Pay Growth, Fairness and Job Satisfaction: Implications for Nominal and Real Wage Rigidity

Jennifer C Smith*
Department of Economics, University of Warwick, CV4 7AL, UK.

jennifer.smith@warwick.ac.uk

First version: August 2009
This version: January 2010

Abstract

Several important theories of wage rigidity rely on a positive relationship between pay growth and utility. This relationship is examined using job satisfaction as proxy for utility. Non-linearities are investigated, including the presence of loss aversion, and ‘excess’ satisfaction among those who experience pay freezes.

Results show a significant positive relationship between job satisfaction and real raises: workers prefer large raises - but there are diminishing marginal benefits. Nominal freezes are a special case: they are more highly valued than nominal raises leaving pay the same in real terms. This may be explained, in part, by external referents: workers look at their firm’s performance when assessing the merits of a particular pay change, and appear particularly happy with freezes when real output of the firm’s industry falls (consistent with relief at avoiding warranted nominal cuts). Evidence is also found that workers also compare themselves to others like themselves.

No evidence of loss aversion is found. Instead, data show a ‘pay cut puzzle’: the relationship between pay growth and job satisfaction is less steep for cuts than for raises.

Keywords: Wage rigidity, Pay growth, Pay cuts, Job satisfaction

JEL classification: J30, E24, J28

*I would like to thank Truman Bewley and Peter Howlett for helpful discussions on related issues. The data used in this paper were made available through the UK Data Archive. The data were originally collected by the ESRC Research Centre on Micro-social Change at the University of Essex, now incorporated within the Institute for Social and Economic Research. Neither the original collectors of the data nor the Archive bear any responsibility for the analyses or interpretations presented here.
1 Introduction

Wage dynamics are complex: micro data reveal notable heterogeneity, with significant nominal and real rigidity for some coexisting with apparent flexibility for others. This paper aims to contribute to the understanding of wage dynamics by means of an investigation of the utility implications of pay changes. Pay growth is examined in the context of a model of wage-setting based on fairness, where workers’ utility depends on how their own income compares with ‘reference income’ (Akerlof and Yellen 1990). Conceptualising reference income is not easy. It is certainly reasonable to assume that comparisons are made with similar (‘salient’) others, but it also seems reasonable to assume that an individual’s own past experience will have an impact on what that individual currently expects. The possibility that wage rigidity might have ‘behavioural’ or ‘fairness’ foundations (which could interact with institutional characteristics in a complex way) has long been recognised - for example in the ‘equity theory’ of Adams (1963). A key feature of theories involving ‘behavioural’ features is that the utility function is not simply based on absolute income, but also includes relative terms. Workers will experience a reduction in utility if the wage falls below a certain level (the ‘reference point’).

Fairness-based theories can explain downward nominal wage rigidity (DNWR) if the referent - the comparator when assessing the utility of own current income - is own past nominal income. Real rigidity (DRWR) can also follow, if the worker compares current real income with past real income. Loss aversion is also an important corollary of relative wage theories: the utility loss arising from downward deviation from the reference point exceeds the utility gain from achieving in excess of the reference point. The implication that utility depends on nominal or real pay changes has been the subject of very interesting experimental and survey empirical studies (Kahneman and Tversky 1979, Abeler et al 2009, Blinder and Choi 1990, Agell and Lundborg 1995 and 2003, Campbell and Kamlani 1997, Bewley 1999), but the number of papers attempting to assess the implications using ‘field data’ is small (Mas 2006).

This paper contributes by using field data representative of the British population during 1991 to 2007, and using job satisfaction data as a proxy for utility. Two hypotheses are

1See for example, international evidence in Dickens et al (2007) and Holden and Wulfsberg (2008; 2009).

2It is more common in the literature to use ‘external’ rather than ‘past internal’ referents (see Clark, Frijters and Shields 2008 for a review). I investigate the impact of external referents empirically below.

3Loss aversion refers to people’s tendency to strongly prefer avoiding losses to acquiring gains. Under loss aversion, the value function is concave in gains, but convex in losses - and in particular the value function is steeper for losses than for gains (Kahneman and Tversky 1979, Tversky and Kahneman 1991).

4Related work has bypassed utility and instead investigates its consequences, assessing the impact of pay on measures of worker performance and labour supply. For example, Camerer et al (1997) and Fehr and Goette (2007) find evidence consistent with a ‘target income’ model, at least among some workers. Fehr and Goette’s
examined by estimating ordered probit and probit-augmented OLS (POLS) models: Does job satisfaction depend on the change in pay in addition to the level of pay? And, if so, does the effect of a pay change differ between increases and decreases (either real or nominal)?

Despite some initial reservations amongst economists about the use of subjective measures, the use of job satisfaction and other ‘happiness’ data to investigate economic issues has grown rapidly in recent years. Surveys of this literature can be found in Frey and Stutzer (2002), Layard (2005), and Clark, Frijters and Shields (2008). Clark (1999) is one of very few papers to investigate the impact on job satisfaction of pay changes. Using British Household Panel Survey data from 1991 and 1992, Clark finds the effect of pay to be totally dynamic: the negative (‘reference’) effect of lagged pay is equal to the positive effect of current pay. Clark (1999) uses dummies for nominal and real cuts but does not detect significant non-linearity in the effect of pay growth on happiness, thus finding no evidence of loss aversion. Grund and Sliwka (2007) find that job satisfaction is positively related to pay change using German Socio-Economic Panel data from 1994 to 2002. Grund and Sliwka (2007) do not distinguish between nominal and real changes (nominal pay is used but year dummies control for price changes) and nor to they investigate loss aversion. Kawaguchi and Ohtake (2007), using Japanese survey data from 2000, find that workers’ satisfaction with annual compensation and their change in morale over the past three years are both reduced by nominal pay freezes (relative to raises), and reduced further by nominal cuts. (The Japanese survey was undertaken during deflation and there is no information about whether the nominal cuts involved real cuts or raises.) Kawaguchi and Ohtake (2007) are not able to investigate the impact of the size of pay change on job satisfaction, which is an important part of the present study. One of the few papers to investigate the impact of the size of pay change ‘loss’ using field data is Mas (2006). Mas finds that New Jersey police performance declines after an arbitration decision against the union claim and in favour of the (lower) employer offer, and that the performance decline is increasing in the size of the loss.5

Understanding heterogeneity is an further important part of this study: the utility of a given nominal or real pay growth may depend on what is happening to similar others or on the performance of the worker’s firm. Are there some individuals who are willing to take a pay cut - and, if so, what characteristics or events are responsible?

5 The average difference between offer and claim was about 1.5% (p.808). It is worth emphasising that in Mas (2006) the relativity that is inducing changes in effort is deviation of pay raise from expectations (embodied in the union claim).
The paper proceeds as follows. Section 2 sets out a basic modelling framework. Section 3 briefly discusses data and method. In Section 4 results are presented. Flexibility is addressed prior to investigating rigidity. Section 5 concludes.

2 The relationship between job satisfaction and pay growth

In this section I set out a simple model of the effect of pay growth on job satisfaction, using the general framework typically used to capture reference-dependent utility (Clark and Oswald 1996; Clark 1999; Clark, Frijters and Shields 2008). Utility is assumed to be increasing in consumption, which is a function of real labour income. If comparisons matter, utility also depends on reference income. In common with the satisfaction literature, job satisfaction is assumed to reflect utility from working, which forms a sub-utility function:

\[U_{it} = u(y_{it}, y_{it}^r, h_{it}, X_{it}) \]

where \(y_{it} \) is real pay for individual \(i \) at time \(t \), \(y_{it}^r \) is the individual’s reference point for real pay, \(h_{it} \) are the individual’s working hours at \(t \), and \(X_{it} \) is a set of individual-, job-, region-, industry-, occupation- and time-varying characteristics.

If an individual’s past labour income is a salient reference point, their utility will also be increasing with changes in real labour income:

\[U_{it} = u(y_{it}, \Delta y_{it}, h_{it}, h_{it-1}, X_{it}) \]

where \(\Delta y_{it} \) is the individual’s real pay growth between \(t-1 \) and \(t \), and last period’s working hours \(h_{it-1} \) may also influence current utility. The phenomenon known variously in the literature as ‘habituation’ or ‘adaptation’ to a given level of income would suggest that changes in income should matter (this has also been termed the ‘hedonic treadmill’ - see Clark, Frijters and Shields 2008 for a review).

If there is loss aversion, there will be a kink in the relationship between utility and changes in real labour income. \textit{A priori} it would be difficult to ascertain whether such a kink should occur at real or nominal zero. If there is money illusion, of course, one might expect the kink to occur at nominal zero. Although Shafir, Diamond and Tversky (1997) famously present a variety of survey and experimental evidence that money illusion exists under certain circumstances, other research has found less or no evidence. Fehr and Tyran’s (2001) experiments unearthed only a "small amount" of money illusion, and Boes, Lipp and Winkelmann (2007) use German Socio-Economic Panel data to show that income satisfaction responds equally, but in opposite
directions, to changes in nominal income and prices, illustrating an absence of money illusion.

The response of happiness to pay can be used to distinguish between theories explaining why pay might be rigid. The most relevant are probably efficiency wage theories. Akerlof and Yellen (1990) note that their fairness model might apply to either real or nominal pay. Bewley’s (1999) ‘morale’ theory emphasised that nominal cuts might ‘insult’ workers, leading to a direct impact on utility. The counterpart to dissatisfaction with nominal cuts is that people with nominally rigid pay might be unusually happy as they have avoided a nominal cut.

The definition of morale is not straightforward. According to Bewley (1999, 2002) it has three components: identification with the firm’s objectives; belief in positive reciprocation (gift exchange); and “a mood conducive to good work” (2002, p.5). Although morale is not identical to job satisfaction, job satisfaction will undoubtedly reflect morale, and is likely to be related to all three of Bewley’s components. (Satisfaction with pay is a sub-domain of overall job satisfaction and is likely to reflect the perceived fairness of pay but might be less correlated with morale as it ignores other aspects of the job.) “Managers are concerned about morale because of its impact on labor turnover, on recruitment of new employees, and on productivity” (Bewley, 2002, p.5). Unhappy workers will quit if they can. Unhappy workers will not be a good advertisement or good recruiters for the firm. In terms of productivity, Bewley suggests that morale has little impact on the speed of production, but instead affects workers willingness to make sacrifices, work well without supervision, communicate, and so on.

What about the relationship between pay raises and morale? Bewley (2002) records that “employers say they do not see much connection between effort or morale and wage levels; productivity and morale do not increase with pay levels, though they can be hurt by pay reductions or disappointingly small raises. Even generous pay increases do not increase morale or productivity, because workers quickly get used to increases and grow to believe they have a right to them” (p.8). In this, Bewley’s morale theory differs from the fairness theory of Akerlof and Yellen (1990) and Solow’s (1979) efficiency wage theory, which do propose a link between the wage level and morale.

In the following sections I hope to shed light on the following questions: Do workers really resist cuts, or do they get something else to compensate? Are (some) workers unhappy when their pay is cut (and, if so, which workers)? Are workers unusually happy receiving rigid pay, knowing that they have avoided a ‘warranted’ pay cut? Are patterns of happiness with pay change correlated with observable features of jobs and the wider economy?

3 Data and method

Data are drawn from the first 17 waves of the British Household Panel Survey. Weighting ensures that the sample remains representative of Britain (below the Caledonian Canal in Scotland). The BHPS contains quite rich data on job satisfaction, pay, individual and job characteristics that are described further below. These data are supplemented by measures of regional and industry performance. Data are taken from the UK Office for National Statistics on regional unemployment, regional gross value added per head, industrial output at the 2-digit Standard Industrial Classification level and aggregate prices. The Data Appendix gives further details.

As suggested above, job satisfaction should reflect morale, and this correlation is likely to be highest with overall job satisfaction. An individual reports their job satisfaction by choosing one of seven categories, ranging from “not at all” to “completely” satisfied. As is well known, most people regard themselves as reasonably ‘happy’. For the waves examined here (1992 on, since the first wave is lost through calculation of pay growth) nearly sixty percent of respondents rate themselves “completely” or “mostly satisfied” with their jobs overall.\(^6\)

Bewley (2002) has a careful discussion of the important issue of what measure of pay is relevant to workers and firms in terms of fairness. He notes that for the firm what matters is average hourly nominal labour cost per job, while employee welfare relates to total nominal compensation per worker. But when it comes to the wage measure that is the focus of judgements of fairness, Bewley’s extensive field experience leads him to conclude that it is “nominal compensation for an employee with a given job tenure and continuing in the same position with the same employer under fixed working conditions” (hourly rate and benefits for hourly-paid and total compensation for salaried employees) (Bewley, 2002, p.3). Measures of total monthly pay and basic hourly wage rate for stayers go some way to embodying this definition. Bewley goes on to say that “in order to adhere even more closely to the sense of fairness prevailing in business, it might be advisable to include only base pay and exclude variable components, such as bonuses” (p.3). The basic hourly pay rate captures this notion of the wage, for hourly-paid workers. Following the precedent of the International Wage Flexibility Network (Dickens et al 2007) I trim the sample to remove large pay changes likely due to error. Earnings growth below -85% and above 100% and hourly wage rate growth below -35% and above 65% are trimmed.

\(^6\)A histogram of job satisfaction is shown in Figure A2 in Appendix 2. Satisfaction with pay tends to be lower than overall job satisfaction, which may indicate compensating differentials for non-pecuniary aspects of the job, which are examined below.
As is commonly found, such trimming actually makes no difference to results.

BHPS data show that, on average over 1992 to 2007, 8.4% of pay changes involve nominal freezes and 24.5% involve nominal cuts (Figure A1 in Appendix 2 shows the evolution of rigidity and cuts over the sample period). 9.6% of pay changes feature nominal raises that do not raise pay in real terms. The remaining 57.5% enjoy real raises. The extent of pay cuts - and cuts in basic hourly wage rate - may appear surprising. Under UK employment law, employers cannot unilaterally cut an employee’s pay. An employer who forces a pay cut on an unwilling employee could be subject to a claim against them for breach of contract. However, in their defence, the employer could legally use evidence that there are genuine business or economic reasons why the cut has to be forced upon the employer.

Controls include standard variables in satisfaction equations and others less commonly included. These variables are included to capture systematic and non-job-related factors rendering an individual happier or otherwise. Controls include a quadratic in age, gender dummy, three ethnic status dummies, four marital status dummies, number of children aged 16 or below, a dummy for health problems, three education dummies and the log of real non-labour income. Macroeconomic and local labour market conditions are controlled for by the use of year dummies (fifteen for earnings and seven for wage rate) and eleven region dummies. I experiment with quadratics in tenure and experience (with dummies for missing values). Job-related controls include nine occupation dummies and seventeen industry dummies. Other job characteristics include trade union membership, part-time job dummy, temporary/casual/seasonal job dummy, manager and supervisor dummies, travel-to-work time in hours, dummy for evening and night working, dummy for working elsewhere than employer’s premises, nine dummies for workplace employment size, and dummies for employer bonus and pension schemes and being on an incremental pay scale.

Most of the empirical work in this paper uses the ordered probit model often used in the life- and job-satisfaction literature to allow for the categorical nature of the dependent variable. The literature typically simply reports the coefficients of such models. The estimated coefficient should reflect the impact on the latent continuous propensity to be satisfied. In most of this paper I prefer to report marginal effects, and I do so for the top two categories: mostly or completely satisfied. For dummy variables (which will be the major focus), marginal effects are interpreted as the effect on the average individual’s job satisfaction of moving into the relevant satisfaction category. The size and sign of marginal effects depend on estimated cut-
points differentiating each of the (seven) categories of the observed ordinal variable, as well as coefficients (the cut-points are not shown as by themselves they are difficult to interpret). The relative size of marginal effects for categories of job satisfaction can be inferred from the size and sign of the coefficient, but the cut-point estimate is also needed to infer precisely where in the range of job satisfaction categories the marginal effect switches sign. The advantage of marginal effects, in addition to their interpretability, is their comparability across sub-samples, which will be important in what follows. In contrast, because cut-points can vary across samples, an ordered probit coefficient is not necessarily comparable across subsamples.

Due to the complexity of many of the ordered models, it is rare for allowance to be made for selection. I do so here using the Probit-augmented OLS method devised by van Praag and Ferrer-i-Carbonell (2008). POLS transforms the categorical satisfaction variable into a continuous variable lying anywhere on the real line. POLS is therefore an alternative approximation of (the natural log of) the latent tendency to be satisfied with the job. Under POLS the sample probability of falling in each category is calculated. Then, by assuming that the natural log of the latent tendency to be satisfied follows a normal distribution, these probabilities are used to ‘back out’ the underlying latent tendency to be satisfied. For each sample proportion, the POLS dependent variable - the approximated latent tendency - takes the value of the conditional mean of the interval into which the sample proportion falls. As discussed in van Praag and Ferrer-i-Carbonell (2008, especially Chapter 2), POLS and ordered probit give very similar results (subject to a scaling factor - see also Stewart 1983). POLS is far less time-consuming to implement, and enables richer models - such as those allowing for selection - to be easily estimated.

4 Results

I start by presenting results showing that pay growth impacts on job satisfaction. In subsequent sections I examine possible non-linearity in that relationship.

4.1 Job satisfaction, pay, pay growth, and hours

Ordered probit coefficients on pay variables are shown in Table 1. These result from estimation of a job satisfaction regression typical in the literature: controls include usual weekly hours of work (including overtime), age, gender, ethnicity, children, health problems, non-labour income,
region and year. I deliberately exclude job-related variables from the regression at this stage in order to obtain estimates of the impact of pay that may include compensation for non-pecuniary features of the job. These and other factors will be investigated in detail below.

The effect of log real weekly usual earnings, y, is positively related to overall job satisfaction. When real pay growth, Δy, is included it appears to have a positive impact even controlling for current real pay and lagged hours (column (2)). Real raises make people happier, and the larger the raise the greater the happiness improvement - results consistent with ‘adaptation’ and past income levels acting as a referent. Results of previous research using life satisfaction suggest that adaptation removes around two thirds of the benefit of any income rise (Frey and Stutzer, 2002; Layard, 2005). Table 1 indicates that adaptation to earnings may be substantially faster (although not as fast as found by Clark 1999, where job satisfaction was found to depend only on pay growth and not on pay level). Both current and lagged log hours negatively affect job satisfaction. Interpreting the coefficients differently, these results show a positive impact from hours growth (coefficient +0.161) and a negative impact from current hours (-0.362).

The focus of this paper is on pay growth, so it is worthwhile taking a little time to consider the best measure - although it turns out that conclusions are not altered by the precise measure chosen. The pay variable in columns (1) and (2) is usual gross weekly earnings. The use of weekly, rather than hourly, earnings is motivated by the facts that hours data are measured with substantial error (Bound, Brown and Mathiowetz 2001), and results are typically qualitatively similar but less well-determined when pay divided by hours is used instead. To ensure validity of total earnings, column (3) replaces total real pay growth with hourly real pay growth, but retains the log of total real pay as the ‘income’ variable in the regression and continues to control for both current and lagged log hours. Given I control for the change in hours, it is not surprising that real hourly pay growth is found to impact positively on job satisfaction, nor that results are not changed if the log of real hourly pay is used instead of log real total pay.

From 1999 there is information on basic hourly wage rate for hourly-paid workers. For these workers, this variable comes close to the ideal of capturing the wage that is the focus of the employment contract (Dickens et al 2007). Column (4) focuses on the impact of wage rate growth, which can be seen to have a positive relationship with job satisfaction. Interestingly, for hourly-paid workers, the effect of pay appears dynamic - there is no impact from either the (log) level of real earnings (as shown) or log real hourly wage rate when this is used instead. Thus the effect disappears after a year (consistent with very rapid adaptation): the negative
impact of lagged wage rate exactly counterbalances the positive effect of current wage rate. I note, though, that the size of the coefficient on the log of real earnings is similar to that when other pay variables are used; and if the full unweighted sample is used, the log level of earnings reaches significance at the 6% level (and other coefficients are unchanged).

Relationships between job satisfaction and control variables are very similar to those found previously. There is a U-shaped relationship with age (Clark and Oswald 1996), higher satisfaction among women (Clark 1997), lower satisfaction among better-educated and lower satisfaction among those with poor health (Clark and Oswald 1996). There is a U-shaped relationship with job tenure (Theodossiou and Zangelidis 2006) - but the inclusion of tenure does not alter the impact of pay or pay growth. I experimented with including a quadratic in actual job experience, but its effect was no different to that of age (potential experience).

4.2 Nonlinearity in the job satisfaction - pay growth relationship

Results so far indicate that as long as current and lagged hours are controlled for, it does not matter whether total or hourly pay is used in the regression. The main point of interest for this paper is that pay growth impacts positively on job satisfaction. Of course, these initial results are based on a pooled sample including both men and women, and full-time and part-time workers. There may be important differences across these subsamples that I investigate below. In this section I turn to the main focus of this paper: whether the effect of pay growth is nonlinear. Since Table 1 confirmed that there are no differences between results for hourly earnings and total earnings if I control for hours, I focus on total pay and hourly basic wage rate. (The results for hours are not shown as they do not differ from those reported in Table 1.)

To investigate nonlinearity in the effect of pay growth, Table 2 replaces real pay growth with dummy variables covering pay changes of various sizes. To summarise the three key hypotheses investigated: Loss aversion should be reflected in a more positive impact of pay growth below nominal (or real) zero (a steeper relationship for pay cuts). An ‘insult’ effect from nominal cuts might show up as a lower level of job satisfaction below nominal zero. Nominal rigidity might induce greater job satisfaction as workers are relieved to have avoided warranted cuts.

In the first column of Table 2 the effects are relative to a rough approximation of unchanged real pay - this is measured as a band covering the inflation rate plus or minus 0.5 percent inclusive (1,740 observations in the sample). This is the base case for a series of dummies
covering (real) pay changes of various sizes, with an extra dummy for nominal pay rigidity (real growth equal to minus inflation, which is excluded from both other relevant dummies; inflation averages 2.7% in the sample). As expected, real raises make people happier, and the larger the raise the greater the happiness improvement - although the positive impact is only significant for real pay raises of around 5 percent and above. But there are two most striking findings. Contrary to expectations, job satisfaction is not generally significantly worsened by either nominal or real cuts. The other striking finding is the exception to this general result: those who have nominally rigid pay actually appear more satisfied with their job than those whose nominal pay raise only deviates from inflation by 0.5 percent - and so do those with small nominal cuts (equivalent to real cuts of between 2 and 5 percent).

Column (2) elucidates these results by including a set of dummies defined in terms of nominal pay growth, with a base case of nominal freezes (2,659 observations in the sample). Consistent with freezes being relatively good compared to nominal cuts, nominal cuts greater than 2 percent have negative coefficients - but only cuts between 10 and 20 percent are significant (and only at the 10% level). Raises improve job satisfaction relative to nominal rigidity if they are bigger than 20 percent in nominal terms, and small raises between 2 and 5 percent attract negative coefficients - significant in the case of +3% and +4%. Sample inflation varied between 0.7% and 4.8%, so this is consistent with the picture from Column (1) that individuals whose pay is (close to) rigid in real terms are relatively dissatisfied with their job.

Results for earnings are consistent with concavity in the pay growth - job satisfaction relationship for real raises, but are clearly inconsistent with convexity for cuts. Indeed, the relationship for nominal cuts apparent from these initial regressions can best be described as surprisingly ‘flat’ over much of the range. The question why pay cuts are not more painful (in a job satisfaction sense) is addressed below. Proponents of nominal rigidity should not despair, however, as results overall show high job satisfaction from freezes: a real raise of around 5% is needed before people are happier than they are with freezes. This is in part related to the second surprising finding: that individuals who maintain the real value of their earnings are relatively dissatisfied. I also investigate this further below.

The lack of evidence of loss aversion is completely contrary to Mas (2006), who demonstrated that police performance was decreasing in size of ‘losses’ represented by deviation of arbitration award below claim. However, there is a suggestion here of what Mas terms the ‘Vince Lombardi effect’ (after a professional football coach who said that “winning isn’t everything, its the only
thing" - but might more accurately be called the ‘insult effect’ (following Bewley, 1999). This takes the form of a ‘category effect’: nominal cuts are worse, no matter how trivially small they are. This discontinuous drop in satisfaction with nominal cuts holds only for small and medium cuts. Higher satisfaction with larger losses is surprising - but not unprecedented: an increase in satisfaction at the lowest quintile of pay growth was also noted by Clark (1999). Possible explanations are discussed below.

The lack of a steeper relationship below zero was also uncovered by Vendrik and Woltjer (2006) using German Socio-Economic Panel data. Vendrik and Woltjer (2006) model the relationship between job satisfaction and pay change using two separate power functions above and below zero. The use of power functions, rather than the usual logarithmic form, allows them to test convexity below zero (a log form implies concavity below as well as above zero). They reject convexity and indeed find stronger concavity below than above zero, which is at least qualitatively similar to the picture from British data.

The fine print of the hourly basic wage rate growth - job satisfaction relationship is investigated in columns (3) and (4). As for earnings, column (3) shows dummies with a base case of approximate real rigidity and defined in terms of real growth rates, whereas column (4) has a base of nominal freezes and dummies defined in terms of nominal growth rates. As for earnings, there is greater, but diminishing, satisfaction with real raises. Unlike for earnings, the size of the coefficients is consistent with lower satisfaction as wage cuts become more negative, but nothing is significant. And there is no indication that wage freezes make hourly-paid workers unusually satisfied with their job.

A very important caveat to bear in mind is that Table 2 shows pay effects ‘uncompensated’ by any job-related factors, or changes in such, that might counteract or compensate for (i.e. be inversely correlated with) pay changes. The inclusion of controls for potential compensating factors is very likely to lead to a different picture. A flat relationship between job satisfaction and pay cuts might be consistent with compensating changes taking place elsewhere in the job - but raises clearly are not solely compensating for adverse non-pecuniary changes.

It is clear that the relationship between pay growth and job satisfaction is not easily summarised, due to intricate variation around key points in the pay growth distribution. From now on I will adopt a largely graphical presentation which will, I hope, be relatively clear and digestible. In the graphs I will present marginal effects from regressions involving the dummies in column (2) of Table 2 - that is, with base case nominal zero.
I use marginal effects because I wish to compare results across different samples and different control variables. Seven marginal effects are obtained from the seven-category job satisfaction variable, and I will present the sum of the marginal effects for the top two categories - thus capturing the impact of a particular pay change on the probability that the average individual is mostly or completely satisfied with their job. (In practice marginal effects are very similar, subject to a scaling factor, compared to coefficients.)

Figure 1 disaggregates by gender and part-time status for earnings and hourly wage rate (the sample of part-time men is too small to generate reliable results and is omitted). Full-time women and full-time men both feature the whole-sample concave relationship between real earnings raises and job satisfaction. For hourly-paid workers the pay growth - satisfaction relationship shows no sign of concavity, being linear or even convex. The dip in satisfaction around pay rigid in real terms seems to apply to all workers. For all except hourly-paid men there is a rise in satisfaction around nominal freezes and lower satisfaction with smaller nominal cuts. Satisfaction for these workers is relatively high for nominal raises of between 0% and 1% (exclusive); some might find this suggestive of these being workers with a warranted nominal cut whose firms thought it in their interest to award an (epsilon-)small raise rather than simply freeze pay. Hourly paid men contrast with other groups, featuring lower satisfaction with nominal freezes than with nominal cuts. For many groups there is an insignificant or flat relationship with larger cuts; the exceptions are part-time women’s earnings and full-time women’s hourly wages, both of which show some strong dissatisfaction with nominal cuts.

What about loss aversion? Two very different readings of these data are possible. If one takes, piecewise, the relationships above real zero and for small cuts below nominal zero (to -20% for earnings and -10% for wages), the relationship below nominal zero is substantially steeper than that above real zero. This contrast is fundamental to loss aversion - but the picture described ignores satisfaction shifts between real zero and nominal zero, and perhaps more crucially ignores large cuts. An alternative reading would look at the whole relationship and conclude, because typically the picture is flatter below zero than above, that there is no evidence of loss aversion. To decide between these it would be useful to know how reliable are the data on large cuts - an issue investigated further below.

There are other possible explanations for the relationship between satisfaction and nominal pay cuts. I have suggested that last year’s pay will only represent a reference point under certain circumstances. Perhaps, for everyone receiving pay cuts, it is simply not a reference
point. Perhaps ‘similar others’ are receiving nominal cuts, and perhaps the individual’s firm’s performance is very poor. I investigate both of these possibilities below.

Perhaps nominal cuts lead to turnover concentrated among most able workers. This is certainly feared by employers (Bewley, 1999). If remaining lower-ability workers are relatively satisfied with the reduced nominal income (as they have lower expectations or reference points) this could explain the findings. However, there is some evidence that relative losses do not induce quits: Mas (2006) finds no change in police employment after arbitration rulings against the union - although all his arbitrated settlements involved nominal raises, and most real raises. Below I investigate the relationship between rigidity and turnover further by splitting the sample between union and non-union workers. Holden and Wulfsberg (2008) argue that it would be difficult for a firm facing a union contract to replace workers whose wages were held up by rigidity. As noted by Holden (1994), this is a key area where ‘institutional’ and ‘fairness’ effects might reinforce each other.

Can further investigation:

- confirm or refute that the relatively high satisfaction with nominal freezes (and small nominal raises lower than 1%) is due to these being experienced by workers warranting nominal cuts?
- help explain why real rigidity is associated with dissatisfaction with the job?
- validate loss aversion?

To answer these questions I:

1. Try to eliminate measurement error in pay growth. If spurious cuts are eliminated, is the pay growth - satisfaction relationship more significantly and steeply sloped below zero?

2. Investigate the impact of unions. Union membership has previously been found to have a negative relationship with job satisfaction (Freeman 1978). Does this effect work in part through the impact of unions on pay growth? Perhaps unionised workers expect higher pay raises than other workers.

3. Control for comparisons with external reference groups - including ‘similar others’ and the firm. Workers might accept cuts if ‘everyone else like them’ is taking cuts, or if their industry is doing badly.
In discussing issue 1 (measurement error in pay) - I will primarily focus on whether they change the surprising results concerning pay cuts. Unions and comparisons (issues 2 and 3) might impact on both pay cuts and rigidity.

4.3 Robustness checks: sample selection and measurement error

Robustness checks were carried out to ensure the results were not driven by sample selection or measurement error.\footnote{Recall that I have already removed large pay changes likely due to error by trimming pay growth (see Section 3).}

Stayers might form a selected sample of those employed last period. As discussed above, one response to pay cuts might be quits - particularly by most able workers. Alternatively, the firm might need to reduce employment if the wage bill is held too high through downward rigidity. Furthermore, it is commonly found that workers who leave their job include a substantial subset who are very frequent job changers, and who alternate between employment and non-employment (see Stewart 2009, for example).

To find out if selection is affecting results sample selection models were estimated using POLS - ‘probit-augmented OLS’ - to estimate job satisfaction equations (see Section 3). Selection into the estimating sample was captured by a probit model, with the dichotomous dependent variable taking value 1 if the worker was employed last period and this, and did not change employer, and the job satisfaction equation could be estimated (specified as underlying Figure 1). The selection variable took value 0 if the worker was employed last period but was either with a different employer or not employed this period, and the individual fell into the relevant subsample (male or female). The model was estimated by maximum likelihood. Identification was ensured by the inclusion of additional variables in the selection probits, where the identifying regressors were jointly significant in the selection equation (and, in a separate test, were found jointly insignificant when included in the job satisfaction equation).\footnote{The identifying variables were the regional unemployment rate and its first difference, regional gross value added per capita, and the RPI inflation rate. For females, dummies for house tenure (private renting and renting from local authority, with base case home ownership) were additionally included. For each subsample a test of joint exclusion of these regressors in the job satisfaction equation could not be rejected (with significance level 32\% or larger) and their joint insignificance in the selection probit could be rejected at the 1\% level or smaller.}

The hypothesis of sample selection as measured by the Wald test of independence of selection and job satisfaction equations could not be rejected: the correlation between the error terms of the two equations was not significantly different from zero at conventional levels. Thus sample selection does not appear to influence job satisfaction equation results. This result is
possibly due to heterogeneity among non-stayers: non-stayers include a substantial proportion of voluntary movers as well as involuntary or ‘disadvantaged’ job leavers, so effectively on average might not differ from stayers.

I now turn to the question whether the unexpected (lack of) relationship between pay cuts and job satisfaction reflects measurement error in pay. Most importantly, does the slope of the pay growth-satisfaction relationship below nominal zero reflect the reality, as suggested by Akerlof, Dickens and Perry (1996), that many nominal cuts are spurious, being due to measurement error in pay levels? Alternatively, if cuts remain when data are ‘cleaned’ of error, will the expected significantly detrimental effect of cuts on satisfaction be found?

Researchers into nominal wage rigidity have typically been very aware of measurement error in pay growth. It is well known that measurement error in pay translates into spurious pay changes. Akerlof, Dickens and Perry’s (1996) claim that many wage cuts are indeed spurious is based on comparing PSID data with their own telephone survey, union settlements, and employer-reported pay. A series of papers (Altonji and Devereux 2000; Fehr and Goette 2005) have estimated models of wage rigidity making some distributional assumption about measurement error in pay, all finding that cuts are overstated and rigidity understated in the data. Research within the International Wage Flexibility Network summarised in Goette, Sunde and Bauer (2007) finds, though, that the earlier work that does not allow for real wage rigidity overestimates the impact of measurement error on nominal wage rigidity: once real wage rigidity is allowed for, far less downward nominal rigidity is found. Statistical comparisons tend to find less impact of measurement error than econometric models (which typically need to make identifying distributional assumptions that may not always hold). Dickens et al (2007) concluded, by comparing several different types of data source involving 16 countries, that differences in rigidity and flexibility across countries were not due to measurement error. Smith (2000) reports no higher nominal rigidity and only slightly less downward flexibility apparent in a relatively measurement-error-free subsample of BHPS data where workers’ pay slips were examined at the time pay was reported.

Measurement error was examined by looking at two specific subsamples that are very likely free of measurement error. The first subsample consists of those cases where the interviewer has documentary evidence on pay. Within the BHPS there is information about whether the pay slip - given to the worker by the employer as a record of pay - was checked when the response on pay was given. The pay slip was examined in both relevant years by just under 30% of the
The second subsample consists of data since the introduction of computer-assisted ‘Dependent Interviewing’ (DI) in 2006 should have helped clean data of pay change errors. An income check question is now triggered when the computer-aided comparison of last year’s hourly pay with this year’s indicates a nominal cut bigger than 30% or nominal raise bigger than 40% (for stayers, or 60% for movers), which means that waves 16 and 17 should be free of large pay change errors.

In both error-free subsamples, there appeared to be a greater ‘insult’ effect (discussed above): satisfaction with cuts was lower - but increasing size of cut did not lower satisfaction. Otherwise, the only significant difference compared to the full sample is a greater - and seemingly more concave - effect on satisfaction of large raises. Payslip-checked and DI-checked data both do not feature any significant relationship between nominal pay cuts and job satisfaction.

Further error might be introduced by interviews taking place at varying time intervals not exactly coinciding with settlement dates. Many wages change at annual frequency, and on a set date each year. Interviews more than twelve months apart might capture two wage changes, while interviews at less than annual frequency might miss a pay settlement. Whether time between interviews makes a difference can be investigated by allowing the effect of wage change dummies to vary depending on whether the inter-interview period is more or less than one year. Many individuals with a shorter interval between interviews will have had a pay change, but some will not. Most individuals with a longer time between interviews will have

9The questionnaire emphasises "RESPONDENT TO CHECK PAY SLIP IF POSSIBLE", and whether the respondent checked the latest or an earlier pay slip is recorded. For hourly-paid workers, there is also information about whether the wage rate stated is "exact" or "estimated". The precise wording is "What is your hourly rate of pay for your basic hours of work? WRITE IN AMOUNT PER HOUR. IF EXACT AMOUNT NOT KNOWN ENTER APPROXIMATE AMOUNT AND CODE 'Estimated amount' BELOW".

10On the basis of previous waves, Jackle, Lynn and Uhrig (2007) report that the income check question would have been asked to around 10% of respondents. The income check question, which is asked in relation to net pay if possible or gross pay if not, is: “So your [net] pay has gone <UP/DOWN> since last time we interviewed you, from <CONVERTED AMOUNT> per <PERIOD> for a <TOTALHOURS> hour work week (including overtime), to <AMOUNT STATED THIS YEAR> per <PERIOD>, is that correct?” (Yes / No / Don’t Know or Other). Respondents not confirming that the pay change was correct are asked for a verbatim explanation of the recorded pay change. Jackle, Lynn and Uhrig (2007) mention big promotions as a possible explanatory factor, but state that they expect the reason to be data entry error in either wave, such as mis-recording pay period as month rather than year. “Ultimately, this DI application is designed to enhance data quality by reducing the number of outliers that can be difficult to deal with during analysis” (p.12).

Unfortunately neither an indicator for when the check was applied nor a record of the verbatim response are included in the released BHPS data.

11Full results are not reported but are available from the author on request. Sample size might be a factor, as large pay cuts are less frequent among those whose pay slips are checked: 6.4% of the unchecked subsample experience nominal cuts bigger than 10% in absolute terms compared with 10.8% of the unchecked subsample. Nevertheless, the size of each pay cut category should be sufficient to generate reasonably accurate estimates.

1255% of the sample have under 365 days between interviews. The average time between interviews is 340 days for those with less than a year between interviews and 387 days for those with at least a year.
had a pay change, and some may have had two. Very small nominal cuts do not appear to worry individuals with shorter time between interviews: a substantial 'spike' in satisfaction for pay cuts between -1% and -2% was found that is difficult to rationalise unless it this pay change captures actual nominal rigidity with a small reporting error. But this robustness check showed no significant difference in the proportions taking large cuts for subsamples split by time between interviews.

Overall, therefore, robustness checks show that measurement error does not appear to be responsible for a lack of dissatisfaction with pay cuts. It also has little impact on the features around nominal and real rigidity noted above: the dissatisfaction when nominal pay growth is approximately equal to the inflation rate, and satisfaction with pay growth just above nominal zero (both relative to nominal freezes) remain quite robust, as does relative dissatisfaction with smallish nominal cuts.

4.4 Unions

In a general reference-dependent model, utility from a given pay raise should depend on workers’ reference points, which will determine their expectations of the warranted raise. Union members might well therefore have very different expectations, or referents, to non-union workers. As pointed out by Dickens et al (2007), unions provide ‘public good’ services to their members in terms of distributing the cost of gaining information about price changes - and possibly also pay changes of external comparators, be these other worker groups or industry performance measures. The utility derived from a given differential between current and lagged pay might therefore depend on whether pay is negotiated by a union or not.13 Recent empirical work has confirmed that unions enhance real wage rigidity (Goette, Sunde and Bauer 2007). Dickens et al (2007) report that an increase in real rigidity due to union density was the only institutional effect among many examined that applied across all countries at all times. Other British data from the Workplace Employment Relations Survey (Millward, Forth and Bryson 2000) indicate that bargained settlements are more likely to feature nominal raises but also more likely to be lower than non-union settlements. (This last finding is consistent with the declining union wage premium that has been uncovered by recent research using British data - see Blanchflower and Bryson 2004 and Arulampalam, Manquilef and Smith 2009.)

13It is also possible, though, that differences between union and non-union workers reflect endogeneity of union membership. For example, more (unobservedly) able workers might self-select into union membership to receive perceived benefits, so the union effect would not only reflect their public good and voice functions but also a selection effect. To allow for such a selection effect is beyond the scope of this paper.
It is commonly found that union members express lower satisfaction with a given pay level than non-union workers. In Figure 2 I investigate differences in satisfaction with pay growth between union members and non-members (first column) and between those whose workplace is covered by a union bargaining agreement and uncovered workers (second column). In general, unions do appear to reduce the effect of a given pay change on job satisfaction. For full-time men, non-union workers are significantly happier with both pay raises and cuts (although the relationship with cuts is upward-sloping despite controls for job characteristics). Male union members and covered men demonstrate particular dissatisfaction with nominal pay cuts. For women, there is relatively little effect of unionisation, apart from lower satisfaction with pay cuts among covered full-time women.

Perhaps the most surprising feature of Figure 2 is the apparent absence of significantly greater dissatisfaction with real cuts, or changes in the region spanning nominal rigidity and modal real pay growth (which tends to lie just above the inflation rate, the sample average of which is 2.7%).

However, it could be that unions have a slightly different effect than the simple direct effect on satisfaction investigated in Figure 2. Unions might alter the impact of external referents. If unions do have a ‘voice’ or informational role, it is likely that they would decrease satisfaction with ‘unexpected’ or ‘unwarranted’ pay changes - pay changes that appear unfair in relation to other comparable workers or firm performance.

4.5 Comparisons with external referents

Some pay cuts might be acceptable to workers. Bewley (1999), among others, has emphasised that this might be the case if the worker’s firm or industry is doing particularly badly. Workers might believe that by taking a pay cut they can preserve their jobs (or their firm). An alternative rationale relies on workers essentially making comparisons with firm performance when assessing satisfaction with pay. A Nash bargaining framework - similar to that set out by Oswald (1985), for example - can result in the ‘size of the pie’ (i.e. firm profitability) being positively related to pay; so if the pie is shrinking, pay cuts might be acceptable. This is consistent with data from the British WERS: “Where no increase in pay had been implemented, the most common specific reason given was that the company could not afford it in the light of recent performance.” (Forth and Millward 2000 p.12). The influence of firm performance on bargained wages (and hence

14However, Clark (1999) found that union workers did not care about their pay growth - whereas their non-union counterparts did gain a significant benefit from raises.
on what wage is acceptable) can also come from reduced outside options: workers bargaining power will be lower if job and wage opportunities elsewhere are reduced. Outside options will be reduced if the industry is doing badly.\footnote{Possible alternative measures of outside options would be regional output (Gross Value Added per head) and regional unemployment. Both were investigated but neither was found to have a substantial impact.}

Figure 3 shows the pay growth - job satisfaction relationship for workers whose industry experienced a fall in real output growth (solid line) compared to those whose industry output rose in real terms (dashed line). Unlike previous figures, to enable a clear focus on the impact of nominal rigidity, pay growth bands are defined in real terms. The impact of nominal rigidity actually occurs at various inflation rates, since these vary over time. The figure is shows the effect of nominal rigidity at real earnings growth equal to minus the sample average inflation rate, which is -2.7%. Nominal rigidity has a significantly more positive impact on job satisfaction when industry output falls; this is indicated by the spike in the solid line just below zero. The height of this spike rates worker’s satisfaction with nominal rigidity roughly equal to their satisfaction with a real raise of 15%. (The actual marginal effect indicates a 5.2% increase in the probability the average worker reports themselves mostly or completely satisfied.) In contrast, there is no difference between nominal and real rigidity (a 0% real raise) in terms of satisfaction among those whose industry output rose, and indeed their satisfaction with nominal rigidity is insignificantly different from the lowest level reached by these workers.

The impact of comparisons with similar others is investigated using a different method, for reasons that will become clear. Salient others are defined in a similar way to Ferrer-i-Carbonell (2005) and others: in terms of mean earnings by three education groups, four age groups and eleven regions, resulting in 132 different comparison-income values. Then I investigate differences in response to pay changes of various sizes for samples split according to growth in comparison income. In the BHPS sample, it is only those whose comparators’ pay rose in real terms who seem to pay attention to comparator’s pay growth. Table 3 reports results for this subsample. If the 1,026 additional observations where comparators’ pay growth fell in real terms are added, neither comparators’ pay level nor comparators’ pay growth is at all significant; the small number of comparison groups whose income falls in real terms seems to result in poorly-determined estimates. But when comparators’ pay growth rises, the level of comparison pay affects utility with the expected negative sign and is significant at the 5% level. Comparators’ pay growth also enters negatively, with a large coefficient, but it does not have a significant impact. Own pay growth has the positive impact I have previously reported,
and own pay level continues to separately raise job satisfaction. The ‘cut’ dummy takes value 1 for all nominal cuts, and indicates lower satisfaction significant at the 10% level. Neither pay changes involving real cuts but nominal raises nor real raises themselves have an impact significantly different from the base case of nominal freezes.

5 Conclusion

This paper has investigated the extent to which patterns in wage dynamics can be related to worker job satisfaction. The use of such data to study wage rigidity is quite unusual. There are several key findings. The first is a basic one: the significant impact of pay growth on job satisfaction is consistent with workers using past pay as a referent. Evidence is found that more than one referent applies: comparisons with salient others also affected job satisfaction. Second, there seems to be little support for loss aversion. The relationship between pay cuts and job satisfaction is less steep, rather than steeper, than the corresponding relationship with pay raises. Third, there is some indication that relatively small nominal cuts have what has been variously termed an ‘insult’ effect by Bewley (1999) or a ‘winning is everything’ effect by Mas (2006). Unionisation was found to be correlated with substantial dissatisfaction with pay cuts among full-time male workers, and union coverage had a similar effect for full-time females. In contrast, non-unionised workers did not exhibit any lower satisfaction with cuts than with nominal freezes. Nominal rigidity was consistently found to lead to greater satisfaction with the job than both small cuts and small nominal raises. Substantially higher satisfaction with nominal rigidity was found when the worker’s industry output was declining, consistent with workers using firm performance as an external reference point. Nominal raises that left pay approximately rigid in real terms were found consistently to lead to lower job satisfaction than nominal freezes.
6 References

Fehr, Ernst and Lorenz Goette (2005), “Robustness and real consequences of downward nominal wage rigidity", Journal of Monetary Economics, 52 (4) 779-804.

Grund, Christian and Dirk Sliwka (2007), "Reference-dependent preferences and the im-

Table 1: Dependent Variable: Overall Job Satisfaction, Great Britain, 1992-2007

<table>
<thead>
<tr>
<th>Pay measure</th>
<th>Weekly earnings (1)</th>
<th>Hourly earnings (2)</th>
<th>Basic hourly wage rate (3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y^a)</td>
<td>0.0497 (0.0227)**</td>
<td>0.0554 (0.0272)**</td>
<td>0.0563 (0.0273)**</td>
<td>0.0675 (0.0600)</td>
</tr>
<tr>
<td>(\Delta y)</td>
<td>0.378 (0.0377)*****</td>
<td>0.314 (0.0371)*****</td>
<td>0.711 (0.155)***</td>
<td></td>
</tr>
<tr>
<td>(\ln (hours))</td>
<td>-0.328 (0.0360)*****</td>
<td>-0.248 (0.0402)*****</td>
<td>0.0300 (0.0521)</td>
<td>-0.0515 (0.0862)</td>
</tr>
<tr>
<td>(\ln (hours)_1)</td>
<td>-0.149 (0.0393)*****</td>
<td>-0.424 (0.0432)*****</td>
<td>0.0300 (0.0750)***</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>38,813</td>
<td>32,534</td>
<td>32,563</td>
<td>5,844</td>
</tr>
<tr>
<td>Individuals</td>
<td>7,381</td>
<td>6,819</td>
<td>6,821</td>
<td>1,990</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-56576</td>
<td>-47140</td>
<td>-47221</td>
<td>-8539</td>
</tr>
</tbody>
</table>

Notes: Table 1 shows ordered probit coefficients. Asymptotic standard errors (in parentheses) are adjusted for clustering on individuals. Significance is indicated at the following levels: *** 1%, ** 5%, * 10%. All regressions are weighted using cross-section weights. \(y\) is the natural log of the relevant pay measure. Controls included in all regressions include (demographics) a quadratic in age, gender dummy, three ethnic status dummies, four marital status dummies, number of children aged 16 or below, a dummy for health problems, three education dummies and the log of real non-labour income; (macro and local labour market conditions) year dummies (sixteen for earnings and eight for basic wage rate), eleven region dummies. \(^a\) The BHPS derived variable monthly usual gross pay is used as the ‘income’ variable when the focus is the impact of changes in hourly basic rate because it is observed (calculated from basic wage rate, hours and non-basic payments) in around 1,000 cases where gross usual weekly pay is not. Results, however, hardly differ if the latter is used.
<table>
<thead>
<tr>
<th>Weekly earnings</th>
<th>Hourly basic wage rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>(1) 0.0642</td>
<td>(2) 0.0648</td>
</tr>
<tr>
<td>(0.0273)**</td>
<td>(0.0274)**</td>
</tr>
<tr>
<td>y^a</td>
<td>y^a</td>
</tr>
<tr>
<td>(3) -0.0307</td>
<td>(4) -0.0322</td>
</tr>
<tr>
<td>(0.0550)</td>
<td>(0.0547)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real pay growth</th>
<th>Nominal pay growth</th>
<th>Real wage growth</th>
<th>Nominal wage growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-85 - \pi, -40)$</td>
<td>0.0374 [−85, −40)</td>
<td>-0.0336</td>
<td>$[-35 - \pi, -20)$</td>
</tr>
<tr>
<td>(0.0675)</td>
<td>(0.0676)</td>
<td></td>
<td>(0.149)</td>
</tr>
<tr>
<td>$[-40, -20)$</td>
<td>0.0356 [−40, −20)</td>
<td>-0.0385</td>
<td>$[-20, -10)$</td>
</tr>
<tr>
<td>(0.0452)</td>
<td>(0.0458)</td>
<td></td>
<td>(0.109)</td>
</tr>
<tr>
<td>$[-20, -10)$</td>
<td>0.0237 [−20, −10)</td>
<td>-0.0707</td>
<td>$[-10, -5)$</td>
</tr>
<tr>
<td>(0.0387)</td>
<td>(0.0372)*</td>
<td></td>
<td>(0.0951)</td>
</tr>
<tr>
<td>$[-10, -5)$</td>
<td>0.0404 [−10, −5)</td>
<td>-0.0429</td>
<td>$[-5, -2)$</td>
</tr>
<tr>
<td>(0.0376)</td>
<td>(0.0371)</td>
<td></td>
<td>(0.0951)</td>
</tr>
<tr>
<td>$[-5, -2)$</td>
<td>0.0765 [−5, −2)</td>
<td>-0.0396</td>
<td>$-\pi$</td>
</tr>
<tr>
<td>excl π</td>
<td>(0.0381)**</td>
<td></td>
<td>(0.0701)</td>
</tr>
<tr>
<td>$-\pi$</td>
<td>0.0810 [−2, −1)</td>
<td>0.0131</td>
<td>$[-2, -0.5)$</td>
</tr>
<tr>
<td>(0.0375)**</td>
<td>(0.0569)</td>
<td></td>
<td>(0.0731)</td>
</tr>
<tr>
<td>$[-2, -0.5)$</td>
<td>0.0398 [−1, 0)</td>
<td>-0.0233</td>
<td>excl π</td>
</tr>
<tr>
<td>excl π</td>
<td>(0.0375)</td>
<td></td>
<td>(0.0680)*</td>
</tr>
<tr>
<td>(0.5, 2)</td>
<td>0.0347 (0, 1)</td>
<td>0.0304</td>
<td>(0.5, 2)</td>
</tr>
<tr>
<td>(0.0357)</td>
<td>(0.0476)</td>
<td></td>
<td>(0.0675)</td>
</tr>
<tr>
<td>(2, 5)</td>
<td>0.109 (1, 2)</td>
<td>-0.0379</td>
<td>(5, 10]</td>
</tr>
<tr>
<td>(0.0328)**</td>
<td>(0.0422)</td>
<td></td>
<td>(0.0687)*</td>
</tr>
</tbody>
</table>
Table 2 continued: Dependent Variable: Overall Job Satisfaction, Great Britain, 1992-2007

<table>
<thead>
<tr>
<th>Weekly earnings (1) cont.</th>
<th>Hourly basic wage rate (3) cont.</th>
<th>(4) cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5, 10)</td>
<td>0.129</td>
<td>(10, 20)</td>
</tr>
<tr>
<td>(0.0335)***</td>
<td>(0.0377)***</td>
<td>(0.0549)***</td>
</tr>
<tr>
<td>(10, 20]</td>
<td>0.172</td>
<td>(20, 40]</td>
</tr>
<tr>
<td>(0.0346)***</td>
<td>(0.0371)*</td>
<td>(0.0552)***</td>
</tr>
<tr>
<td>(20, 40]</td>
<td>0.256</td>
<td>(40, 65 - π]</td>
</tr>
<tr>
<td>(0.0371)***</td>
<td>(0.0401)</td>
<td>(0.0770)***</td>
</tr>
<tr>
<td>(40, 100 - π]</td>
<td>0.300</td>
<td>(5, 10]</td>
</tr>
<tr>
<td>(0.0447)***</td>
<td>(0.0292)</td>
<td>(0.150)***</td>
</tr>
<tr>
<td>(10, 20]</td>
<td>0.0748</td>
<td>(20, 40]</td>
</tr>
<tr>
<td>(0.0297)***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20, 40]</td>
<td>0.153</td>
<td></td>
</tr>
<tr>
<td>(0.0317)***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40, 100]</td>
<td>0.206</td>
<td></td>
</tr>
<tr>
<td>(0.0404)***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log likelihood -47115 -47115 -8705 -8704

Notes: Table 2 shows ordered probit coefficients. Asymptotic standard errors (in parentheses) are adjusted for clustering on individuals. Significance is indicated at the following levels: *** 1%, ** 5%, * 10%. All regressions are weighted using cross-section weights. π is annual RPI inflation, measured at the month of interview. Pay and wage changes are trimmed according to nominal values so π appears when sample end-points are expressed in real terms (columns (1) and (3)). The base for earnings or wage growth dummies expressed in real terms (columns (1) and (3) respectively) is nominal earnings growth equal to inflation plus or minus 0.5% inclusive. The base for earnings or wage growth dummies expressed in nominal terms (columns (2) and (4) respectively) is nominal freezes. Controls included in all regressions include log weekly hours and its lag, (demographics) a quadratic in age, gender dummy, three ethnic status dummies, four marital status dummies, number of children aged 16 or below, a dummy for health problems, three education dummies and the log of real non-labour income; (macro and local labour market conditions) year dummies (sixteen for earnings and eight for basic wage rate), eleven region dummies. Columns (1) and (2): 32,534 observations on 6,819 individuals; Columns (3) and (4): 5,904 observations on 2,009 individuals. a The BHPS derived variable monthly usual gross pay is used as the ‘income’ variable when the focus is the impact of changes in hourly basic rate because it is observed (calculated from basic wage rate, hours and non-basic payments) in around 1,000 cases where gross usual weekly pay is not. Results, however, hardly differ if the latter is used.

28
Table 3: Effect of Comparisons with Salient Others on Overall Job Satisfaction, Great Britain, 1992-2007

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.0917</td>
<td>(0.0406)**</td>
</tr>
<tr>
<td>Δy</td>
<td>0.271</td>
<td>(0.077)**</td>
</tr>
<tr>
<td>$y_{\text{comparison}}$</td>
<td>-0.177</td>
<td>(0.0889)**</td>
</tr>
<tr>
<td>$\Delta y_{\text{comparison}}$</td>
<td>-0.746</td>
<td>(0.710)</td>
</tr>
<tr>
<td>cut</td>
<td>-0.0670</td>
<td>(0.0403)*</td>
</tr>
<tr>
<td>$\text{nominal raise, real cut}$</td>
<td>-0.0396</td>
<td>(0.0410)</td>
</tr>
<tr>
<td>real raise</td>
<td>0.0061</td>
<td>(0.0351)</td>
</tr>
</tbody>
</table>

Observations 20,682
Individuals 5,350
Log likelihood -29298

Notes: Table 3 shows ordered probit coefficients. Asymptotic standard errors (in parentheses) are adjusted for clustering on individuals. Significance is indicated at the following levels: *** 1%, ** 5%, * 10%. All regressions are weighted using cross-section weights. The sample is all stayers whose comparators’ real earnings rose. y is the natural log of real total weekly earnings. Comparators’ earnings $y_{\text{comparison}}$ is the natural log of average real earnings in the relevant cell, by three education groups (high, medium and low), four age groups (below 25, 25 to 34, 35 to 54, and over 55), and eleven regions. Controls include current and lagged natural log of weekly total hours, a quadratic in age, gender dummy, three ethnic status dummies, four marital status dummies, number of children aged 16 or below, a dummy for health problems, three education dummies and the log of real non-labour income, sixteen year dummies, ten occupation dummies, seventeen industry dummies, nine workplace employment dummies, travel-to-work time, dummies for presence of and ‘positive’ and ‘negative’ changes in the following (where significant): evening/night working, employer pension scheme, work location, non-permanent job, bonus scheme, incremental pay scale, managerial responsibility, supervisory responsibility.
Figure 1: Effect of Earnings and Wage Growth on Job Satisfaction, Great Britain, 1992-2007

Notes: Part-time is defined as less than 30 hours worked per week.
Figure 2: Effect of Unionisation on the Pay Growth-Job Satisfaction Relationship, Great Britain, 1992-2007

- **Men, full-time**
 - Not union member
 - Union member
 - Significant at 20% level
 - Significant at 10% level
 - Effect of earnings growth on probability mostly/completely satisfied, relative to nominal freeze

- **Women, full-time**
 - Not union member
 - Union member
 - Significant at 20% level
 - Significant at 10% level
 - Effect of earnings growth on probability mostly/completely satisfied, relative to nominal freeze

- **Women, part-time**
 - Not union member
 - Union member
 - Significant at 20% level
 - Significant at 10% level
 - Effect of earnings growth on probability mostly/completely satisfied, relative to nominal freeze
Figure 3: Effect of Industrial Output Growth on the Pay Growth-Job Satisfaction Relationship, Great Britain, 1992-2007

Impact of industry output growth

Effect of earnings growth on probability mostly/completely satisfied, relative to nominal freeze when industry output is rising.
Appendix 1: Data Appendix

BHPS sample
Cross-sectional respondent weights are used throughout this paper, which means that the sample excludes (unrepresentative) samples added since the BHPS started in 1991 to oversample Scotland, Wales and Northern Ireland and to incorporate the European Community Household Panel (ECHP), which oversampled low-income groups. The sample used in this paper incorporates Original Sample Members and their offspring and individuals who join their household (known as Temporary Sample Members). The original sample was representative of the British population (excluding Northern Ireland), according to the 1991 UK Census. The initial-year weights ensure that the sample is representative of the UK population and subsequent-year weights are adjusted for attrition and non-response. Children of OSMs are given a share of the weight of their household, which should, as the BHPS note, go some way to maintaining the representative nature of the BHPS (Taylor 2009).

Job satisfaction questions
The ‘usual’ job satisfaction variable is obtained in the face-to-face interview. The ‘overall’ job satisfaction question follows four questions relating to particular aspects of the job: "I'm going to read out a list of various aspects of jobs, and for each one I'd like you to tell me from this card which number best describes how satisfied or dissatisfied you are with that particular aspect of your own present job... 1 The total pay, including any overtime and bonuses; 2 Your job security; 3 The actual work itself; 4 The hours you work."
The interviewer shows the respondent a card with the following verbal labels attached to the seven possible numerical responses: 7=Completely satisfied, 6=Mostly satisfied, 5=Somewhat satisfied, 4=Neither satisfied nor dissatisfied, 3=Somewhat dissatisfied, 2=Mostly dissatisfied, 1=Completely dissatisfied. The overall job satisfaction question follows: "All things considered, how satisfied or dissatisfied are you with your present job overall using the same 1-7 scale?". (Waves A to G, 1991-1997, included three additional job satisfaction domains: promotion prospects, relations with superiors and initiative.) The job satisfaction questions are asked in the ‘Employment’ section of the interview and follow simple factual questions on employment status, industry, occupation, employer, duties, hours of work and travel to work. The satisfaction questions immediately precede questions on pay, so reports and any interaction concerning pay will not influence reported job satisfaction - although previously-interviewed respondents might have in mind, or have specifically recalled, their pay and pay history in preparation for those questions.
Pay and wage data Particularly when examining nominal rigidity, great care must be taken over the pay measure used. Usual gross weekly pay is calculated from ‘raw’ BHPS data on gross pay, pay period and whether reported pay is usual. The BHPS data include a derived usual gross monthly pay variable, but even if imputed values for this are excluded it will still be subject to error in cases where gross pay is calculated from net using estimated tax rates - error which will cover up true freezes. Over the 17 years I sacrifice 2,739 observations (2.9% of 93,020) where the BHPS gross pay variable exists (and is not calculated from net pay) but my raw variable does not, in order to be certain how the pay variable is calculated. Individuals citing a pay period less than 1 week are dropped, since these pay period data likely reflect coding errors (see BHPS documentation notes available at http://www.iser.essex.ac.uk/survey/bhps/documentation).

Job history data Tenure with employer (and actual work experience - which includes self-employment) are calculated using BHPS data on the entire job histories of respondents, which were collected at Waves 2 and 3 for Original Sample Members. The method of Paull (2002) is used to reconcile inconsistencies within different sources of labour market history to calculate tenure and experience.

Definition of job stayer A job stayer is defined as someone who does not change employer. In practical terms, this uses the Paull (2002) definition of a job spell (which defines spells relative to employers), and defines a job stayer as someone whose number of job spells does not increase. This is the definition available on most datasets worldwide (such as the PSID) and has the advantage of avoiding the difficulty of defining when a job has changed within employer. BHPS data do, unusually, include information on job changes within employer.

Price, industry and regional data Price, industry and regional data are drawn from the UK Office for National Statistics. The price index used is the RPI (Retail Prices Index, All Items). Annual inflation is matched into the BHPS data according to interview month. This means that the real pay increase of someone interviewed in February 2000 is measured by their growth in nominal pay since the last interview minus the annual inflation rate at February 2000. The idea behind this is that BHPS survey respondents may well have a reasonable idea of the current inflation rate, and may well use this as a reference in assessing the merits of their pay growth. Dickens et al (2007) note the measurement difficulty presented by the fact that surveys do not synchronise settlement dates. I hope to alleviate most concerns by investigating the impact of the time between interviews on results. Alternative measures of inflation were
used, including the average inflation rate between last interview and this (to capture the fact that settlements might have occurred at any time between interviews) and the actual growth rate of prices between last interview and this, with no change in results.

Industry performance is measured by real output per capita (volume measure, at 2005 prices) at for 33 industries, classified according to their 2-digit Standard Industrial Classification. For manufacturing industries this is matched to BHPS data according to month of interview. For other industries data are matched according to quarter of interview. When industry dummies are used these 33 industries are aggregated into 17 broader groups.

Regional prosperity is measured by regional gross value added (GVA) per capita, deflated by the RPI. GVA is a proxy for, and the best measure of, GDP at regional level in the UK, so regional GVA per capita measures regional productivity. Data are measured at the level of the 12 standard regions of the UK.

The regional claimant count unemployment rate is used in reported results as it covers all years of the sample. Results are very similar if the ‘LFS’ OECD definition of unemployment is used instead.
Appendix 2: Earnings growth over time and distribution of job satisfaction

Figure A1: Earnings Growth, Great Britain, 1992-2007

Notes: Inflation is median RPI (All Items) inflation at the month of interview. Nominal earnings growth is median nominal earnings growth. Both relate to the Wave beginning in September of the relevant year. The sample is those employed last interview with no change in employer since then and observed earnings growth. All statistics are weighted using cross-section weights.

Figure A2: Job Satisfaction, Great Britain, 1992-2007

Notes: The sample is those employed last interview with no change in employer since then.