Unemployment and Mismatch in the UK

Jennifer C. Smith

University of Warwick, UK CAGE (Centre for Competitive Advantage in the Global Economy)

BoE/LSE Conference on Macroeconomics and Monetary Policy: "Unemployment, productivity and potential output: the aftermath of the crisis" Bank of England, 11-12 October 2012

Beveridge Curves: UK and US

Sources: Author's calculations using ONS Vacancy Survey and ONS LFS and BLS JOLTS and CPS.

Beveridge Curves: UK and US

Sources: Author's calculations using ONS Vacancy Survey and ONS LFS and BLS JOLTS and CPS.

Unemployment and Mismatch

Methodological contribution

Develop a method of measuring the contribution of mismatch to unemployment dynamics.

- An extension of previous work
 - Smith (2011); Elsby, Hobijn and Sahin (forthcoming);
 Elsby, Michaels and Solon (2009); Fujita and Ramey (2009).
- Based on decompositions of unemployment dynamics (steady state or actual).
 - Previously used to examine the influence of inflows and outflows on unemployment.

Unemployment and Mismatch

Methodological contribution

Develop method of measuring the contribution of mismatch to unemployment dynamics.

- Mismatch affects the unemployment outflow rate:
 - makes it harder for searchers to match with available vacancies.
- If we could measure the extent to which mismatch lowers the job finding rate, we could use decomposition methods estimate the impact of mismatch on unemployment dynamics.
 - It turns out that mismatch also contributes to unemployment dynamics via the separation rate, and this impact can also be estimated.

Unemployment and Mismatch

- Herz and van Rens (2011)
 - Focus on dynamics: Mismatch unemployment as cyclical as overall unemployment.
 - Path involves wage setting, not worker or job mobility.
- Sahin, Song, Topa and Violante (2012)
 - Mismatch 'hump' in Great Recession.
 - Mismatch accounts for at most 1/3 overall unemployment increase.
- Barnichon and Figura (2011)
 - Changes in matching efficiency can explain a part of unemployment dynamics – around 1.5 pp during the Great Recession.

A Starting Point

The steady state unemployment rate does not capture all the dynamics of interest, especially for a country like the UK where flow transition rates are relatively low.

But it's a useful place to start...

Unemployment Dynamics and Labour Market Flows

Law of Motion for Unemployment:

$$\Delta U_{t+1} = s_t E_t - f_t U_t$$

Change in unemployment = inflows – outflows.

• Write in terms of unemployment *rate*:

$$\Delta u_{t+1} = s_t \left(1 - u_t \right) - f_t u_t$$

In steady state,

$$\overline{u}_t = \frac{S_t}{f_t + S_t}$$

$$\overline{u}_t = \frac{S_t}{f_t + S_t}$$

Greater mismatch raises \bar{u}_t directly

• by reducing f_t .

$$\overline{u}_t = \frac{S_t}{f_t + S_t}$$

Greater mismatch also has an indirect effect on \bar{u}_t

- working through s_t :
 - of $s_t = EU_t/(1-U_{t-1})$, thus raising s_t for given EU_t .

$$\frac{\partial^2 \overline{u}_t}{\partial s_t \partial f_t} = \frac{s_t - f_t}{\left(f_t + s_t\right)^3} < 0 \text{ since } f_t \gg s_t$$

• Aim:

Decompose changes in the log unemployment rate, based on a recursive model involving steady state unemployment, into parts:

$$\Delta \ln \overline{u}_{t} \approx \overline{C}_{t}^{M} + \overline{C}_{t}^{NM}$$

$$\Delta \ln \overline{u}_t \approx \overline{C}_t^{fM} + \overline{C}_t^{fNM} + \overline{C}_t^{sM} + \overline{C}_t^{sNM}$$

Imagine we have:

- an estimate of the counterfactual unemployment rate in the absence of mismatch u^*
- and an estimate of the no-mismatch job finding rate f^* .

These estimates can be obtained, under various assumptions,

- using data on hires, unemployment and vacancies
- and estimated matching functions.

I use UK micro QLFS and Vacancy Survey data at industry (18-sector) level.

Simple fact: The steady state unemployment rate can be decomposed into a part reflecting mismatch, and a part reflecting non-mismatch shocks.

$$\overline{u}_t = \left(\overline{u}_t - \overline{u}_t^*\right) + \overline{u}_t^*$$

Take log differences:

$$\Delta \ln \overline{u}_{t} \approx \frac{\left(\overline{u}_{t} - \overline{u}_{t}^{*}\right)}{\overline{u}_{t}} \Delta \ln \left(\overline{u}_{t} - \overline{u}_{t}^{*}\right) + \frac{\overline{u}_{t}^{*}}{\overline{u}_{t}} \Delta \ln \overline{u}_{t}^{*}$$

$$\Delta \ln \overline{u}_{t} \approx \overline{C}_{t}^{M} + \overline{C}_{t}^{NM}$$

Can dig deeper to distinguish the roles of inflow and outflow rates:

$$\Delta \ln \overline{u}_t \approx \overline{C}_t^{fM} + \overline{C}_t^{fNM} + \overline{C}_t^{sM} + \overline{C}_t^{sNM}$$

Can dig deeper to distinguish the roles of inflow and outflow rates:

Consider first the influence of mismatch on unemployment working via the outflow rate.

The overall outflow rate can be written

$$f_t = (f_t - f_t^*) + f_t^*.$$

where:

 $(f_t - f_t^*)$ is the effect of mismatch on the outflow rate (which is negative).

 f_t^* is the outflow rate in the absence of mismatch.

$$f_t = (f_t - f_t^*) + f_t^*$$

The steady state unemployment rate can be written:

$$\overline{u}_t = \frac{S_t}{f_t + S_t} = \frac{S_t}{\left(\left[f_t - f_t^*\right] + f_t^*\right) + S_t}$$

Decomposition of steady state unemployment (Elsby, Michaels and Solon, 2009):

$$\Delta \ln \overline{u}_t \approx (1 - \overline{u}_t) \{ \Delta \ln s_t - \Delta \ln f_t \}$$

$$f_t = (f_t - f_t^*) + f_t^*$$

The steady state unemployment rate can be written:

$$\overline{u}_t = \frac{S_t}{f_t + S_t} = \frac{S_t}{\left(\left[f_t - f_t^*\right] + f_t^*\right) + S_t}$$

So the formula breaking down steady state unemployment dynamics into inflow and outflow influences is:

$$\Delta \ln \overline{u}_{t} \approx \left(1 - \overline{u}_{t}\right) \left\{ \Delta \ln s_{t} - \Delta \ln \left(\left[f_{t} - f_{t}^{*} \right] + f_{t}^{*} \right) \right\}$$

$$\Delta \ln \overline{u}_{t} \approx \left(1 - \overline{u}_{t}\right) \left\{ \Delta \ln s_{t} - \Delta \ln \left(\left[f_{t} - f_{t}^{*} \right] + f_{t}^{*} \right) \right\}$$

• To estimate, rearrange final outflow rate term:

$$\Delta \ln \left(\left[f_t - f_t^* \right] + f_t^* \right) \approx \frac{\left(f_t - f_t^* \right)}{f_t} \left[\frac{f_t}{\left(f_t - f_t^* \right)} \Delta \ln f_t - \frac{f_t^*}{\left(f_t - f_t^* \right)} \Delta \ln f_t^* \right] + \frac{f_t^*}{f_t} \Delta \ln f_t^*$$

 Changes in the steady state unemployment rate can then be decomposed into 4 parts:

$$\Delta \ln \overline{u}_t \approx \overline{C}_t^{fM} + \overline{C}_t^{fNM} + \overline{C}_t^{sM} + \overline{C}_t^{sNM}$$

$$\overline{C}_{t}^{fM} = -\left(1 - \overline{u}_{t}\right) \frac{\left(f_{t} - f_{t}^{*}\right)}{f_{t}} \left[\frac{f_{t}}{\left(f_{t} - f_{t}^{*}\right)} \Delta \ln f_{t} - \frac{f_{t}^{*}}{\left(f_{t} - f_{t}^{*}\right)} \Delta \ln f_{t}^{*}\right]$$

 Changes in the steady state unemployment rate can then be decomposed into 4 parts:

$$\Delta \ln \overline{u}_t \approx \overline{C}_t^{fM} + \overline{C}_t^{fNM} + \overline{C}_t^{sM} + \overline{C}_t^{sNM}$$

$$\overline{C}_{t}^{fNM} = -\left(1 - \overline{u}_{t}\right) \left(\frac{f_{t}^{*}}{f_{t}}\right) \Delta \ln f_{t}^{*}$$

 Changes in the steady state unemployment rate can then be decomposed into 4 parts:

$$\Delta \ln \overline{u}_t \approx \overline{C}_t^{fM} + \overline{C}_t^{fNM} + \overline{C}_t^{sM} + \overline{C}_t^{sNM}$$

$$\overline{C}_t^s \equiv \overline{C}_t^{sM} + \overline{C}_t^{sNM} = (1 - \overline{u}_t) \Delta \ln s_t$$

- \bar{C}_t^M , \bar{C}_t^{NM} , \bar{C}_t^s , \bar{C}_t^{fM} and \bar{C}_t^{fNM} can be directly estimated.
- How can \overline{C}_t^s be split into \overline{C}_t^{sM} and \overline{C}_t^{sNM} ?

$$\bar{C}_t^{SM} = \bar{C}_t^M - \bar{C}_t^{fM}$$

• Changes in the steady state unemployment rate can then be decomposed into 4 parts:

$$\Delta \ln \overline{u}_t \approx \overline{C}_t^{fM} + \overline{C}_t^{fNM} + \overline{C}_t^{sM} + \overline{C}_t^{sNM}$$

- Then either analyse the relative contributions period- by-period, graphically,
- Or calculate 'beta' variance contributions:

$$\beta^{fM} = \frac{\operatorname{cov}(\overline{C}_{t}^{fM}, \Delta \ln \overline{u}_{t})}{\operatorname{var}(\Delta \ln \overline{u}_{t})}$$

Mismatch

Measuring mismatch

I use an index of mismatch

- developed by Sahin, Song, Topa and Violante (2012)
 based on a very intuitive idea:
- The efficient distribution of unemployed searchers across sectors should vary in proportion to the sectoral distribution of job openings.
 - And if there is heterogeneity in matching efficiency across sectors, there should be more unemployed searchers in sectors with higher matching efficiency ("generalised Jackman-Roper condition").

Mismatch

Measuring mismatch

I use an index of mismatch

- developed by Sahin, Song, Topa and Violante (2011)
 based on a very intuitive idea:
- The efficient distribution of unemployed searchers across sectors should vary in proportion to the sectoral distribution of job openings.
- The mismatch index calculates the extent to which hires are lowered by deviation of the actual distribution of unemployment and vacancies across sectors deviates from the efficient distribution.

• Index of mismatch \mathcal{M}_t captures the proportion by which actual hires h_t fall below the efficient level h_t^* .

$$\mathcal{M}_{t} = \frac{h_{t}^{*} - h_{t}}{h_{t}^{*}}$$

 Assume a Cobb-Douglas CRS matching function in each sector i:

$$h_{it} = \Phi_t \phi_i v_{it}^{\alpha} u_{it}^{1-\alpha}$$

where h_{it} , v_{it} , and u_{it} are hires, vacancies and unemployment, respectively, in sector i at time t.

 Φ_t captures changes in matching efficiency common to all sectors.

 ϕ_i represent sector-specific matching efficiencies. α is the vacancy share.

Constrained-optimal hires: $h_t^* = \Phi_t \overline{\phi} v_t^{\alpha} u_t^{1-\alpha}$

Actual hires:
$$h_t = \Phi_t v_t^{\alpha} u_t^{1-\alpha} \left[\sum_{i=1}^{I} \phi_i \left(\frac{v_{it}}{v_t} \right)^{\alpha} \left(\frac{u_{it}}{u_t} \right)^{1-\alpha} \right]$$

 Planner allocates unemployed across sectors in proportion to exogenous vacancies and sectoral matching efficiency.

$$\overline{\phi} = \left[\sum_{i=1}^{I} \phi_i^{\frac{1}{\alpha}} \left(\frac{v_{it}}{v_t}\right)\right]^{\alpha}$$
 is a CES aggregator of sector matching efficiencies, weighted by their vacancy shares

Constrained-optimal hires: $h_t^* = \Phi_t \overline{\phi} v_t^{\alpha} u_t^{1-\alpha}$

Actual hires:
$$h_t = \Phi_t v_t^{\alpha} u_t^{1-\alpha} \left[\sum_{i=1}^{I} \phi_i \left(\frac{v_{it}}{v_t} \right)^{\alpha} \left(\frac{u_{it}}{u_t} \right)^{1-\alpha} \right]$$

• In reality, unemployment will not be efficiently allocated, so hires will be lower than optimal.

Constrained-optimal hires: $h_t^* = \Phi_t \overline{\phi} v_t^{\alpha} u_t^{1-\alpha}$

Actual hires:
$$h_t = \Phi_t v_t^{\alpha} u_t^{1-\alpha} \left[\sum_{i=1}^{I} \phi_i \left(\frac{v_{it}}{v_t} \right)^{\alpha} \left(\frac{u_{it}}{u_t} \right)^{1-\alpha} \right]$$

Measure of mismatch:

$$\mathcal{M}_{t} = \frac{h_{t}^{*} - h_{t}}{h_{t}^{*}} = 1 - \sum_{i=1}^{I} \left(\frac{\phi_{i}}{\overline{\phi}}\right) \left(\frac{v_{it}}{v_{t}}\right)^{\alpha} \left(\frac{u_{it}}{u_{t}}\right)^{1-\alpha}$$

The Job Finding Rate in the Absence of Mismatch

The aggregate job finding rate is defined as

$$f_t = \frac{h_t}{u_t}$$

 The counterfactual job finding rate in the absence of mismatch would be

$$f_t^* = \frac{h_t^*}{u_t^*} = f_t \frac{1}{1 - \mathcal{M}_t} \left(\frac{u_t}{u_t^*}\right)^{\alpha}$$

The Unemployment Rate in the Absence of Mismatch

• The counterfactual job finding rate in the absence of mismatch would be

$$f_t^* = \frac{h_t^*}{u_t^*} = f_t \frac{1}{1 - \mathcal{M}_t} \left(\frac{u_t}{u_t^*}\right)^{\alpha}$$

• f_t^* and u_t^* can be calculated simultaneously, using the Law of Motion for u_t^* and assuming initial condition $u_0^* = \bar{u}_0^*$.

$$u_{t+1}^* = s_t + (1 - s_t - f_t^*) u_t^*$$

Estimating Mismatch

To calculate the mismatch index:

$$\mathcal{M}_{t} = 1 - \sum_{i=1}^{I} \left(\frac{\phi_{i}}{\overline{\phi}} \right) \left(\frac{v_{it}}{v_{t}} \right)^{\alpha} \left(\frac{u_{it}}{u_{t}} \right)^{1-\alpha}$$

requires estimates of vacancy share α and industry-specific match efficiencies ϕ_i .

To obtain these, estimate a matching function:

$$\ln\left(\frac{h_{it}}{u_{it}}\right) = \ln\Phi_t + \ln\phi_i + \alpha\ln\left(\frac{v_{it}}{u_{it}}\right) + \varepsilon_{it}$$

Estimates of Vacancy Share α

	(1)
α	0.632***
	(0.0251)
Fixed effects	yes
Quadratic time trend	yes
Seasonal dummies	yes
R^2	0.720
Observations	756
Industries	18
Sample period	2001q3-20011q4

Estimates of Vacancy Share α

	(1)	(2)	(3)	(4)
		No time trend	Pre-2008q2	OLS
α	0.632***	0.800***	0.750***	0.522***
	(0.0251)	(0.0213)	(0.0371)	(0.0181)
Fixed effects	yes	yes	yes	no
Quadratic time trend	yes	no	yes	yes
Seasonal dummies	yes	yes	yes	yes
R^2	0.720	0.762	0.752	0.686
Observations	756	756	486	756
Industries	18	18	18	18
Sample period	2001q3-20011q4	2001q3-20011q4	2001q3-2008q1	2001q3-20011q4

The Mismatch Index

Proportionate increase in actual hires that would occur if mismatch were eliminated:

$$\frac{\mathcal{M}_{t}}{1-\mathcal{M}_{t}}$$

The Impact of Mismatch on the Outflow Rate

The Impact of Mismatch on the Outflow Rate

Mismatch Contribution to Steady State Unemployment Dynamics

Cumulative contribution to log change in steady state unemployment

Mismatch Contribution to Steady State Unemployment Dynamics

		Mismatch	Non-mismatch
Pre-recession	2001q3- 2008q1	0.44	0.57
Recession	2008q2- 2009q3	0.54	0.46
Post-recession	2009q4- 2011q4	0.46	0.54
Full sample	2001q3- 2011q4	0.47	0.54

Steady State Unemployment Due to Mismatch and Other Influences

Mismatch Contribution to Actual Unemployment Dynamics

Actual Unemployment Due to Mismatch and Other Influences

Flow Transition Rate Contributions to Steady State Unemployment Dynamics

Beta		Overall f	Overall s
Pre- recession	2001q3- 2008q1	44%	56%
Recession	2008q2- 2009q3	44%	57%
Post- recession	2009q4- 2011q4	20%	80%
Full sample	2001q3- 2011q4	37%	63%

Mismatch Paths

Cumulative contribution to log change in steady state unemployment

Mismatch Paths

Beta		Mismatch		Non-mismatch	
		f	S	f	S
Pre-recession	2001q3- 2008q1	6%	39%	38%	17%
Recession	2008q2- 2009q3	11%	44%	33%	13%
Post- recession	2009q4- 2011q4	12%	35%	8%	46%
Full sample	2001q3- 2011q4	8%	38%	29%	25%

Conclusions

- Mismatch does appear to have played a role in UK unemployment dynamics.
- The indirect effect of mismatch, which raises the impact of inflow rate increases, seems to play an important part.