
A NECESSARY AND SUFFICIENT CONDITION FOR INFORMATION
CASCADES

HELIOS HERRERA AND JOHANNES HÖRNER

Abstract. We show that the IHRP (Increasing Hazard Ratio Property) and the IFRP (Increas-

ing Failure Ration Property), known statistical properties of signal distributions, are necessary

and sufficient for the absence of information cascades (in finite time) in observational learning.
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1. Introduction

Since the first simple models of informational herding, e.g. Banerjee [1] and Bikhchandani,

Hirshleifer and Welch [2] (BHW, henceforth), introduced the notion of information cascades the

question of whether these cascades are a general phenomenon, robust to a general information

and signal structure, emerged. Information cascades occur if some finite history of observed

actions leads to a situation in which observational learning completely stops, i.e. from some

point on no information can be inferred from observed actions any longer. This happens when a

situation occurs in which all agents from some point on want to take the same action regardless

of their private information, so nothing at all about their private information is conveyed through

the actions they take. While cascades appear to always arise after a finite history of actions in

models with discrete (and bounded) signals, e.g. as in the BHW model (see also Chamley [3]),

Smith and Sørensen [6] have pointed out that cascades do not seem to occur at least for several

examples of continuum distributions of signals. In fact, they show that from some point on there

has to be action convergence (herd), but that information is transmitted from these observed

actions so learning does not stop: even if the same action is observed from some point on, this
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action is never a foregone conclusion. In sum, the question of how pervasive or robust cascades

are remains yet unanswered.1

We characterize when and why cascades may happen in a standard herding model. We show

that the presence or absence of cascades is not linked to the continuity or discreteness of the

signal structure: cascades can indeed occur after a finite history of actions for continuum signal

distributions too. The presence or absence of cascades is linked to properties of the signal dis-

tribution already used in the statistical literature, but new to the literature on social learning.

These properties, the Increasing Hazard Ratio Property (IHRP henceforth, related to upper cas-

cades) and the Increasing Failure Ratio Property (IFRP, related to lower cascades), are necessary

and sufficient for the absence of information cascades. Namely, provided the decision of the first

individual depends on his signal, the decision of all later individuals will do as well or, to use

the language we adopt in this paper, these properties ensure that the posterior public belief

necessarily stays in the learning region provided that the prior belief is in it to begin with. We

also show that discrete bounded distributions always violate the IHRP and IFRP properties and

hence cascades must indeed happen with the discrete information structure.

We first introduce a basic observational learning setup and the notion of no-cascade region.

Then, before giving the general result and its intuition, we show simple illustrative examples of

signal distributions for which cascades can or cannot occur.

2. Observational Learning

2.1. Basic Setup. Consider a basic herding model with the exact timing and observation struc-

ture as the BHW model. Agents arrive sequentially and observe the exact sequence of actions

taken by all their predecessors in addition to their private signal. There are two relevant states of

the world θ ∈ {0, 1}. Each agent faces a binary choice a ∈ {0, 1} and, without loss of generality,

wants to take the action a that is more likely to match the state θ, given all the information

available.2 The payoff of an agent is given by

1It should be emphasized that the absence of cascade does not imply that social learning occurs. Whether

convergence takes place to limit with information cascade, or whether it convergences asymptotically without

cascade, social learning fails in both cases.
2Adjusting for the case in which the benefits from actions are unequal is straightforward.
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u (a = i) :=

{
1 if θ = i,

0 otherwise.

Action 1 will be also interpreted as an “investment,” and the agent taking it as an “investor.”

Agents have private information about the state in the form of a signal x extracted out of a

compact set X ⊆ R.

To fix ideas, assume without loss of generality that X is either [0, 1], R+ or R, and let

x := inf {x : x ∈ X} , x̄ := sup {x : x ∈ X} . Conditional on state θ, the distribution (c.d.f) is

denoted Fθ, and assumed twice differentiable on the interior of X, with density fθ that is bounded

away from zero. (See below for the case of discrete signals, which requires minor adjustments.)

Private signals provide valuable information about the state to the agents. The distribu-

tions are assumed throughout to satisfy the strict monotone likelihood ratio property (MLRP,

henceforth). That is, defining the likelihood ratio of the signal

l (x) :=
f1 (x)

f0 (x)
,

we assume that l (x) is strictly increasing on all the domain X. We let l (x) := limx→x l (x) ∈ R̄,

l (x̄) := limx→x̄ l (x) ∈ R̄. This guarantees that higher values of the signal lead to higher posterior

probabilities that the state is good, for all priors. See Milgrom [5]. Indeed, if p is the public (prior)

belief and L = p
1−p

is its likelihood ratio, then by Bayes’ rule the posterior belief p (x) = Pr (θ|x)

for an agent with signal x solves

p (x)

1− p (x)
= l (x)L.

Hence, the posterior p (x) is strictly increasing in x. Since agents want to take the action that

is more likely to match the state, then agents will take action 0 if l (x)L < 1 and action 1 if

l (x)L > 1. For definiteness, we assume that agents choose randomly if l (x)L = 1, though this

is an innocuous convention when the distribution of signals is atomless.

2.2. Cascade Region and Signal Boundedness. For any signal likelihood ratio l (x), we

define the boundaries of the cascade region as

L :=
1

l (x̄)
, L :=

1

l (x)
,
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where L, L ∈ R̄.3 That is, the public belief is in a no-cascade region if the likelihood ratio L is

in the interval
(
L, L

)
and in a cascade region in [0, L) ∪ (L,+∞].

If the (likelihood ratio of) the public belief L is in the cascade region, then no matter what

the private information is, that is, no matter how high or low the private signal x ∈ X is, actions

are a “forgone conclusion” and from that moment on nothing is learned by observing the history

of actions: if L < L (resp. L > L̄) it is optimal to choose action 0 (resp. 1) independently of x

–hence the expression cascade.

In terms of actual beliefs, the cascade region boundaries are

p :=
L

1 + L
, and p :=

L

1 + L
.

We refer to signals as bounded if the boundaries
(
p, p

)
⊆ (0, 1) and unbounded if p = 0 and p = 1.

We shall restrict attention to signals being either bounded or unbounded.

When signals are unbounded, cascades cannot occur, as for any public belief p ∈ (0, 1), signals

that are extreme enough to lead the agent to take either action have positive probability.

When signals are bounded, cascades can potentially happen even if we start from a belief

inside the cascade region p ∈
(
p, p

)
.

2.3. When can cascades happen for bounded signals? For any given initial belief L ∈
(
L, L

)
, after observing an action a = 1, an outside observer deduces that the agent taking that

action had a signal above the threshold signal x that solves

l (x)L = 1,

if such a threshold exists. Hence, by Bayes’ rule, the public belief L increases to

L+ :=
1− F1 (x)

1− F0 (x)
L.

By the same token, after observing an action a = 0 the belief L drops to

L− :=
F1 (x)

F0 (x)
L.

A cascade can occur if and only if there exists some prior belief L ∈
(
L, L

)
such that L+ > L or

L− < L.

3If l (x̄) = +∞, set L = 0, and similarly, if l (x) = 0, set L̄ = +∞.
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3. Examples of Cascades

3.1. Discrete Bounded Signals. The example of BHW shows that, with binary signals of

finite precision, after observing two consecutive actions of the same type, the learning process

stops. Namely, the public belief becomes so strong in favor of one of the states that no private

signal can make the following agent take the contrarian action. Hence, an information cascade

occurs.

It is easy to see that the same logic goes through with a discrete number of signals of finite

precision. Namely, an informational cascade eventually occurs after almost every history in a

model with a finite number of signals with finite precision (see, for instance, Chamley [3]). We

will come back to discrete signals in Section 4.5.

As mentioned, if there are unbounded signals, e.g. discrete signals with arbitrarily high preci-

sion, cascades cannot happen.

3.2. Continuum Bounded Signals. If instead we consider a model with a continuum of signals

(satisfying MLRP), cascades may or may not occur, as the following examples show.

3.2.1. Symmetric Linear Model: No Cascades. A simple example is

f1 (x;α) = 2αx+ (1− α) , f0 (x;α) = 2α (1− x) + (1− α) , x ∈ [0, 1] ,

where α ∈ [0, 1] is a measure of the informativeness of the signal. Indeed, the support of the

signal likelihood ratio

l (x;α) ∈

[
1− α

1 + α
,
1 + α

1− α

]
=

[
L, L

]
⊆ [0,+∞)

increases in α. In particular,

p :=
1− α

2
, p :=

1 + α

2
,

so for α = 0 any signal is totally uninformative, whereas for α = 1 signals are unbounded: the

extreme, most informative, signals x = 0 and x = 1 perfectly reveal the state.

The threshold x solves

l (x;α)L = 1 =⇒ x =
1 + α− L (1− α)

2α (1 + L)
.

Hence, in order not to have cascades for any

L ∈
(
L, L

)
,
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it must be that

L− =
αx2 + (1− α) x

(1 + α)x− αx2
L =

(1− α) (1 + L) + 2

(1 + α) (1/L+ 1) + 2
> L,

L+ =
1− (αx2 + (1− α)x)

1− ((1 + α) x− αx2)
L =

(1 + α) (1 + L) + 2

(1− α) (1/L+ 1) + 2
< L.

Because L+ and L− are strictly increasing in L, the minimum and maximum are reached at L

and L. But, since we have the following fixed points

L+
(
L
)
= L, L− (L) = L,

then the inequalities above must hold for any interior L ∈
(
L, L

)
: cascades cannot occur.

3.2.2. Cascades with a Continuum of Signals. Consider now instead:

f0 (x) =
3

2

(
2 (1− x)− (1− x)2

)
, f1 (x) = 1, x ∈ [0, 1] ,

which satisfies MLRP. For such a signal distribution, the cascade boundaries are

L =
1

l (1)
= 0, L =

1

l (0)
=

3

2
.

Note that the distribution functions are

F0 (x) =
x (3− x2)

2
, F1 (x) = x.

Let us start from an interior belief, i.e. a belief which falls strictly inside the no-cascade region,

say

L =
4

3
,

so that an agent with signal x = 1/3 is indifferent between both actions. If the action a = 1 is

observed, the public belief jumps to L+, which is in the upper cascade region, as

L+ =
1− F1 (1/3)

1− F0 (1/3)
L =

1− 1
3

1− 13
27

4

3
=

12

7
>

3

2
= L.

Hence, all learning then stops, and the public belief remains “stuck” forever at the value L+.

Hence, cascades may occur with continuous distributions (but bounded signals).

We now give a necessary and sufficient condition for information cascades to occur. Given that

cascades cannot occur with unbounded signals, we assume throughout that signals are bounded.
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4. General Results

4.1. Increasing Hazard Ratio Property (IHRP). Define the hazard ratio at the signal x as

the ratio of the hazard functions4 fθ
1−Fθ

conditional on the good and the bad state, that is,

H (x) :=
1− F0 (x)

1− F1 (x)
l (x) .

The (strict) increasing hazard ratio property (IHRP) holds if this mapping is strictly increasing.

This property was first introduced in the statistical literature by Kalashnikov and Rachev [4].

When ranking the life x of two different populations θ, say θ = 0 and θ = 1, IHRP is referred to

as the “ageing faster property” which probably originates from the fact that the hazard function

fθ/ (1− Fθ) is the instantaneous probability of death for an agent in population θ. Hence, IHRP

means that the probability of death for an agent in population θ = 1 increases faster as x increases

than the probability of death for an agent in population θ = 0.

4.2. Updating Monotonicity. The relevance of IHRP for an observational learning model

comes from the fact that the posterior likelihood ratio L+ after an a = 1 action (good news,

henceforth) is given by

L+ =
1− F1 (x)

1− F0 (x)
L,

where x is the cut-off signal and L is the prior likelihood ratio. Since the cut-off signal solves

L = 1/l(x), then the posterior likelihood ratio is equal to

L+ = 1/H (x) .

To put it differently, IHRP states that this posterior likelihood ratio L+ is decreasing in the

cut-off signal, or alternatively, since the cut-off signal x is decreasing in the prior likelihood ratio

L (under MLRP), that the posterior likelihood ratio L+ is increasing in the prior likelihood ratio

L.

To be a little more formal, let L+ : R → R denote this function mapping the prior likelihood

ratio L into the posterior likelihood ratio after good news L+:

L+(L) =
1

H(l−1(1/L))
.

4The hazard function is often also called hazard rate: we avoid the term hazard rate to avoid confusion with

the term hazard ratio.
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and let us say that the signals satisfy updating monotonicity after good news (UMG) if L+ is

strictly increasing. Given our discussion, the following is immediate.

Proposition 1. Under MLRP, IHRP is necessary and sufficient for UMG.

A corresponding property can be defined for the event in which an agent takes the action a = 0

(bad news). Define the failure ratio K by

K(x) =
F0 (x)

F1 (x)
l (x) ,

for all x ∈ X. The (strict) increasing failure ratio property (IFRP) holds if this mapping is

strictly increasing. Observe that the posterior likelihood ratio, conditional on such an event, is

given by the function L− : R → R defined as

L−(L) =
1

K(l−1(1/L))
.

It follows from IFRP and MLRP that this posterior likelihood ratio after bad news is an increasing

function of the prior likelihood ratio L. Let us say that the signals satisfy updating monotonicity

after bad news (UMB) if L− is strictly increasing. Then it immediately follows that, under

MLRP, IFRP is necessary and sufficient for UMB.

4.3. Updating Monotonicity and Cascades. As it turns out, these concepts characterize the

existence of cascades. Take without loss of generality X = [0, 1]. If the public likelihood ratio

L lies in
(
L, L

)
, as defined previously, an agent’s strategy will depend on his private signal: he

will take action a = 1 if and only if his signal is above some cut-off in (0, 1). (Recall that we

are focusing on the case of bounded signals, so that
(
L, L

)
is a proper subset of (0,+∞), that is

(
p, p

)
is a proper subset of (0, 1).) On the other hand, if this ratio ever exits the interval

[
L, L

]
,

a cascade starts and observational learning stops: all agents take the same action independently

of their signal.

Observe now that, by definition of L, and of the mapping L+, L is a fixed-point of this

mapping, as 1−F1(0)
1−F0(0)

L = L. Similarly, L is a fixed-point of the mapping L−. Therefore, updating

monotonicity after good news guarantees that, if the prior likelihood ratio starts below L, the

posterior remains below it. Similarly, UMB guarantees that the posterior likelihood ratio is above

L if the prior is. See Figure 1.
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L+ L+

L+ L+

b bL̄ L̄

L L

l(1)L l(1)L

0 0L LL̄ L̄L L

Lower Cascade Region

Upper Cascade Region

Lower Cascade Region

Upper Cascade Region

Figure 1. The map L+ and its relationship to updating.

As a result, along with MLRP, IHRP (and IFRP) is a sufficient condition guaranteeing that,

provided that the first agent uses a strategy that depends on his private signal, then all later

agents will: if the game does not start with a cascade, a cascade cannot occur. Conversely, it is a

necessary condition, in the sense that, if either condition is violated, it is possible to find a public

belief p and a cost of investment c (i.e., a threshold L̄) for which a cascade occurs with positive

probability, i.e. one of the two actions will update the belief into the cascade region: simply

consider an interval in which the map L+ is decreasing, choose the prior log-likelihood belief

as well as the threshold L̄ in this interval, with the prior below the threshold, of course. One

investment suffices to start a cascade. We summarize this discussion in our main Proposition.

Proposition 2. Assume MLRP. If IHRP and IFRP holds, and the prior public belief is in
(
p, p

)
,

a cascade cannot occur. Conversely, if either IHRP or IFRP does not hold, there exists (an open

set of values for) a public belief and private signal such that a cascade occurs.

4.4. Intuition for IHRP Failure and Cascades. To get some intuition for these results,

recall that H (x) is the ratio of h1 (x) /h0 (x), where

hθ (x) :=
fθ (x)

1− Fθ (x)

is the hazard function in state θ, namely the density at the cut-off x, conditional on an action

a = 1. If the public belief increases, the threshold x decreases, and therefore, according to IHRP,
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L+

L+

bL̄

L

l(1)L

0 L L̄ L

Lower Cascade Region

Upper Cascade Region

Figure 2. One investment triggers a cascade.

so does H(x). That is, as the public belief increases, and conditional on a = 1, it becomes

less likely that the investor was the least optimistic (among agents who would invest) in the

good state relative to the bad state. To see why this is consistent with updating monotonicity,

suppose that it were the case that, to the contrary, the least optimistic investor was conditionally

more likely in the good state than in the bad state. Because of MLRP, an investment would

still be good news, but, since higher signals are better news, this would mitigate the good news.

The likelihood ratio might not increase much for higher values of L, and this might violate the

monotonicity of the mapping L+.

While it is not clear a priori whether it is more reasonable to assume that the hazard ratio is

increasing or decreasing (or neither), note that, in case it is decreasing, the failure of updating

monotonicity implies that a single decision to invest will trigger an investment cascade. That is,

the dichotomy is rather extreme: if the first agent uses a strategy that depends on his signal, all

later agents will do so if the hazard ratio is increasing (assuming IFRP), while a single investment

will trigger a cascade if the hazard ratio is decreasing. The latter phenomenon characteristic of

the decreasing hazard ratio property (DHRP) can be most easily understood with the help of the

following figure. In Figure 2, one single positive action a = 1 always starts a positive cascade.
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Note that DHRP is inconsistent with both unbounded signals and MLRP, but it is consistent

with MLRP and signals that are not unbounded, as our previous DHRP example illustrated.

Namely,

f0 =
3

2

(
2 (1− x)− (1− x)2

)
, f1 = 1

has DHRP over all the domain, because the hazard ratio is

H (x) =
x+ 2

3x+ 3
,

which is decreasing. So, for any initial prior belief an observed good news action leads always to

a positive cascade.

4.5. IHRP with Discrete Signals. That IHRP (and IFRP) are the necessary and sufficient

conditions for (the absence of) cascades appears to be new. The early literature (for instance,

BHW) established that cascades occur when signals are discrete, while later contributions (in

particular, Smith and Sørensen [7]) showed that this result does not necessarily hold with con-

tinuous signals. Indeed, it is easy to see that IHRP and IFRP are necessarily violated in the case

of discrete signals.

Take a discrete signal model where the signals are x ∈ {x1, x2, ..., xk, ..., xn}. Then UMG is

violated on some points of the domain of the public belief. Indeed, by Bayes’ rule the posterior

likelihood ratio L+ after good news

L+ =

∑

j≥k

P1[xj ]

∑
j≥k

P0[xj ]
L,

decreases discontinuously in L at every threshold indifference point xk. Namely, for every xk

there is a value of L = L̃ for which
P1[xk]

P0[xk]
L̃ = 1

and the function L+ (L) is discontinuously decreasing at every L = L̃.

The hazard ratio H (x), defined as

H (x) :=
P1[x]∑
j≥k

P1[xj ]
/

P0[x]∑

j≥k

P0[xj ]
, xk−1 < x ≤ xk
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is also decreasing at every threshold indifference point xk. (On the other hand, the hazard ratio

is increasing over each interval defined by these thresholds, which goes to show that there are

natural examples in which H is not monotone.)

To understand this, suppose without loss of generality that there are three possible signals.

Suppose that for a given public belief L observing the action a = 1 (good news) transmits the

information that the agent had a high signal, whereas observing the action a = 0 (bad news)

transmits the information that the agent had either a low signal or a medium signal. Now assume

that L increases. At some point, L will reach a threshold level L̃ so that that observing the good

news action instead transmits the information that the agent had a high signal or also a medium

signal. Namely, given this higher prior, also the medium signal is good enough to make the agent

take the a = 1 action. However, now the information transmitted by the good news action is all

of a sudden not as good news as knowing as before that the agent must have had just a high

signal. Hence the updating to L+ drops discontinuously at L̃. In other words, for some ε > 0,

updating monotonicity is violated: L+
(
L̃− ε

)
> L+

(
L̃
)
. Hence, observing good news at L̃− ε

may lead to a cascade. The latter will definitely always occur if L̃ is the highest threshold at

which this discontinuity occurs, that is the threshold L̃ = L at which the set of signals consistent

with action a = 1 goes from being all but the lowest possible signal to all private signals. Note

that the cascade is driven precisely by the discontinuous drop of L+ at L̃.

4.6. Relation between MLRP and IHRP or DHRP. Of course, IHRP neither implies, nor

is implied by MLRP. While MLRP states that higher signals are better news, IHRP states that

this remains true, conditional on truncations i.e. substituting fθ (x) with hθ (x). Therefore, these

two stochastic orders are related, as IHRP implies MLRP if in addition hθ (x) decreases in the

state θ.

For θ belonging to any ordered state space, the properties of monotone likelihood ratio prop-

erty (MLRP), the decreasing hazard function property (DHFP) and the increasing hazard ratio
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property (IHRP) can be stated as

MLRP ⇐⇒
∂

∂x
ln (fθ (x)) is increasing in θ,

DHFP ⇐⇒
∂

∂x
ln (1− Fθ (x)) is increasing in θ,

IHRP ⇐⇒
∂

∂x
ln

(
fθ (x)

1− Fθ (x)

)
is increasing in θ.

Proposition 3. The following holds:

IHRP+DHFP implies MLRP,

MLRP implies DHFP.

Proof. The first implication is trivial as, for θ̄ > θ,

∂

∂x
ln fθ̄ (x)−

∂

∂x
ln fθ (x) >

∂

∂x
ln (1− Fθ̄ (x))−

∂

∂x
ln (1− Fθ (x)) > 0.

For the second implication, we need to show that, for θ̄ > θ, x ∈ X,

fθ̄ (x)∫ x̄

x
fθ̄ (z) dz

<
fθ (x)∫ x̄

x
fθ (z) dz

,

which is equivalent to

∫ x̄

x

(fθ (x) fθ̄ (z)− fθ̄ (x) fθ (z)) dz > 0,

∫ x̄

x

fθ (x) fθ (z)
(
lθ̄,θ (z)− lθ̄,θ (x)

)
dz > 0,

where lθ̄,θ = fθ̄/fθ and the last inequality is implied by MLRP. �

Also, because Smith and Sørensen [6] show that monotonicity of the mapping L+ is implied by

the assumption that the private belief log-likelihood ratio is log-concave, while IHRP is necessary

and sufficient, it follows indirectly that the log-concavity assumption is stronger than IHRP (and

arguably more complicated to verify). On the implications of log-concavity, see also Smith and

Sørensen [7].

Proposition 4. A necessary condition for DHRP for all x ∈ X is l (x̄) = +∞ and l (x) > 0.
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Proof. With MLRP, there has to be an interior “neutral news” signal xNN ∈ X, i.e. a signal that

solves

l (xNN) = 1.

By l’Hôpital’s rule,

l (x̄) < +∞ =⇒ H (x̄) = 1,

and

H (x) = l (x) < 1.

So in order to have DHRP, it must be that H (x) > H (x̄) ≥ 0. This implies l (x̄) = +∞ and

l (x) > 0. �

Call DFRP the (strict) Decreasing Failure Ratio Property.

Corollary 5. DHRP and DFRP cannot simultaneously hold. Also, if either DHRP or DFRP

holds, the distribution cannot be symmetric, i.e. it cannot be that, for all x ∈ [0, x̄− x],

f1 (x+ x) = f0 (x̄− x).

Proof. DHRP implies l (x̄) = +∞ and l (x) > 0 and DFRP implies l (x̄) < +∞ and l (x) = 0.

Evidently we cannot have symmetry when l (x̄) = +∞ and l (x) > 0. �

4.7. Commonly Used Distribution Families. Most but not all distributions commonly used

in economics satisfy IHRP. One exception is the Pareto distribution, which satisfies DHRP, but

violates MLRP.

4.7.1. Exponential. The exponential distribution,

fθ (x) =
e−

x

θ

θ
, x > 0,

satisfies strict MLRP. Because its hazard function is constant,

fθ (x)

1− Fθ (x)
=

1

θ
,

the hazard ratio is constant too. Hence the exponential distribution is a knife edge case, the

posterior after a good news truncation is constant regardless of the prior, so we have a cascade:

from any prior any good news puts the posterior at the upper boundary of the cascade region.
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4.7.2. Distributions that satisfy IHRP strictly. As is readily verified, these include the nor-

mal distribution N (θ, σ2); the power distributions Fθ (x) = xθ, with θ > 1, x ∈ [0, 1]; the

gamma distribution fθ (x) = e−xxθ−1/Γ (θ) (θ ≥ 1, x ≥ 0); the chi-distribution fθ (x) =

e−x2/2xθ−1/
(
2(θ−2)/2Γ (θ)

)
(θ ≥ 1, x ≥ 0), as well as the chi-squared distribution, fθ (x) =

e−x/2x(θ−2)/2/
(
2θ/2Γ (θ/2)

)
(θ ≥ 2, x ≥ 0). All these distributions satisfy MLRP.
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