑
n=1

w j,ne j,n︸ ︷︷ ︸
=W j,n

.

Then,
43This can also be interpreted as the reciprocal of wage markdown: ω j,n = 1−MD j,n.
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∂w
∂x

= ∑
j∈L

N j

∑
n=1

∂ ln(ω j,n(x))
∂x

Wj,n︸ ︷︷ ︸
Wage markdown

effect

+
∂ ln(p̃ j,n(x))

∂x
Wj,n︸ ︷︷ ︸

Value added
effect

+
∂ ln(e j,n(x))

∂x
Wj,n︸ ︷︷ ︸

Size
effect

 .
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B Additional facts about firms

B.1 Business Rates data

Nature of the tax. “Business rates” are a tax charged on non-domestic properties. The tax

burden falls on the occupier, rather than the owner, and is calculated using open market rental

values by the Valuation Office Agency (VOA). Then, these open market values are multiplied by

a coefficient (on average 0.48 for the 2011-2018 period). A small discount (≈ 0.02 coefficient

points) is given to small businesses (defined as businesses with a rateable rate below £18,000

in 2021). Very small businesses (e.g. with a rateable value below £12,000 in 2023) receive a

total exemption, which is gradually phased out until £15,000 (over which the full tax is paid).

Several other discounts exists, for example for small pubs.

From tax to floorspace costs. Define floorspace cost as the rental price of floorspace, plus the

business rate tax paid on the premises. Since the tax is (almost) a direct proportion of the average

rents per square meter of similar properties in the area, it is possible to back out the approximate

total floorspace costs of a firms by: i) dividing the reported business rate by the correct multiplier

(to obtain the approximate rents), and ii) adding business rates themselves. However, since the

tax has different bands and a no-tax area, I need to perform a few imputations. I provide details

in the next section.

Imputation. For each business, I estimate the rateable value by dividing the declared tax by

the yearly multiplier. I select the correct multiplier by checking whether, when dividing by

the standard multiplier, the rateable value is above, or below, the small business threshold for

the year. If below, I select the rateable value given by dividing the rateable value by the small

business rate.

For businesses for which I obtain a rateable value below the yearly full-tax threshold (e.g.

£15,000), I proceed as follows. For those reporting some tax that would give a rateable value

below £15,000 (using the standard procedure), I calculate the implied rateable value by solving
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the equation (Observed Tax) = (rate × rateable value )× rateable value − NoTaxThreshold
DiscountThreshold − NoTaxThreshold . For

zero values, which imply a rateable value below the yearly no-tax threshold, I impute an average

rateable value of £7,000 in 2015 British Pounds. This is equivalent to a £538/month rental cost.

For comparison, small retail units near the high street of Blackpool, one of the most deprived

cities in England, were up for rent at no less than £650 as of September 2023.

B.2 Robustness checks for floorspace costs

I validate my preferred measure of floorspace costs against different data sources.

Using LSOA data on business rates per square meter, floorspace, additional rates, employment,

and gross value added, I replicate results similar to Figure 4 with three caveats: i) I use as

denominator GVA per worker, ii) I use as unit of observation the LSOA, rather than the business,

and iii) I do not plot the data against the CDF of employment, but the CDF of LSOA-level value

added per worker. I plot the results in Figure B.1. The results replicate the downward slope,

although the scale is somewhat different: productive locations see businesses spending around

4% of their GVA on rents. Businesses in the least productive locations spend around 9.5% of the

average GVA rents. Conversely, in the microdata firms representing the top 20% of employment

spend around 5.2% of their GVA on rents, and firms representing the bottom 20% spend around

17%. These differences can be rationalised by three facts:

1. ABS data do not include financial firms. However, I am unable to exclude them in the

LSOA-level analysis. Since these are high-value-added firms, they are likely to dampen

the expenditure estimates across all locations. Notice how accounting for financial firms

in the distribution of floorspace expenditure to GVA would strengthen the results pre-

sented in the main text.

2. LSOA floorspace data are severely censored, with approxmately half of the observations

reporting missing data. This happens because areas with only a few units are excluded

from the counts for privacy reasons. However, areas with very few units may be residen-

tial areas with either a few commercial activities (which pay high rents relative to their
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GVA), or areas hosting large plants (which usually rent at a premium, relatively to small

light manufacturing units). Hence, this would bias my estimates down across the whole

distribution, and in particular in the left tail (mom-and-pops businesses). This bias would

be consistent with the discrepancies observed between ABS microdata and LSOA-level

estimates.

3. Locations with low GVA per worker may also host some productive businesses, lowering

the average rent-to-GVA relative to the microdata estimates for low-productivity busi-

nesses. In fact, among the non-missing LSOAs, the 10% least productive locations has a

mean GVA per worker of £33,000. For comparison, the bottom 10% of businesses has a

GVA per worker of just £15,000 or less. Again, this factor would be consistent with the

discrepancies between microdata and aggregate estimates, showing the robustness of the

former.

Figure B.1: Floorspace costs as share of GVA, by LSOA deciles
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Note: The figure plots the ratio between local business rates and local Gross Value Added (GVA) at ten deciles
of the LSOA-level distribution of GVA per worker. LSOAs are statistical units representing areas of 1000-3000
residents.

54



Finally, I provide third-party evidence for the fact that low-productivity businesses do indeed

spend large shares of their value added on rents by looking at evidence from sectoral studies.

The 2017 report by Property Industry Alliance (PIA),44 a consortium of real estate funds associ-

ations and the Urban Land Institute research centre, illustrates how retail businesses’ floorspace

costs (rents plus business rates) amount to approximately 50% of retail values of the retail sec-

tor, but only 12.5% of the “office sector”. These data are compatible, assuming retail businesses

are low-wage and the “office sector” medium to high wage, with the ones described in Figure

4, despite the rental costs in the PIA report are obtained from a different source.

B.3 Floorspace prices and house prices

In the model, I assume housing and floorspace costs are derived from the same good (“housing

services”). However, in practice, houses and offices (or manufacturing plants) are likely to be

different goods. Hence, their price does not need to covary substantially. For example, planning

regulations involving residential and non-residential buildings may follow different processes.

I deal with with potential concern in two ways:

1. I calibrate the model’s key parameter for floorspace, φ(), to the average expenditure in the

economy. In this way, both housing and floorspace are calibrated to match total expendi-

ture, and not physical consumption of floorspace. This captures how the physical space

fitted for offices, manufacturing, or residential purposes can have very different costs.

This choice is important also for the interpretation of what “consuming more housing

services” means. Consuming more housing services does not necessarily translate into

moving to larger houses, as consumers can also choose between better neighbourhoods,

better built houses, and so on and so forth.

2. I show that - given the difference in average price (discussed above) - house prices and

business rents are highly correlated at the local level, meaning that expensive locations for

workers are also expensive for firms. In Figure B.2 I plot the average residential rent of

44Available at https://bpf.org.uk/media/3278/bpf-pia-property-report-2017-final.pdf, page 13.
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each Local Authority Unit in 2019 against the average industrial business rates per square

meter for the same year. The correlation is very high, both on values (Pearson correlation

0.91) and ranks (Spearman correlation 0.87).

Separately accounting for different types of industrial properties (industrial, retail, offices), as in

Figure B.3, provides similar results. Hence, the overall correlation does not depend on property-

type composition effects. These facts justify treating floorspace as having the same nature as

housing. This is not fully surprising, as land itself represents a major component of property

prices.

Figure B.2: Residential rents vs business rates, by LAU
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Figure B.3: Residential rents vs business rates, by LAU and space type
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(b) Retail properties
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(c) Offices
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C Additional derivations for the model

C.1 Goods market equilibrium

Define local income in j as Y r
j , which includes: i) wages and home production of residents

of j, ii) vacancy costs spent in j (recall vacancy costs can be seen as the cost of hiring lo-

cal headhunters and recruitment agencies), and iii) firms’ profits. The income of landowners

and housing capital does not enter in this definition, as they are assumed to be foreign resi-

dents.

In the non-tradeable good markets, the total expenditure of residents on non-tradeables must be

equal to the value of the production of tradeables at all firms in j:

(1−η2)Y r
j = Pl, jAl, j ∑

i∈I
Mi

j

∫
p

(1−β (s))sn∗(s)v∗(s)γ i
j(s)ds.

This implies that the market-clearing price of non-tradeables Pl, j is

Pl, j =
η1Y r

j

Al, j ∑
i∈I

Mi
j
∫
p
(1−β (s))sn∗(s)v∗(s)γ i

j(s)ds
. (12)

In the housing market, demand is given by both workers and firms. Calling HD
w, j =P−1

H, j(1−η1−

η2)Y r
j the demand for residential housing services and HD

f , j = ∑
i∈I

Mi
j
∫
p

φ(s)sn∗(s)v∗(s)γ i
j(s)ds

the demand for business floorspace, the market clearing price must satisfy

PH, j =
r

(1−b j)
Ã
− 1

1−b j
H, j

[
HD

w, j +HD
f , j
] b j

1−b j . (13)

C.2 Worker choice and value function

The probability that a worker accepts an offer is

µ
E,i
h j j′(w,w

′) =
exp
(
σ−1IV i

h( j′,w′)
)

exp
(

σ−1(W i
h j(w)

)
+ exp

(
σ−1IV i

h( j′,w′)
) , (14)

where IV i
h( j′,w′) = σm ln

(
∑

h′∈L
exp
(

σ−1
m (W i

h′ j′(w
′)−κhh′)

))
.

Identical definitions can be derived for the unemployed:

µ
U,i
h j j′(w,w

′) =
exp
(
σ−1IV i

h( j′,w′)
)

exp
(
σ−1U i

h

)
+ exp

(
σ−1IV i

h( j′,w′)
) . (15)
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The probability that a worker moves from location h to location h′, conditional on accepting an

offer in j′ is (for both employed and unemployed workers):

mi
hh′ j′ =

exp
(

σ−1
m (W i

h′ j′(w
′)−κhh′)

)
∑

h′′∈L
exp
(

σ
−1
m (W i

h′′ j′(w
′)−κhh′′)

) . (16)

Value Function. Call σ the inverse scale parameter of the upper ε (firm-specific idiosyn-

cratic) shocks and σm the inverse scale parameter of the εh′ (residence-specific idiosyncratic)

shocks from Equation 5. Then, the expected value of an offer is

V i
h j j′(w,w

′) = σ ln

[
exp
(

σ
−1W i

h j(w)
)
+

σm

σ
ln

(
∑

h′∈L

exp
(

σ
−1
m (W i

h′ j′(w
′)−κhh′)

))]
.

Thus, the value function of a worker is the sum of instantaneous utility from living in h, working

in j, at wage w, plus the continuation value of search, the continuation value of unemployment,

minus the cost of effort:

ρW i
h j(w) =

τh(α
iw−di

0,h j)

Phdi
1,h j

+δ (U i
h −W i

h j(w))

+ ∑
x∈L

max
sx

(∫
w′

ai
h jx

s1+ε0
x

1+ ε0
θ

1−χ

ix (V i
h jx(w,s)−W i

h j(w))dFj(s)

)
−ψ(S).

(17)

To obtain the value function, first define the net continuation value of an offer as V E,i
h jx(w) =

V i
h jx(w,s)−W i

h j(w), and then solve for the optimal sx.

sx =
S

ε1
ε0(

ai
h jxθ

1−χ

ix V E,i
h jx(w)

) 1
ε0

. (18)

Then, notice how the aggregate effort is

Si
h j(w) =

[
∑

x∈L

(
ai

h jxθ
1−χ

ix V E,i
h jx(w)

)− 1
ε0

] ε0
ε1−ε0

. (19)

Plugging Equations 18 and 19 into Equation 17 and performing the appropriate algebraic sim-

plifications leads to

ρW i
h j(w) =

τhα i(w−d1
h j)

Phd0
h j︸ ︷︷ ︸

Istantaneous utility

+ δ (U i
h −W i

h j(w))︸ ︷︷ ︸
Net value of unemployment

+
ε1 − ε0

(1+ ε0)(1+ ε1)

[
∑

x∈L

(
ai

h jxθ
1−χ

ix V E,i
h jx(w)

)− 1
ε0

] ε0(1+ε1)
ε0−ε1

︸ ︷︷ ︸
Net continuation value of search

.
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Similarly, using identical definitions for offers received while unemployed,

ρU i
h =

τhα ibh

Ph
+ v

ε1 − ε0

(1+ ε0)(1+ ε1)

[
∑

x∈L

(
ai

hxθ
1−χ

ix VU,i
hx

)− 1
ε0

] ε0(1+ε1)
ε0−ε1

.

C.3 P and Q functional forms

Recall

ni
jh(w) =

α iPi
jh(w)θ

−χ

i j

Qi
h j(w)

.

Then,

Pi
jh(w) =

1
ai

j

 ∑
h′∈L

∑
j′∈L

Eh′ j′

∫
w′

ai
h′ j′ j(w

′)mi
h′ j′h j(w

′,w)µE,i
h′ j′ j(w

′,w)dE i
h′ j′(x)︸ ︷︷ ︸

Mass hired from job-tojob moves

+ ∑
h′∈L

uh′a
u,i
h′ j′ jm

i
h′h j(w)µ

U,i
h′ j (w)︸ ︷︷ ︸

Mass hired from unemployment

 .

Qi
h j(w) =δ

i + ∑
j′∈L

ai
h j j′(w)θ

1−χ

i j′

∫
w′

µ
E,i
h′ j′ j(w,x)dFw

i, j′(x)︸ ︷︷ ︸
mean acceptance rate to j’︸ ︷︷ ︸

Outflow rate from job-to-job moves

.

(20)

The first part of Pjh is the mass of already employed workers that finds a job at firms posting

wage w in j, given by: i) the mass of employees in the workers’ previous locations h′, j′,

multiplying ii) the average probability with which a worker who received an offer accepts and

moves to h. The second part provides a similar expression for the unemployed.

Q represents the rate at which workers quit, being the sum of: i) the exogenous unmatching rate

δ i and ii) the outflow rate from job-to-job moves, that is the rate at which workers receive offers

ai
h j j′(w)θ

1−χ

i j′ , and the probability they accept them (
∫

w′ µ
E,i
h′ j′ j(w,x)dFw

i, j′(x)).

C.4 Equilibrium proof

Recall profits per vacancy are

πh(p̃,w) = (p̃−w)ni
j(w),
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where nh(w) = ∑h ni
jh(w). Assume that π(p̃,w) is continuous in w for a given p. Then, profit

maximisation over w implies the necessary first order condition

(p̃−w)
∂ni

h(w)
∂w

= ni
h(w).

Expanding n under the derivative in the left-hand side of the equation, this can be written

as

(p̃−w)
∂

(
∑h ni

jh(w)
)

∂w
= ni

j(w). (21)

Recall that in the stationary Equilibrium, ni
jh(w) =

α iPi
jh(w)θ

−χ

i j

Qi
h j(w)

(see discussion around Equation

6 in the main text). Hence, the derivative of n to w is

∂ni
jh(w)

∂w
= α

i

 ∂Pi
jh(w)
∂w Qi

h j(w)+
∂Qi

h j(w)
∂w Pi

jh(w)(
Qi

h j(w)
)2

 . (22)

Plugging Equation 22 into 21, we obtain

ni
h(w) = (p̃−w)

α
i
θ
−χ

i, j ∑
h∈L

ai
h j

ai
j

 ∂Pi
jh(w)
∂w Qi

h j(w)+
∂Qi

h j(w)
∂w Pi

jh(w)(
Qi

h j(w)
)2


 . (23)

Finally, define Q̃i
h j(p̃) = Qi

h j(w(p̃)), and P̃i
h j(p̃) = Pi

h j(w(p̃)). Then, for wi
j(p̃) being a contin-

uous and differentiable function of p̃ mapping the effective productivity to the optimal wage in

w,45

∂ P̃i
jh(p̃)

∂ p̃
=

∂Pi
jh(w(p̃))

∂w
∂w(p̃)

∂ p̃
,

∂ Q̃i
jh(p̃)

∂ p̃
=

∂Qi
jh(w(p̃))

∂w
∂w(p̃)

∂ p̃
.

(24)

Plugging 24 into 23 and bringing ∂w(p̃)
∂ p̃ to the LHS,

∂wi
j(p̃)

∂ p̃
=

(
p̃−wi

j(p̃)
)α iθ

−χ

i j ∑
h∈L

ai
h j

ai
j

 ∂ P̃i
h j(p̃)
∂ p̃ Q̃i

h j(p̃)+
∂ Q̃i

h j(p̃)
∂ p̃ P̃i

h j(p̃)(
Q̃i

h j(p̃)
)2

θ
−χ

i j


ñi

j(p̃)
.

Finally, this can be used to pin down wi
j(p̃) as a differential equation, with initial condition

given by the maximum between the local reservation wage R j (below which n = 0), and the

45P and Q are differentiable in w, as can be seen by the definition of their components in the previous sections.
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profit-maximising wage of the least profitable active firm:

wi
j(p̃) = wi

j(p̃)+

p̃∫
p̃ j

∂wi
j(p̃)

∂ p̃
dF i

j(p),

wi
j(p̃ j) = max

{
R j,argmax

ŵ
(p̃ jn

i
j − ŵni

j(ŵ))
}
.

This pins down wi
j(p̃) as a continuous function of p̃, consistently with the assumptions.
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D Calibrated Parameters

D.1 Exit rate δ

Since I am estimating the model using full-time employees only, δ needs to be calibrated to

the sum of workers: i) exiting the workforce, ii) entering unemployment, and iii) becoming

involuntary part-time employees. I calculate δ i using the Labour Force Survey (LFS). Since δ

represents an arrival rate, I then transform the quarterly separation probabilities from the LFS

into yearly arrival rates of separation shocks. In table D.1, I report both the estimated separation

probability and the arrival rate.

Table D.1: Estimates of δ i

Skill δ i Yearly unmatch share

High 0.071 0.0704
(0.015)

Low 0.133 0.1220
(0.023)

D.2 Relative skill of high-skilled αH

I estimate the relative skill of high- and low-skilled workers using an AKM estimation. While

AKM is unsuitable to estimate second moments, the means of worker and firm fixed effects on

wages are consistent (Abowd et al., 1999). Normalising the skill of the low-skilled to 1, I find

that the worker component of the high-skilled is 29% higher than the one of the low-skilled.

The results are reported in Table D.2.

Table D.2: Estimates of α i

Skill α i

High 1.29
Low 1
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D.3 Local Prices

Housing. I use private rental market statistics by the Office of National Statistics (ONS) to

obtain an index of costs of private housing services. In order to account for differences in

individual preferences and the segmentation of the housing market across locations, I exclude

4+ bedrooms, rooms, and studios from the data. Then, I compute a weighted average of all rents

across location groups. Table D.3 shows the results in terms of units of mean rent/price.

I perform two robustness checks. First, I include all properties. Second, using the dataset on

house price transactions by Chi et al. (2021), and motivated by their results on the importance

of price per square meter in correctly assessing relative house prices, I perform an hedonic

regression of cross-sectional house prices on several characteristics associated with building

quality and type. I find that the difference between the simple average of rental prices and the

mean residuals of the hedonic regressions are negligible, apart from the set of “Bristol” locations

(where the deviation is, in any case, within 10% of the base estimate). In the estimation of my

model, I will use the estimates from this last hedonic regression.

Table D.3: Housing service prices, relative to mean

Location
London Bristol Liverpool Hull South-East

Baseline (rents) 1.95 0.86 0.78 0.76 1.09
All properties (rents) 1.93 0.85 0.77 0.76 1.09
Hedonic regression (prices) 1.97 0.78 0.75 0.72 1.11

Non-tradeables. For local non-tradeable prices, I take estimates from regional CPI data pub-

lished by ONS. These data are published at very infrequent intervals as experimental statistics.

For my purpose, I use the 2010 edition of the publications.46 Since the regional CPI does not

provide a perfect mapping to my model’s locations j ∈ L , I calculate CPI j as the weighted

average of the regional CPIs, where the weights are given by the sum of the population weights

of all Local Authority Units that are part of the (model) location j and of each administrative

46Available at https://www.ons.gov.uk/economy/inflationandpriceindices/articles/relativeregionalconsumerpricelevelsuk/2016,
“Comparison with 2010 results” section.
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region.

Since the local price index the average between the prices of tradeables and non-tradeables, but

exclude all housing costs,47 the local price of non-tradeables can be recovered as:

Pl, j = (CPI j)
η1+η2

η2 .

The results are presented in Table D.4.

Table D.4: Non-tradeable prices

Location
London Bristol Liverpool Hull South-East

Baseline 1.19 1.02 0.99 0.96 1.05

D.4 Mass of Employers Mi
j

Using data on individual plants from the universe of firms dataset (part of ABS) and aggregating

over the firm identifier, I compute the average number of firms that operate in a location during

the 2011-2018 period. This gives me the total mass of firms across locations, M j.

Using ASHE data, for each 3-digits industry code I calculate the share of high- and low-skilled

workers in each location. Then, I impute Mi
j by weighting each firm according to the share of

i-skill workers in location j and each firm’s 3-digits industry code. That is, for N j being the

number of firms in the dataset,

Mi
j =

1
N j

N j

∑
n=1

si
j,n,

with si
j,n being the share of workers in occupation i in the 3-digits 2007 industry code of firm n.

The results are provided in Table D.5

Table D.5: Employer Mass

London Bristol Liverpool Hull South-East

High-Skilled 0.1962 0.1102 0.1046 0.1364 0.1969
Low-Skilled 0.0507 0.0378 0.0464 0.0673 0.0534

47In the UK, the CPI index does not include housing costs, besides household services and basic maintenance.
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D.5 Minimum productivity

I assume the minimum level of productivity in the economy is £15,000 in 2015 prices. This is

compatible with the minimum wage at the time, equivalent to £13,980 per year for a full-time

worker, plus social security costs of employment. In model terms, this is equivalent to 53.6% of

the £28,000 average value added in the worst location for low-skilled jobs, which is normalised

to 1 in the calibration. Thus, I calibrate pL
j = 0.536. Since high-skilled workers have higher

productivity per employee, I calibrate pH
j =

pL
j

αH so that the two skills have the same minimum

income α iw(pi
j) = ι ×0.536 ≈ 0.526.

D.6 Distance matrix

To calculate the distance matrix between locations, I obtain data from Google Maps about car

travel distance at peak hour between the population centroids of all Local Authority Units.

Then, using Open Street Map, I calculate the public transport travel plus walking times using

the 2018 schedule of buses and trains, obtained from public data available through the Depart-

ment of Transport. I use as maximum travel time 300 minutes, and then normalise the average

distance, weighted by origin population and destination jobs, between “London” locations and

“Hull” locations as 1.

Table D.6: Distance Matrix

Location
London Bristol Liverpool South-East Hull

London 0 0.67 0.79 0.35 1.00
Bristol 0.67 0 0.25 0.68 0.50
Liverpool 0.79 0.25 0 0.78 0.50
South-East 0.35 0.68 0.78 0 0.98
Hull 1.00 0.50 0.50 0.98 0

D.7 Elasticity of Housing Price

I estimate the elasticity of housing price to expenditure (b j in model terms) by estimating Equa-

tion 13 in logs. I obtain house price data and local disposable income at the local authority level
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for the period 1998 to 2019. Assuming the share of workers’ expenditure on housing follows

the model, I obtain total expenditure on residential housing a (1−η1 −η2) share of disposable

income. Then, I add commercial rents using business rates data to obtain expenditure Elt . Then,

I estimate by OLS the following expression:

ln(Plt) = α + ∑
j∈L

b jd j ln(Elt)+φl + γt + εlt ,

where d j is a (model) location dummy, φl is a local authority fixed effect, and γt a time fixed

effect. b j represents the parameter of interest. The results are reported in Table D.7.

Table D.7: Estimated house price elasticity to demand b j

Location
London Bristol Liverpool South-East Hull

Total expenditure 0.682 0.375 0.437 0.479 0.409
(0.066) (0.100) (0.133) (0.063) (0.101)

Housing expenditure 0.677 0.372 0.435 0.475 0.410
(0.067) (0.101) (0.136) (0.063) (0.103)

D.8 Search decay in distance

I show how the rate of search efficiency decay with distance, ci
d , can be estimate directly from

worker’s job moves microdata. The rate at which individuals living in h and working in j with

wage w obtain a job in j′ is

(Move rate)i
h j′(w) = ai

θ
1−χ

j′ eci
ddh j′︸ ︷︷ ︸

Match rate

∑
j

(
si

h j j′(w)
)1+ε0

1+ ε0︸ ︷︷ ︸
total effort

∫
µ

i,E
h j j′(w,w

′)dF f
j′ (w

′)︸ ︷︷ ︸
avg. acceptance

.

Taking logs and replacing Si
h j j′(w) with its optimal value from the worker problem, we can

express the right-hand side as the sum of a constant that is w-independent, and a function of

w:

ln
(
(Move rate)i

h j′(w)
)
= ln


(

aiθ
1−χ

j′ eci
ddh j′
)− 1

ε0

1+ ε0


︸ ︷︷ ︸

β i
h j′

+ ln

∑
j

 (Sh j(w))
ε1
ε0

(V i,E
h j (w))

1
ε0

1+ε0 ∫
Pi,E

z j j′(w,w
′)dF f

j′ (w
′)


︸ ︷︷ ︸

f i
h j′(w)

.

(25)
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I estimate β i
h j′ by estimating Equation 25 using a Poisson regression. For each h and j′, I subset

my dataset to keep only h-resident workers of type i, and create a dummy variable Dkt( j′(k) =

j′) if worker k moves to work in j′ in period t. Then, I estimate the following equation by

implementing a Poisson quasi-maximum likelihood estimation:

E(Dkt( j′(k) = j′)) = exp
(

β
i
h j′ + f (wkt)+ γt +βXk

)
.

In principle, f (wkt) could be any function of wage. In practice, I approximate f (wkt) using a

third degree polynomial of log-wage of individual k. γt is a year fixed effect and Xk is a set of

individual controls.

Having obtained the empirical estimates of β i
h j′ , β̂ i

h j′ = β i
h j′ + ε i

h j′ , from each regression on

(i,h, j′) subsets of workers, notice that

β
i
h j′ −β

i
j′ j′ =− 1

ε0
ci

ddh j′.

Taking into account that we do not observe β i
j′ j′ and β i

h j′ , but their estimated counterparts β̂ i
j′ j′

and β̂ i
h j′ , we can recover ci

d as

ci
d,h j′ =−ε0

β i
h j′ −β i

j′ j′

dh j′
+ ε

i
c,h j′, (26)

where ε i
c,h j′ = ε0

ε i
h j′−ε i

j′ j′
dh j′

. Notice that while the model allows for only I coefficients ci
d , Equation

26 provides I×Z×Z estimates of ci
d,h j′ . I choose the estimator for ci

d to be the weighted average

of all ci
d,h j′ , with the weights given by the inverse of the relative precision of the estimates of

β i
j′ j′ +β i

h j′:
48

ĉi
d =

1
∑h ∑

′
j wh j′

∑
h

∑
j′

wh j′c
i
d,h j′ .

The estimates and their standard errors are provided in Table D.8.

Table D.8: Estimates of ci
d

Skill ci
d

High -1.47
Low -2.03

48Consistency is easy to prove. ci
d = ci

d +
1

∑h ∑
′
j wh j′

∑h ∑ j′ wh j′ε
i
c,h j′ . For ε i

c,h j′ being i.i.d. across (h, j′) pairs,

for Z → ∞, 1
∑h ∑

′
j wh j′

∑h ∑ j′ wh j′ε
i
c,h j′ → E(ε i

c) = 0. Hence, ĉi
d = ci

d .
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D.9 Distribution of p̃

To identify the local distribution of value added, by skill, Fi j(p̃), I proceed as follows. I as-

sume Fi j(p̃) follows a Beta distribution with parameters g1,i j and g2,i j, shifted and stretched so

that:

• The minimum productivity is p, as calibrated in Appendix D.5.

• The maximum productivity is p = p (equivalent to £120,000 in 2015)

This means that, in each location j and skill i,
p̃− p
p− p

∼ Beta(g1,i j,g2,i j). I assume g1,i j = 1.3

following Bilal (2023). I calibrate g2,i j so to match the relative mean value added per worker of

firms across locations and skills, minus the worker component αi:

g2,i j = g1,i j

(
1− Ei j(p̃)−p

p−p

)
Ei j(p̃)−p

p−p

= g1,i j
p−Ei j(p̃)
Ei j(p̃)− p

,

Ei j(p̃) =
1
α i ∑

n∈N j

ω
i
n j(GVA per i worker)n j.

Where N j is the number of firms in j used in the calculation of the average value added, ω i
n j the

weight of firm n in the calculation of the GVA per worker in skill i, and (GVA per i worker)n j

is the GVA per worker of firm i. I estimate Ei j(p̃) using ABS data.

D.10 Unemployment search efficiency

In order to estimate the relative efficiency at searching of the unemployed v, consider how unem-

ployed workers of type i residing in h obtain a job in j′ at rate ai
h j′

s
1+ε0
h j′

1+ε0
θ

1−χ

i j′
∫

w′ µ
i,U
h j′ (x)dF i

j′(x).

Notice that minimum-wage workers residing and working in h have, by definition, the same

value of the unemployed. Hence, µ
i,U
h j′ (x) = µ

i,E
h j′ (wh,x). Moreover, they face the same market

tightness θ
1−χ

i j′ and have the same application intensity per unit of effort ai
h j′ . Hence, the ratio
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of the rates of UE rates of the unemployed and EE rates of minimum-wage workers is

UE i
h, j′

EE i
w,h j′

=
s1+ε0
U,h j′

s1+ε0
w,h j′

=

v


[

∑
x∈L

(
ai

h jxθ
1−χ

ix VU,i
h j′(w)

)− 1
ε0

] ε0
ε1−ε0

(
ai

h j′θ
1−χ

i j′ VU,i
h j′
) 1

ε0


1+ε0


[

∑
x∈L

(
ai

h jxθ
1−χ

ix V E,i
h j′(w,w)

)− 1
ε0

] ε0
ε1−ε0

(
ai

h j′θ
1−χ

i j′ V E,i
h j′(w,w)

) 1
ε0


1+ε0

= v,

where the last equality follows from the fact that, as discussed above, V E,i
h j′(w,w)=VU,i

h j′ (w).

This relationship can be directly estimated in the data, with the assumption that minimum wage

workers have similar unobservable characteristics of unemployed workers, conditional on their

type i. I estimate this relationship using Labour Force Survey data. I find an estimate of v= 4.09

for the low-skilled and v = 4.17 for the high-skilled. Taking an average of the two, I calibrate

my model to v = 4.13. This is similar to both the estimate of my model when I allow v to be

endogenously estimated by targeting the unemployment rate (3.97) and the estimates of Heise

and Porzio (2023) for Germany (5.9).
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E Parameter Estimation

In this section, I provide details on how the parameters are estimated. Section E.1 describes the

mapping between the first set of parameters (search and spatial frictions, firm characteristics

other than productivity) and different moments. As these parameters all depend on general

equilibrium effects and no clear likelihood function is available, I employ a MCMC algorithm

with a flat prior over a large domain to find the set of parameters that minimises a loss function

based on a large set of empirical moments, as described in Appendix G.49 Section E.2 described

how to identify the second set of parameters related to firms’ productivity and localness, and

the housing sector productivity. Unlike the first set, these will be exactly identified.

E.1 First Block Parameters

I report a summary of the parameters estimated in the first block in Table E.1. For each of these,

I also specify - if different from the parameter itself - whether in the actual estimation algorithm

I employ the parameter itself, or a function of it and other parameters or objects.

Table E.1: First block parameters

Parameter group Description Number MCMC target Reference

- Utility
τh Amenities relative to London 4 E.1.6
σi Offer taste shock, by i 2 σi(αiwi)

−1 E.1.4
σm

i Residence taste shock, by i 2 σm
i (W i

Hull(w))
−1 E.1.5

- Search Frictions
ε1 Effort cost curvature 1 E.1.3

ai Efficiency of search, by i 2 (ai)
1+ε1

ε1−ε0 E.1.3

- Spatial frictions
κ i Moving cost (fixed), by i 2 κ

σm E.1.1
κd Moving cost (distance) 2 κ

σm E.1.1
di

1 Commuting cost, by i 2 E.1.6

- Firms
ζ i

1 Vacancy cost curvature, by i 2 E.1.2

49Notice that one of the spatial frictions, the search efficiency decay across space, can be directly estimated
from the data, as described in Appendix D.8.
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E.1.1 Location moving costs.

Consider two workers. Both earn wage w in j, but one resides in h and another in h′ ̸= h.

Suppose you observe both of them accepting an offer at wage w′ in location j′ = h. Then,

consider the probabilities of the first worker not moving his residence, Pi
jhhh(w,w

′), and of the

second worker moving to h, Pi
jh′hh(w,w

′). Their likelihood ratio is then

ln

(
Pi

jhhh(w,w
′)

Pi
jh′hh(w,w

′)

)
=

κ i
h′h

σ i
m

1
ρ +δ i + ln

∑
s

exp(W i
sh(w

′)−κ i
h′s)

1
σ i

m

∑
x

exp(W i
xh(w

′)−κ i
hx)

1
σ i

m

 . (27)

The first term represent the present discounted value of paying the moving cost κ today to

enjoy location h, while the second term represents the fact that the probability of moving to a

location depends on the outside options, whose value may differ for workers residing in different

locations before the move.

Intuitively, the likelihood ratio of performing the same “move” (from w to w’, given a worker

currently working in j) to (hh) depends on the relative moving costs and outside options.

An high moving cost would make a ( jh′hh) move less likely than a ( jhhh) move by reduc-

ing the incentives of moving from h′ to h (reducing Pi
jh′hh(w,w

′)), and from h to h′ (increas-

ing Pi
jhhh(w,w

′)). Hence, higher likelihood ratios across all ( j,h,h′) ∈ L ×L × (L ∖ {h})

would imply higher moving costs relative to the taste shock parameter σ i
m, given the discount

rate.

Since the expression is monotonically increasing in κ ,50 larger deviations from 0 of the LHS

pin down a unique value for
κ i

h′h
σ i

m
, given the value of employment. With more than 2 locations,

it is then possible to disentangle between the fixed-cost κ̃ i

σ i
m

and the distance-cost component of

moving κ̃d

σ i
m

by fitting all residence move rates across h,h′.

50Notice that the derivative of the second term is 0. In fact,
∂ ln

(
∑
s

exp(W i
sh(w

′)−κ i
h′s)

1
σ i

m

)
∂κ

= − 1
σ i

m
. The

same holds for the denominator within the log. Hence, the derivative of the likelihood ratio is simply
1

σ i
m(ρ +δ i)

,

which is always strictly positive for σ i
m < ∞.
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E.1.2 Vacancy costs

The mass of vacancies in occupation i and location j is

vi
j = ζ

i
0, jM

i
j

∫
p

p

(
π i

j(p)

π
i
j

) 1
ζ i
1

dF i
j(p). (28)

I identify ζ i
1 by targeting the distribution of employment along the productivity distribution.

Intuitively, the CDF of employment depends on firm’s size. Which, in turn, depends on the

number of vacancies posted: call qi
j,x the value of productivity p at the x-th percentile of the

productivity distribution. Then, the employment in all firms with up to productivity qi
j,x is

E i
j(q

i
j,x) =

qi
j,x∫
p

ni
j(p)vi

j(p)dF i
j(p)

pi
j∫

p
ni

j(p)vi
j(p)dF i

j(p)

=

qi
j,x∫
p

ni
j(p)(π i

j(p))
1

ζ i
1 dF i

j(p)

pi
j∫

p
ni

j(p)(π i
j(p))

1
ζ i
1 dF i

j(p)

,

where the second equality follows from substituting the optimal vacancy posting behaviour of p

firms. This expression implies that the CDF of employment at quantile x depends on ζ i
1, given

n(p), the per-vacancy profits π i
j(p) and the CDF of firms’ value added.

When profits per vacancy increase more than proportionally with p, as in this class of model

with monopsony power from search frictions, a higher ζ i
1 implies that the relative number of

vacancies posted by productive and unproductive firms shrinks, and larger share of workers is

employed at low-productivity firms. Lower ζ i
1 imply that a larger share of workers is employed

at high-productivity firms.

To identify ζ i
1, j, I target six different quantiles of the distribution of employment: the 5th decile,

and the difference between this and the successive 6th, 7th, 8th, 9th, and 10th deciles.51

51This is equivalent to targeting the shares of employment of the bottom 50% of firms, and the one of each
additional 10% in the size distribution. I do not target the whole distribution in order to avoid putting too much
weight on small employment shares at the bottom quantiles.
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E.1.3 Search frictions.

Identifying the search costs requires pinning down ε1, ai and v. I identify the remaining param-

eters as follows.

Taking logs of Equation 18 and taking the derivative relatively to individual wage, I obtain

∂ ln(Si
h j(w))

∂ ln(w)
=

ε0

ε1 − ε0

∂ ln

[
∑
j′

(
ai

h j j′θ
1−χ

i j′ V E,i
h j j′(w)

)− 1
ε0

]
∂ ln(w)

.

Given ai, market tightness and the value function, matching this derivative allows to pin down

ε1. While in the model all workers search on-the-job, in practice only a few workers search very

intensively but sporadically. Thus, using the Labour Force Survey, I approximate
∂ ln(Si

h j(w))
∂ ln(w)

by regressing a dummy for searching on-the-job on log-wages and individual characteristics.

Then, the coefficient on log-wages represents an estimate for the elasticity of effort to wages.

The identifying assumption is that the derivative of the share of individuals searching on-the-job

to income has the same slope as the derivative of effort Sh j(w) to income. That is, the effort

put into searching, conditional on being searching, is the same across the income distribution.

Using the UK Time Use Survey 2011, I confirm that the amount of time spent searching by

employed individual is large (55% of the unemployed’s effort) and, conditioning on spending

at least some search effort, approximately constant across the income distribution. From this

regression, I recover β̂w, the coefficient on log-wage.

Given ε1 and θ , it is then possible to pin down ai. Consider the rate of moving from job to job

within the same location j where the previous job was held,52. This is given by:

(Move rate)i
h j = ai

θ
1−χ

i j

∫ (
si

h j(w)
)1+ε0

1+ ε0

[∫
Pi,E

h j j(w,w
′)dF i

j(w
′)

]
dE i

h j(w).

Plugging in the expression for Si and taking logs, we obtain:

ln(Move rate)i
h j =

1+ ε1

ε1 − ε0
ln(ai)−ln(1+ε0)−

1
ε0

ln(θ 1−χ

i j )+
∫

Γ
i
z j(w)

∫
Pi,E

h j j(w,w
′)dFj(w′)dEh j(w),

where Γi
z j(w) is a term depending only on cd , market tightness and value functions across

52This is guaranteed to be > 0 due to the individual preference shocks and the curvature 1+ ε0 of the within-
location effort efficiency.
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locations. Thus, each skill-specific ai can be written as

ai = exp

[
ε1 − ε0

1+ ε1

(
ln(Move rate)i

h j + ln(1+ ε0)+
ln(θ 1−χ

i j )

ε0
−
∫

Γ
i
h j(w)

∫
Pi,E

h j j(w,w
′)dFj(w′)dEh j(w)

)]
.

Since ai depends on ε1, in the MCMC estimation algorithm I draw (ai)
1+ε1

ε1−ε0 so to improve the

efficiency of the algorithm.

E.1.4 Offer taste shock.

The main role of σ i is to model how workers accept jobs with worse wages than their current

job due to idiosyncratic preferences to how they like a location or an employer. Thus, I identify

σ by matching the the share of workers with a negative wage gains after a job move.

Pi
j(∆w < 0) =

w j∫
w j

w∫
w j

µ
E,i
j (w,w′)dF i

j(w
′)dE i

j(w)

w j∫
w j

w j∫
w j

µ
E,i
j (w,w′)dF i

j(w′)dE i
j(w)

.

This expression depends on the relative acceptance rates µ
E,i
j (w,w′), the job distribution E i

j(w),

and the job offer distribution dF i
j(w

′). Higher σ i increase the acceptance rate - everything else

equal - for offers with w′ < w, and lowers it for w′ > w. Hence, the expression is monotonically

increasing in σ i, given the distribution of offers, employment, and the value function.53

In the estimation algorithm, I do not estimate σi itself, but σi(αiwi)
−1. That is, the parameter

scaled by the minimum wage received by a worker of skill i in the economy αiwi = αiι pi ≈

0.565.

E.1.5 Residence taste shock.

To identify the residence taste shock, I employ a similar strategy to σ i, adapted to account for

how we do not know - without knowing the value function - what would be the “preferred”

moves.
53Since high σ i make it more likely to accept (w′ < w) offers, and less likely to accept (w′ > w) offers, it must

necessarily increase the proportion of (w′ < w) offers over the total, even if it affects the denominator in unclear
ways, given the distribution of employment and offers.
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If σ i
m = 0, we should observe identical workers performing identical residence moves, every-

thing else equal. For example, consider a worker residing in h, working in j at wage w and

being observed accepting a job in j′ at wage w′. Then, their residence move choice should be

identical, as only one location h′ (potentially identical to z) can maximise the value of accepting

the offer, given that the employer-specific idiosyncratic shock is perfectly correlated within the

residence cluster of the logit model. However, for σ i
m > 0 this cannot be the case, and there

would be increasing dispersion (up to the probability moving to each location being uniform,

for σ i
m → ∞). Thus, one can pin down σ i

m by matching the degree of dispersion of location

residence moves. More straightforwardly, I directly match the whole set of residence moves

probabilities .54

Since the variance of the preference shock necessary to generate a given degree of dispersion

in workers’ choices depends on its relative value to the value of employment, I first estimate

a normalised parameter σ̃ i
m =

σ i
m

W E
4 (w) . That is: σ i

m scaled by the value function at the mini-

mum wage in the poorest location. Then, I recover σ i
m by multiplying σ̃ i

m for the equilibrium

W E
Hull(w).

E.1.6 Commuting costs and amenities.

Finally, commuting costs and amenities are identified by matching the spatial distribution of

residence, work, commutes, and wage gains of new commuters (job movers who were not

commuting before the move).

E.2 Second block Parameters

Having identified the parameters of the first block, I can proceed with the identification of the

parameters of the second block. These involve: i) the productivity of the local housing sector,

ÃH, j; ii) the productivity of the local non-tradeable sector, AL
j ; iii) vacancy costs by skill and

location ζ i
0, j; and iv) the distribution of floorspace use φ i

j(p) and tradeable efficiency β i
j(p), by

54Notice that a non-independent set of moments was already used to pin down i κ i and one κd . Using 5
locations ensures that there is a rich enough set of hh′ moves to pin down the 5 parameters. Increasing the number
of locations can help further.
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i. In total, this involves identifying 20 parameters and 2 distributions.55

Vacancy posting costs. I identify ζ i
0, j in order to perfectly fit the aggregate mass of vacancies

vi
j within each location and skill by inverting Equation 28:

ζ
i
0, j =

Mi
j

vi
j

∫ (
π i

j(p)

π
i
j

) 1
ζ i
1

dF i, f
j (p).

Tradeables. I fit non-parametrically the distribution of employment across firms, by firm size.

Using the NESS survey, I have data on what firms declare to mostly sell non-tradeables, and the

share of employees being high or low-skilled. Merging it with the ABS census data on all firms

and plants, I obtain a CDF of employment across firms, by location and skill. Then, for each

point on my productivity grid, I fit the corresponding share.

Housing sector productivity. ÃH, j can be identified through Equation 13. Given the demand

of floorspace by workers and firms, whose identification is described above, we can express

AH, j as a function of known parameters and equilibrium objects, yielding a closed-form solu-

tion:

ÃH, j =

[
r

(1−b j)PH, j

[
HD

w, j +HD
f , j
]b j

] 1
1−b j

.

Floorspace per employee. I obtain the expenditure on rents as a share of wage bills for each

decile of firms’ employment. So that, for q = {0,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1},56 I have, for

each location j and skill i

φ̃
i
j,q =

PH, jφ
i
j(pi

j,q)pi
j,q

α iwi
j(pi

j,q)
.

Then, I fit back this distribution to my firm-location-skill grid using the model’s employment

equilibrium CDF within each location. I rescale the overall expenditure so that the mean cost-

to-wages ratio fits the national average of 9.4%. Finally, I recover φ̂ i
j(p̃) = φ i

j(pi
j)pi

j(p̃) by

dividing by the local price index and multipliying by local wages at each firm on the grid.

55Technically, there are 20 distributions to be estimated: the distribution of β and φ in each location and skill,
along the produtivity margin.

56I start skip the first and second decile
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Non-tradeables productivity and p. In Equilibrium, the non-tradeable market must clear in

each location. That is, AN
j must satisfy

AN
j ∑

i∈I
Mi

j

∫
p

s(1−β
i
j(s))n

∗
i, j(s)v

∗
i, j(s)dF i, f

j (s) = η1
Y r

j

Pl, j
. (29)

All terms on the right-hand side of the equation are known. However, on the left-hand side all

the terms but Mi
j are unknown, as they are either AN

j , p (indexed as s within the integral), and

functions that depend on p. Assume p̃i
j(p) is a one-to-one function of p at current prices Pl, j

and PH, j. Call β̂ i
j(p̃) = β i

j(p(p̃), and similarly so n̂, v̂, γ̂ . Then,

pi
j(p̃) =

(
p̃+ φ̂ i

j(p̃)
)

β̂ i
j(p̃)+Pl, jAN

j (1− β̂ i
j(p̃))

. (30)

In this equation, we know all terms but AN
j . Performing a change of variable from p to p̃ in

Equation 29 yields

AN
j ∑

i∈I
Mi

j

∫
p̃

pi
j(s)(1− β̂

i
j(s))n̂

∗
i, j(s)v̂

∗
i, j(s)dF i, f

j (s) = η1
Y r

j

Pl, j
. (31)

If ∑
i∈I

Mi
j > 0,∀ j ∈L (there is a positive mass of firms in each location) and ∀ j ∈L ,

∫
β i

j(p)dF i
j(p))>

0 (the production of tradeables is non-zero in each location), then the left-hand side of Equation

31 is increasing in Al, j.57 Hence, for η1
Y r

j

Pl, j
̸= 0,58 there must exist one and only one AN

j > 0

that satisfies this equation. This pins down the parameter AN
j , as well as the functional form of

pi
j(p̃) from Equations 30 and. Finally, this also allows to recover φ i

j(p) =
φ̂ i

j(p̃(p))
p .

I now describe how to recover p,AN and the distribution of γ . Recall that AN
j was identified

by iterating over different guesses of AN
j until convergence to a value that guaranteed market

clearing in the local non-tradeable good market, where supply depends on AN
j both directly and

through the distribution of productivities p implied by β (p), φ(p), and AN
j .

Identifying AN
j , p, and γ follows a similar procedure. Call β̂ i

j(p̃) the value of β ∗ for firms of

type i, in location j, with value added (p̃), as fitted to the CDF of employment using NESS

57Simply notice how, expanding p(s) and assuming AN
j ̸= 0, Equation 31 can be written as

∑
i∈I

Mi
j
∫̃
p

(
p̃+PH, jφ̂

i
j(p̃)

)
β̂ i

j(p̃)
Al, j

+Pl, j(1− β̂ i
j(p̃))

(1− β̂ i
j(s))n̂

∗
i, j(s)v̂

∗
i, j(s)γ̂

i
j(s)ds = η1

Y r
j

Pl, j
. As long as PH, j,Pl, j ̸= ∞, the term within

the integral is increasing in AN
j .

58Notice that this must the case as long as ∃i ∈ I : σ i
m > 0, and the price is not infinite.
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data.

Given these results, I show how to recover AN
j , p and φ . I apply the following algorithm:

1. Start from a guess of AN
j .

2. Calculate pi
j(p̃) by computing the following expression:

pi
j(p̃) =

(
p̃+ φ̂ i

j(p̃)
)

β̂ i
j(p̃)+Pl, jAN

j (1− β̂ i
j(p̃))

.

3. Check whether the local non-tradeable markets clear at the given AN
j by verifying if

Al, j ∑
i∈I

Mi
j

∫
p̃

pi
j(s)(1− β̂

i
j(s))

1−γ̃ i
j(p̃)n̂∗i, j(s)v̂

∗
i, j(s)dF i, f

j (s) = η1
Y r

j

Pl, j
.

4. If markets do not clear, take a new guess of AN
j (larger if excess demand is positive,

smaller if negative) and repeat points 2-4 until convergence.

5. Once AN
j and pi

j(p̃) are such that the market clearing condition is satisfied, obtain φ i
j(p) =

φ̂ i
j(p̃(p))

p .
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F Details on targeted moments

F.1 Workers by location

I estimate the relative share of full-time employees, by occupation × residence location, from

the cleaned ASHE cross-sectional dataset.

Table F.1: Share of residents (workers only), by skill

Location
Skill London Productive Fringe RoC

High 0.167 0.244 0.202 0.388
Low 0.121 0.239 0.200 0.439

F.2 Unemployment

Since all the flows of workers across firms are estimated using full-time workers only, I con-

sider “unemployed” all individuals that are: i) unemployed, according to the ILO definition; 2)

in involuntary part-time employment. Adding workers in unvoluntary part-time employent is

important in order to correctly capture the labour supply in the economy relative to the current

amount of full-time employed.

Using the Labour Force Survey, I calculate unemployment as the share of individuals between

25 and 65 years old such that: i) are classified as unemployed; or work part-time but i) declare

they would accept more hours at the same pay rate, or ii) declare they are actively searching for

a job with more hours. This gives an average unemployment rate of 10.6%.

Since LFS are geocoded at the regional level, I can distinguish only between the location I

classify as “London” and the rest of the country. I impute the share of unemployed in each

model location as the weighted average of the regional unemployment levels, where the weights

are given by the sum of the population weights of all Local Authority Units that are part of

the (model) location j and of each administrative region. The results are presented in Table

F.2
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Table F.2: Unemployment rate

Location
Estimation London Bristol Liverpool Hull South-East

LFS 11.6% 10.31%
Imputation 11.6% 10.7% 10.7% 11.5% 9.5%

F.3 Commuting

I estimate the relative share of full-time employees, by occupation × residence location ×

workplace, from ASHE.

F.4 Wage gains

To estimate the wage gains, I compute ln(yt+1)− ln(yt) across all workers. I subset the obser-

vations in order to look only at job movers who: i) were not commuting at time t, ii) do not

change residence location between t and t + 1, and iii) are not commuting in t + 1. Then, for

each group of initial occupations at time t, I regress the gains over a sex dummy and a set of

age dummies. The excluded category are male individuals aged 30-34 with high skill. The

parameters of interest are the location-specific constant, reported with their standard errors in

Table F.3.

Table F.3: Wage gains of within-location movers

Location
Skill London Productive Fringe RoC

High 7.64% 6.67% 6.48% 6.18%
(0.5) (0.6) (0.7) (0.5)

Low 6.88% 5.57% 5.54% 4.99%
(1.5) (1.5) (1.6) (1.4)

I compute the wage gains of commuters by subsetting the same cleaned wages by all workers

who: i) were not commuting before a move, ii) do so after the move, and iii) do not move

residence. I regress the wage gains of this subset of movers over a sex dummy and a set of age

dummies. The estimates with their standard errors are reported in Table F.3. In the estimation
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of the model, I match the moments provided in Table F.3, and the differences between these and

those reported Table F.4, so to give more weight to the difference between commuting and local

gains.

Table F.4: Wage gains of new commuters

Location
Skill London Productive Fringe RoC

High 4.95% 8.22% 8.88% 8.75%
(0.9) (0.7) (0.7) (0.6)

Low 7.12% 9.05% 6.51% 8.75%
(2.1) (1.7) (1.7) (0.6)

F.5 Job movers

I obtain job movers from ASHE. I consider a “job mover” any individual who, between year t

and t +1, has moved to either: i) a different firm , or ii) the same firm, but in a different Local

Authority Unit.

F.6 Residence movers

I obtain residence movers from ASHE. While I observe every residence move, as long as it

happens between different LSOAs (similar to Census tracts) and worker do not drop out of the

dataset, my model has two limitations. First, workers do not move unless they change job.

Hence, I focus only on residence moves of job movers. Second, my model doesn’t make any

distinction between residence movers and stayers within the same model location. Hence, I do

not discriminate between workers who did not move at all, and those who moved to a different

house within the same model location.

F.7 Firm size distribution

From the cleaned ABS data, I obtain the employment distribution across firms. Since I do not

model “sectors”, I obtain the log-size deviation of each firm from its 3-digits sector mean. Then,
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I obtain a distribution of firm size by summing this deviation to the log-mean of the data, and

taking the exponential. Then, I compute the CDF of total employment over the distribution of

firms, ranked by size, for each location. Since the bottom quantile have very small shares of

firms, thus making the fit sensitive to small deviations from these moments, I target 6 part of

the distribution: the share of employment at firms up to the 50th decile of size, and the share

between each additional decile.

F.8 Relative GVA

Using ONS’s regional GVA data, I compute the mean GVA per worker of each location. Then,

I rescale each absolute quantity into relative terms to London, which is normalised to 1.

Table F.5: Relative GVA

London Productive Fringe RoC South-East

1.000 0.761 0.635 0.611 0.850
(-) (0.011) (0.012) (0.009) (0.011)

F.9 Vacancies

I estimate the mass of skill-location mass of vacancies as follows. Using the NESS dataset, I

obtain vacancies, by 1-digit occupations. Using the definition of high- and low-skilled I adopt

throughout the paper, I obtain vacancies by skill i ∈ I for each firm n in j (vi
jn). Then, I calculate

the ratio of vacancies to employment in each location by dividing the weighted sum of vacancies

by the weighted sum of employment:

ṽi
j =

∑
n∈N j

w jvi
jn

∑
n∈N j

w jei
jn
.

Since vi
j represents the mass of vacancies, where the mass of the population is normalised to

one, I recover vi
j from ṽi

j by dividing by the share of employees over the total of the labour

force, given by 1 minus the unemployment rate u:

vi
j =

ṽi
j

1−u
.
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G Estimation Algorithm

The objective is to find a set of parameter φ∗ ∈ F, for F being the hyperset of admissible param-

eters, which minimises a loss function L (φ):

φ
∗ = argmin

φ∈F
L (φ) = argmin

φ∈F ∑
n∈N

ωn

(
X̂n(φ)−Xn

SEXn

)2

,

where X̂n(φ) represent the simulated moment n from solving the parameter using φ , Xn is the

data moments, and SEXn is the standard error of the empirical moment. ωn represents weights

applied to moment n, chosen so that: i) the sum of weights of moments within one of the

families of moments described in Table 4, ii) a few of these families are given half-weights, to

take into account how their very tight standard errors would force the model to overfit a few

moments.

I choose as estimation algorithm an MCMC approach. First, I pick 100 strings of parameters,

each 1000 elements long. I choose as initial points 100 random point from my parameter space.

Then, I follow the following procedure for each of these strings. For each iteration, I pick a set

of parameters φk using the Metropolis-Hasting sampling procedure, starting from the previously

stored point. Then, I follow the following procedure: I solve the model using those parameters,

and simulate a dataset of 1,500,000 observations to recover the simulated moments X̂(φk) =

{X̂1(φk), . . . , X̂n(φk)}. Then, I calculate the loss function of iteration k L (φk).

Then, I keep the draw of parameters φk with probability

P(keep φk|φk−1) = min{1,Tk exp [ln(L (φk−1))− ln(L (φk))]},

where Tk is a temperature parameter used to target a rejection rate of 0.18. The temperature is

update every 200 draws.

Then, I use the best estimates from each of these strings as starting points for 1000 further draws,

each 1000 elements long. For each of these strings, I discard the first 800 draws, and keep the

last 200. The final estimate is given by the set of parameters providing the best fit among the

1,000,000 parameter draws thus obtained. The 200 observations kept at the end of each string

(for a total of 200,000) will be used to calculate the standard errors of the estimates.
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The procedure is thus a mix of the approaches of Heise and Porzio (2023) and Jarosch (2023),

which adjusts for the finite domain of the parameters. Like Heise and Porzio (2023) and En-

gbom and Moser (2022), I choose the draw that delivers the minimum L (φ), rather than an

average of all the draws.

G.1 Model Fit

In this section, I present the results from the MCMC estimation. Table G.1 shows how the

moments from the model (vertical axis) match with the moments from the data (horizontal

axis). Figure G.1 plots the data moments against the model’s simulated moments, showing how

most of the moments have a very good fit, apart from a few outliers. The model is able to jointly

capture the distribution of residents (both high and low-skilled), unemployment, the different

commuting shares between locations, the number of job movers within each location, the share

of job movers between locations, and the distribution of employment across firms. Moreover,

it performs sufficiently well is all other dimensions. The model fits well most parameters. The

best fits are on the low-to-high skilled wage ratio, the relative wages of locations, the number of

residents, and the one of individuals who live in he same location where they work. The worst

fit is obtained on the search effort derivative (32.1% deviation from the data), although the sign

is correctly captured. The wage gains are well fitted, apart from the one of new commuters

outside of London, estimated to be particularly negative.
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Table G.1: Targeted Moments

Mean error (pp.)

Resident share 4.1
Job share 5.9
Unemployment 10.8
Commuting shares (within) 2.1
Commuting shares (between) 21.3†
Search effort 32.1
Job moves (within) 14.9
Job moves (between) 19.9†
Residence moves 4.3†
Local wages 1.6
Wage gains (within) 1.4‡
Wage gains (new commuters) 4.1‡
Share negative wage gains 12.8
Employment CDF 12.0
GVA 5.0
High-to-low wage ratio 0.3

Notes: The table shows the mean percentage deviation (so that 1 = 1% deviation) between simulated and data
moments. Exceptions are momenta that present very small moments, and hence whose percentage deviation is
very sensitive. For these, I provide two remedies: i) † implies that this is the mean moment deviation, divided
by the mean moment; ii) ‡ represents the deviation in pure percentage points, used for wages.
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Figure G.1: Model Fit - Targeted Moments
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Note: data’s moments (x-axis) and model’s moments (y-axis) for each of the targeted groups of moments, generated
using the estimated parameters from the MCMC procedure.
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G.1.1 Non-targeted moments

To validate the model, I show how it is able to capture features of the data not used for the

calibration. With regards to the chosen functional form of firms’ vacancy posting, the model

fits well the distribution of vacancies along the employment distribution, as well as the profit

share of total value added for four out of five locations. Turning to wage gains across space, the

model is well centred around the mean values, although the slope of the curve appears steeper,

overestimating the largest gains and losses, related to moving in/out of London. However, the

model fails to fit the standard deviation of all wage gains, overestimating it across all locations

and skills. Both these latter results may be due to the use of only two skills, which does not

fully capture skill sorting and the multiple job ladders and the lack of a “home” location for

workers (as in Heise and Porzio (2023)), implying larger compensating differentials for moving

out of productive locations.

Table G.2: Non-targeted Moments

Mean error (pp.)

Vacancies CDF 25.3†
Profits 13.8
Wage Gains, by (j,j) 7.2‡
SD of wage gains, by (j,j) 128.2

Notes: The table shows the mean percentage deviation (so that 1 = 1% deviation) between simulated and data
moments. Exceptions are momenta that present very small moments, and hence whose percentage deviation is
very sensitive. For these, I provide two remedies: i) † implies that this is the mean moment deviation, divided
by the mean moment; ii) ‡ represents the deviation in pure percentage points, used for wages.
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Figure G.2: Model Fit - Non-Targeted Moments
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Note: data’s moments (x-axis) and model’s moments (y-axis) for each of the targeted groups of moments, generated
using the estimated parameters from the MCMC procedure.

G.1.2 Jacobian Matrix

While the previous analysis points at a good fit of the model to the data, it is important to ask

whether the parameters are indeed identified according to the theoretical identificaiton strategy,

loading more on those moments that should be able to pin them down. To do so, I estimate

an approximated Jacobian matrix of the fit of each moment, given a variation in the parameter

value. From the final estimate, for each parameter θ I compute θ = θ ×1.05 and θ = θ ×0.95.

Call θ ∗ all other parameters apart from θ itself. Then, I compute two new likelihood function

of moment x, Lx(θ
∗,θ) and Lx(θ

∗,θ), once for each parameter, in order to obtain

∆x,θ = Lx(θ
∗,θ)−Lx(θ

∗,θ).

In Figure G.3 I report these deltas, averaged by parameter type (to improve readibility) and

normalised so that each rows sums to 100, in order to highlight what moments’ fit is most
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affected by a given parameter.59 The maximum colour scale is set to 37, the highest value on

the chart. Overall, the jacobian suggests that the identification strategy works well to identify

the parameters of interest. I now discuss this in more detail.

Some moments appear to be more important than others. These are the resident and job shares,

and wage gains. This reflects two things. First, the fact that some moments are more pre-

cisely estimated than others, hence small changes in the fit have a larger effect on the aggregate

likelihood relatively to other moments. Second, the fact that most parameters are identified

up to knowing the value function, for which wage gains (and hence continuation values) are

fundamental.

Most parameters affect the total likelihood mainly through the predicted moments described in

Appendix E.1. The parameters related to spatial frictions, di (commuting costs) and κ (resi-

dence moving costs), τ j (amenities), all heavily load on the respective moments (commuter and

movers shares, residence moving shares and origin/destination, residents and worker shares). v,

the relative search effectiveness of the unemployed, is the only parameter heavily loading on

unemployment. ε1 and σ are the only ones loading on the derivative of search effort. ai, the

amount of applications generated per unit of effort in the home location, loads on the amount

of job moves. σ , the variance of the job preference shock, loads on the share of negative wage

gains. σm, the variance of the residence shock, loads on residence moves. Only ζ1 does not

depend on the predicted parameters, but on an affine one (the relative GVA by locations), pos-

sibly because the 10 parameters affect only a few parameters in the associated distribution of

employment CDF (6 each out of 60).

59This is needed to account for how a 10% change in a parameter could have very different effects on the total
likelihood.
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Figure G.3: Jacobian matrix of likelihood function
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H Additional counterfactual results

H.1 Agglomeration effects

I relax the initial assumption of no agglomeration effects. In particular, I allow agglomeration

to change with the population density in a location. I assume AT
j has functional form

ln(AT
j ) = 0+A ln

(
(density) jt

(density) j0

)
, (32)

where A captures the “proportional” effect of changes in density on tradeable productivity. For

example, for A=0.01 a small increase in density would increase all firms’ productivity in the

tradeable sector by 1%. (density) jt captures the population density of a location, calculated as

(density) jt =
(population mass) jt

(Area) jt
. (density) j0 is the population density calculated directly from the

data.

Equation 32 specifies the 0 to highlight that, in the calibration of my model, I implicitly assume

that the baseline AT
j is equal to 1 in all locations.60 Hence, all baseline productivity effects of

agglomeration will go into the estimated distribution of productivity p.

Notice that while this is a proportional effect in AT , high-productivity firms are more likely to

allocate their labour force to the production of tradeables. Hence, accounting for localness het-

erogeneity implies that changes in local agglomeration effects do not increase total productivity,

nor value added, proportionally across firms. This is reminescent of the results of Combes et al.

(2012), who show that agglomeration economies have both “shift” and “dilation” effects on the

productivity distribution. Notice that, when ignoring localness heterogeneity, “dilation” effects

disappear, as the production of tradeable goods has the same weight on value added across all

firms.

Calibration. Agglomeration effects have been estimated to be around 0.02-0.06 log-points

for each 1-log point increase in density. Accounting for the fact that tradeable sales represent,

on average, 61% of all firms’ revenues, I calibrate the model to A = 0.06
0.61 ≈ 0.098. Meaning that

doubling a region’s density would increase the region’s tradeable productivity by approximately
60Notice that, in the baseline calibration, (density) jt = (density) j0. Hence, AT

j = exp(0+A ln(1)) = exp(0) = 1.
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10%.

Calibrating A to an high value also allows to show that accounting for realistic agglomeration ef-

fects is mostly inconsequential for the qualitative results of my analysis. While - once I account

for localness heterogeneity - large businesses are more affected by changes in agglomeration of

tradeables than smaller ones, there are two things to consider:

1. Having productive businesses benefiting more from agglomeration works towards making

the additional congestion in productive (≈ high-amenities, in the UK) areas less costly.

Hence, this is expected to (slightly) strengthen the baseline results.

2. The number of migrants between regions is relatively small. Hence, the quantitative

importance of this channel is likely to be small.

I calculate

Results. Indeed, I find that the results of the agglomeration exercise mostly follow the base-

line counterfactual. Table H.1 show that the total costs of spatial frictions are slightly un-

derestimated when not accounting for agglomeration, regardless of the stance taken of local-

ness heterogeneity. The difference between the two counterfactuals with and without localness

heterogeneity are very similar to those in the baseline result without agglomeration, although

slightly larger.

Table H.1: Agglomeration counterfactual

Het. VA (%) Fixed VA (%) Difference

GDP 5.57 4.55 1.02
VA of firms 1.48 0.07 1.41
VA of firms: per worker -1.2 -2.6 1.41
Wages 1.89 0.13 1.76
Wages: per worker -0.79 -2.54 1.75
Welfare 31.12 29.81 1.3

Notes: All variables are in real terms, adjusted by the average price index of consumption of all agents. “GDP”
is the total value of production, including housing. “VA of firms” is the total value added of firms. “Wages”
are the total wage bill, and “Wages: per workers” are wages by the mass of employed individuals. “Welfare”
is the mean value of the value function of all individuals. The “Het. VA” and “Fixed VA” column shows the
differences between the “Heterogeneous VA effect” and the “Fixed VA effect” counterfactuals and the baseline
calibration, in percentage points. The last column shows the difference, in percentage points, between the two
counterfactuals.
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I Additional results for planning policy

I.1 First stage

In this section, I present the first stage results for the IV specifications reported in Table 8.

Table I.1: Estimation of regulation impact on housing price elasticity - First Stage

ln(y) × Refusal
(1) (2) (3)

ln(income) × Delay change -0.080∗∗∗ -0.169∗∗∗

(0.019) (0.025)
ln(income) × Labour share 1983 -1.99∗∗∗ -2.10∗∗∗

(0.194) (0.204)
ln(income) 0.524 0.019 0.617

(0.426) (0.492) (0.464)
Delta elevation 0.238 0.347 0.217

(0.166) (0.226) (0.168)
Share built 1990 4.42∗ 0.157 5.11∗

(2.26) (5.58) (2.64)
ln(income) × Delta elevation -0.032 -0.050 -0.029

(0.023) (0.031) (0.023)
ln(y) × Share built -0.615∗∗ -0.240 -0.701∗

(0.312) (0.744) (0.363)

Observations 3,444 3,444 3,444
R2 0.456 0.189 0.443
Within R2 0.456 0.189 0.443

Year fixed effects ✓ ✓ ✓

Notes: p-values: ∗∗∗ ≤ 0.01, ∗∗ ≤ 0.05, ∗ ≤ 0.10. Standard errors are Conley spatial standard errors, with a
cut-off of 100km. Observations are Local Authority Unit × year, for the period 1998-2019. The table shows
the first stage results for the IV specifications whose second stage is reported in Table 8 in the main text.

I.2 Robustness: Expenditure

Since my model predicts interactions between the role of local expenditure on housing and

business floorspace, a more precise independent variable to estimate local demand would be

one that takes into account: i) the local expenditure on housing, and ii) the local expenditure

on floorspace. Due to differences in data availability, I perform the regression between 2001

and 2019 (instead of 1995 and 2019 as in the main text), but report the results of the standard
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specification for the new time frame as a guide. I report the findings in Table I.2. I find that

accounting for floorspace costs increases the size of β reg by approximately 15% in both the

OLS and the IV specification.

Table I.2: Estimation of regulation impact on housing price elasticity - Expenditure

ln(house price)
OLS IV

(1) (2) (3) (4)

ln(income) 0.046 0.109
(0.029) (0.142)

Delta elevation 0.001 0.0006 0.035 0.034
(0.029) (0.026) (0.096) (0.089)

Share built 1990 -2.33∗∗ -2.11∗∗ 0.232 0.280
(1.03) (0.903) (4.22) (3.87)

ln(income) × Delta elevation -0.001 -0.005
(0.004) (0.012)

ln(income) × Refusal share 0.111∗∗∗ 0.177∗∗∗

(0.014) (0.015)
ln(income) × Share built 1990 0.313∗∗ 0.004

(0.135) (0.532)
ln(expenditure) 0.051∗ 0.123

(0.030) (0.153)
ln(expenditure) × Delta elevation -0.001 -0.006

(0.004) (0.013)
ln(expenditure) × Refusal share 0.127∗∗∗ 0.202∗∗∗

(0.016) (0.018)
ln(expenditure) × Share built 1990 0.327∗∗ -0.003

(0.137) (0.560)

Observations 2,296 2,296 2,296 2,296
R2 0.692 0.695 0.566 0.567
Within Adjusted R2 0.577 0.581 0.403 0.405
Kleibergen-Paap 1.34 1.37

Year fixed effects ✓ ✓ ✓ ✓
Instruments All All
Endogenous Refusal, Area Refusal, Area

Notes: p-values: ∗∗∗ ≤ 0.01, ∗∗ ≤ 0.05, ∗ ≤ 0.10. Standard errors are Conley spatial standard errors, with a
cut-off of 100km. Observations are Local Authority Unit × year, for the period 1998-2019. The table shows
the results of a regression of ln(house prices) at the Local Authority Unit level over two sets of covariates.
The first one uses ln(income), which captures the income of individuals residing in the LAU. The second uses
ln(expenditure), which adds the business rates of local businesses as a proxy for the firms’ expenditure on
“space”.
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I.3 Robustness: Bartik instrument for income shock

Another possible worry is that changes in local demand are endogenous. For example, Diamond

(2016) considers how local changes in construction costs may be correlated to local changes

in demand growth. When construction costs are not observed by the econometrician, their

contribution ends up in the residual. However, if construction cost shocks are correlated to

local income shocks (for example, due to local construction workers’ wages ending up in both

measure), this would mean that the error term and the independent variables are correlated to

each other, introducing bias in the fitted coefficient β̂ reg.

To take care of this possible endogeneity bias, I instrument local income with a Bartik instru-

ment constructed from national industry-level value added growth, and local industry shares. I

find that the estimates of the key parameter, “ln(income) × Refusal share” are almost identical

to the standard IV method.
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Table I.3: Estimation of regulation impact on housing price elasticity - Expenditure

ln(house price)
OLS IV
(1) (2) (3)

ln(income) 0.046 0.041 0.096
(0.029) (0.029) (0.138)

Delta elevation 0.001 0.001 0.030
(0.029) (0.028) (0.095)

Share built 1990 -2.33∗∗ -2.12∗∗ 0.254
(1.03) (1.02) (4.28)

ln(income) × Refusal share 0.111∗∗∗ 0.111∗∗∗ 0.177∗∗∗

(0.014) (0.014) (0.014)
ln(income) × Share built 1990 0.313∗∗ 0.289∗∗ 0.003

(0.135) (0.134) (0.537)
ln(income) × Delta elevation -0.001 -0.001 -0.004

(0.004) (0.004) (0.012)

Observations 2,296 2,296 2,296
R2 0.692 0.692 0.564
Within Adjusted R2 0.577 0.576 0.401
Kleibergen-Paap 21.2 0.218

Year fixed effects ✓ ✓ ✓
Instruments Bartik Bartik, Delay, Labour votes
Endogenous Income Income, Refusal, Area

Notes: p-values: ∗∗∗ ≤ 0.01, ∗∗ ≤ 0.05, ∗ ≤ 0.10. Standard errors are Conley spatial standard errors, with
a cut-off of 100km. Observations are Local Authority Unit × year, for the period 1998-2019. The table
shows the results of a regression of ln(house prices) at the Local Authority Unit level over a ln(income),
ln(income) interacted by the refusal rate of major project applications in the LAU, and a set of controls. The
first column reports OLS results. In the second column, ln(income) is instrumented using a Bartik-style shift-
share instrument. In the third column, the Barkit instrument is added on top of the baseline IV specification
reported in Table 8 in the main text.
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J Other Policies Details and Results

J.1 Work from home

Although eliminating commuting costs would be unfeasible, recent advancements in technolo-

gies and changes in workplace culture have led many high-skilled workers to work remotely.

As of early 2023, the UK was the English-speaking country with the largest share of job ads

including at least some degree of hybrid or remote work (Hansen et al., 2023). In this section,

I study the effects of a 30% reduction in commuting costs for high-skilled workers only, con-

sistent with the current evidence about work-from-home trends.61 I interpret this reduction in

commuting costs as a shift toward hybrid work, rather than full remote work for a few workers,

as the former has not been associated (unlike the latter) with a fall in productivity or mentoring

(Barrero et al., 2023).

Results. I illustrate the results in Table J.1. Introducing a work-from-home policy for high-

skilled workers leads to lower GDP, but higher value added of firms. Employment increases

slightly, but real wages per worker fall, as employers can lower wages and still be able to recruit

more workers. However, welfare increases as high-skilled workers pay considerably less utility

and pecuniary costs when commuting. Accounting for localness heterogeneity leads to larger

gains, but also to slightly exacerbated inequalities between the gains of high- and low-skilled

workers. For example, the welfare gains of high-skilled workers are 9% larger (1.11 pp. vs 1.02

pp.), while the welfare gains of low-skilled workers are even lower (0.06 pp. vs 0.07 pp.). This

is due to high-skilled workers’ location choices causing additional congestion on low-skilled

firms, reducing their value added gains, and thus real wages paid to their workers.

61Bick et al. (2023) find, using survey data and a structural model, that the equilibrium work-from-home level
for all workers in the U.S. will be approximately 1-in-5 days, or a 20% fall.
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Table J.1: Work-from-home counterfactual

Het. VA (%) Fixed VA (%) Difference

GDP -0.14 -0.31 0.17
VA of firms 0.14 0.09 0.05
- VA: High Skilled 0.07 0 0.07
- VA: Low Skilled 0.39 0.44 -0.05
Wages -0.29 -0.41 0.12
Wages: per worker -0.37 -0.48 0.11
- Wages: High Skilled -0.6 -0.75 0.15
- Wages: Low Skilled 0.37 0.39 -0.02
Welfare 0.88 0.8 0.07
- Welfare: High Skilled 1.11 1.02 0.1
- Welfare: Low Skilled 0.06 0.07 -0.01

Notes: All variables are in real terms, adjusted by the average price index of consumption of all agents. “GDP”
is the total value of production, including housing. “VA of firms” is the total value added of firms. “Wages”
are the total wage bill, and “Wages: per workers” are wages by the mass of employed individuals. “Welfare”
is the mean value of the value function of all individuals. The “Het. VA” and “Fixed VA” column shows the
differences between the “Heterogeneous VA effect” and the “Fixed VA effect” counterfactuals and the baseline
calibration, in percentage points. The last column shows the difference, in percentage points, between the two
counterfactuals.

99



K Extensions

K.1 Microfundation for β (p)

In the main text, I have assumed that the share of labour dedicated to the production of tradeables

and non-tradeables is exogenous. In this section, I relax this assumption.

Assume that the production function of a firm is

Tradeables: T i
j (p,n) = AT

j β
γ i(p)pn,

Non-Tradeables: Ni
j(p,n) = AN

j (1−β )1−γ i(p)pn,

where β is the share of labour assigned to the production of tradeables, γ i(p) is an exogenous

parameter that regulates how much a firm’s productivity is decreasing in allocating additional

units of labour to the production of tradeables, and 1− γ i(p) is the same for the production of

non-tradeables.

Consider the problem of labour allocation of a firm that wants to maximise revenues per unit of

labour and productivity pn:

β
∗
i, j = argmax

β

AT
j β

γ i(p)+Pl, jAN
j (1−β )1−γ i(p).

Then, assuming an internal solution, the optimal β ∗
i, j solves the equation

(1−β ∗
i, j)

γ i(p)

(β ∗
i, j)

1−γ i(p)

γ i(p)
1− γ i(p)

=
Pl, jAN

j

AT
j

, (33)

and value added per worker is

p̃i
j = p

[
AT

j (β
∗
i, j)

γ i(p)+Pl, jAN
j (1−β

∗
i, j)

1−γ i(p)−PH, jφ
i
j(p)

]
. (34)

K.1.1 Estimation

Assuming this microfoundation does not change the estimation of the first block of parameters.

However, it affects the estimation procedure of the second block. In this section, I provide

details of the assumptions needed to identify γ(p) and details of the new algorithm.

Proposition 2. Assume 0 <
Pl, jAN

j

AT
j

< ∞. Then, ∀β ∗
i, j ∈ (0,1), ∃ γ∗i (p) ∈ (0,1) such that, for

γ i(p) = γ∗i (p), γ∗i (p) is a solution to Equation 33.
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Proof. Call, to simplify notation, γ = γ∗i (p). Assume β ∗
i, j ∈ (0,1) and γ ∈ (0,1). Then, taking

logs in Equation 33,

γ
(
ln(1−β

∗
i, j)+ ln(β ∗

i, j)
)
+ ln

(
γ

1− γ

)
= ln

(
Pl, jAN

j

AT
j

)
+ ln(β ∗

i, j),

where all the logs are defined since
Pl, jAN

j

AT
j

> 0, β ∗
i, j > 0 and γ > 0. Consider how

lim
γ→0

[
γ
(
ln(1−β

∗
i, j)+ ln(β ∗

i, j)
)
+ ln

(
γ

1− γ

)]
=−∞.

lim
γ→1

[
γ
(
ln(1−β

∗
i, j)+ ln(β ∗

i, j)
)
+ ln

(
γ

1− γ

)]
= ∞.

Since f (γ) = γ

(
ln(1−β ∗

i, j)+ ln(β ∗
i, j)
)
+ ln

(
γ

1−γ

)
is a continuous function in γ , for γ ∈ (0,1),

for the Intermediate Value Theorem, the function must attain c =
Pl, jAN

j

AT
j

for some value of γ .

However, applying the theorem requires a closed interval. I construct this as follows. Consider

the closed interval [a,b] ⊂ R+. Choose a = 0.62 Choose b = M, where
Pl, jAN

j

AT
j

< M < ∞. Such

a number must exist, as
Pl, jAN

j

AT
j

< ∞ by assumption. Since
Pl, jAN

j

AT
j

> 0 by assumption, c ∈ [0,M]

and, due to the intermediate value theorem, ∃γ∗ ∈ (0,1) : f (γ∗) = c.

That is, given any value of β ∈ (0,1), then ∃γ ∈ (0,1) such that it solves Equation 33.

Notice that this proof does not guarantee uniqueness, but just existence of a solution γ ∈ (0,1).

That is, a parameter such that the Inada conditions are satisfied for a given β . To take care of

this issue, I introduce Assumption 3 and Proposition 3. In practice, this never happens within

the domain of my empirical β̂ , as the solution to 3 implies that the solution is not unique only

for β being larger than 0.981 or smaller than 0.019.

Assumption 3. If ∃γ,γ ′ ∈ (0,1), γ ̸= γ ′ such that γ i(p) = {γ,γ ′} are solutions to Equation 33,

assume that γ∗i (p) = min{γ,γ ′}

Proposition 3. There exists one and only one γ ∈ (0,1) such that γ i(p)= γ is the unique solution

to Equation 33 whenever

β
2 −β + exp(−4)< 0.

62The fact that a = 0 is in the codomain of f (γ) can be proven by applying the intermediate value theorem on
the interval [−1,1].
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Proof. Taking the derivative of the log-version of 33, I obtain
∂ f (γ)

∂γ
= ln((1−β

∗
i, j)β

∗
i, j)+

1
γ
+

1
1− γ

.

Consider how ∂ f (γ)
∂γ

> 0 ∀γ ∈ (0,1) whenever
1
γ
+

1
1− γ

>− ln((1−β
∗
i, j)β

∗
i, j).

In particular, we want to check whether

min
γ∈(0,1)

(
1
γ
+

1
1− γ

)
= 4 >− ln((1−β

∗
i, j)β

∗
i, j),

where the equality is given by recognising how the left is minimised at γ = 1
2 . Taking the

exponentials, the function must satisfy

exp(4)>
1

(1−β ∗
i, j)β

∗
i, j
.

−β
2 +β − exp(−4)> 0.

The case for ∂ f (γ)
∂γ

< 0 ∀γ ∈ (0,1) is not relevant as sup
γ∈(0,1)

(
1
γ
+ 1

1−γ

)
= ∞. Hence, there is no β

such that the function can be negative for any γ .

Then, for each location, skill, and p̃ we can pin down γ i
j(p) such that the share of employment

allocated to the production of tradeables for a firm with value added p̃, skill i in location j is

β̃ ∗
i j(p̃) = β̂ i

j(p̃), where β̂ i
j(p̃) is the corresponding value estimated from the NESS data at the

corresponding CDF of employment of E i
j(p̃).

Changes to second-block identification. Since γ is a component of value added, microfound-

ing β does not change the identification of the first block of parameters. Hence, it only affects

the procedure to identify the second block. The calibration of β̂ i
j(p̃) and φ̂ i

j(p̃), the distribution

of employment allocated to producing tradeables and the floorspace costs, is unchanged, as it

requires to fit the empirical moments to the employment CDF of each (i, j) market. However,

notice that β̂ i
j(p̃) is not anymore a parameter in itself, but an equilibrium object (β ∗) I observe

and I am going to target to identify γ .

I now describe how to recover p,AN and the distribution of γ . Recall that AN
j was identified

by iterating over different guesses of AN
j until convergence to a value that guaranteed market

clearing in the local non-tradeable good market, where supply depends on AN
j both directly and
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through the distribution of productivities p implied by β (p), φ(p), and AN
j .

Identifying AN
j , p, and γ follows a similar procedure. Call β̂ i

j(p̃) the value of β ∗ for firms of

type i, in location j, with value added (p̃), as fitted to the CDF of employment using NESS data.

Then, apply the following algorithm:

1. Start from a guess of AN
j .

2. Compute γ̃ i
j(p̃) such that it solves

(1− β̂ i
j(p̃))γ̃ i

j(p̃)

(β̂ i
j(p̃))1−γ̃ i

j(p̃)

γ̃ i
j(p̃)

1− γ̃ i
j(p̃)

=
Pl, jAN

j

AT
j

.

3. Calculate p by computing the following expression:

pi
j(p̃) =

(
p̃+ φ̂ i

j(p̃)
)

(β̂ i
j(p̃))γ̃ i

j(p̃)+Pl, jAl, j(1− β̂ i
j(p̃))1−γ̃ i

j(p̃)
.

4. Check whether the local non-tradeable markets clear at the given AN
j by checking if

Al, j ∑
i∈I

Mi
j

∫
p̃

pi
j(s)(1− β̂

i
j(s))

1−γ̃ i
j(p̃)n̂∗i, j(s)v̂

∗
i, j(s)dF i, f

j (s) = η1
Y r

j

Pl, j
.

5. If markets do not clear, take a new guess of AN
j (larger if excess demand is positive,

smaller if negative) and repeat points 2-5 until convergence.

6. Once AN
j and pi

j(p̃) are such that the market clearing condition is satisfied, obtain φ i
j(p) =

φ̂ i
j(p̃(p))

p .

I provide the details of the estimated distribution of γ̃(p̃) for high-skilled firms in the richest

and poorest locations, in Figure K.1.
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Figure K.1: Value of γ(p̃), with vs without localness heterogeneity
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K.1.2 Counterfactual

In Table K.1, I provide the results when estimating the model using the microfounded β . The re-

sults are approximately similar to those reported in the baseline counterfactual, although some-

what smaller (between 0.01 percentage points for VA of firms, and 0.26 percentage points for

GDP). This is for two reasons:

1. The changes in the price of non-tradeables across counterfactuals is mostly small, mean-

ing that the channel is of small quantitative importance.

2. Changes in house prices are larger, and firms are more heterogeneous in φ(p) than in

β (p). Most of the additional misallocation arising from this channel is unaffected by the

microfoundation assumptions on β (p).
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Table K.1: Key variables, real change relatively to baseline (microfounded β model)

Het. VA (%) Fixed VA (%) Difference

GDP 5.05 4.20 0.85
VA of firms 1.42 0.08 1.34
VA of firms: per worker -1.28 -2.60 1.32
Wages 1.79 0.14 1.65
Wages: per worker -0.92 -2.54 1.62
Welfare 30.95 29.76 1.20

Notes: All variables are expressed in real terms. Nominal GDP is adjusted to real terms using a price deflator
at the product level. All other variables are adjusted using the average price index of consumption of all agents.
“GDP” is the total value of production, including housing. “VA of firms” is the total value added of firms.
“Wages” are the total wage bill, and “Wages: per workers” are wages by the mass of employed individuals.
“Welfare” is the mean value of the value function of all individuals. The “Het. VA” and “Fixed VA” column
shows the differences between the “Heterogeneous VA effect” and the “Fixed VA effect” counterfactuals and
the baseline calibration, in percentage points. The last column shows the difference, in percentage points,
between the two variations.
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