WEB APPENDIX FOR "ECOLOGY, TRADE AND STATES IN PRE-COLONIAL AFRICA" (NOT FOR PUBLICATION)

JAMES FENSKE†

1. Model

An ethnic group exists on a unit interval, stretching from 0 to 1. The natural ruler of the ethnic group lives at point 0. He chooses $S \in [0,1]$, the fraction of the ethnic group's territory to bring under his direct jurisdiction. That is, he will choose the level of state centralization. He will do this in order to tax the inhabitants in their trading activities. I will show that greater gains from trade will lead him to centralize a larger fraction of the group's territory.

The territory is inhabited by a continuum of agents of mass 1. They are spread uniformly over the interval. Each of these agents chooses between one of two activities: farming and trading. The returns from farming are normalized to 1. Farming cannot be taxed. Trading, if successful, gives a return of $\theta > 1$. Trading can be taxed, and so an agent who lives within the centralized state pays a tax rate of $\tau \in [0,1]$ on trade income. τ is chosen by the ruler. Agents who live outside the state pay no tax.

In addition to being taxable, trading is also costly. If the agent chooses trading, it entails a cost of q. This could represent, for example, the cost of avoiding theft or resolving disputes. The net income from trade is, then, $(1-\tau)\theta-q$. Agents will engage in trade if $(1-\tau)\theta-q\geq 1$.

As the ruler expands the size of the state, he provides public goods to his subjects that lower q. These could include dispute-resolution services or physical protection. In particular, if the ruler spends p units of revenue per unit of territory on public goods, the cost of trade is $q = \frac{1}{\gamma p}$. Here, γ is a parameter that captures the effectiveness of public goods. Agents outside the state receive no public goods. For them, q is infinite, and no trade is possible.

The ruler is self-interested, and maximizes his net revenues. If he brings a piece of territory under his jurisdiction, he will ensure that p and τ are set such that all of the subjects choose trade, rather than agriculture. Otherwise, he cannot collect any taxes from them. He must select p and τ such that $(1-\tau)\theta-q\geq 1$. In addition to expenditures on public goods, pS, the ruler must pay a cost to extend his authority over space. This takes the form cS^2 . c>0 is a parameter that captures the costs of projecting power. If the ruler controls a territory of length S, and all of the inhabitants engage in trade rather

[†]DEPARTMENT OF ECONOMICS, UNIVERSITY OF OXFORD

than agriculture, his net revenue will be $(\theta \tau - p)S - cS^2$. Given a state of size S, the ruler maximizes:

(1)
$$V^{R}(S) = \max_{\tau, p} (\theta \tau - p)S - cS^{2}$$

(2)
$$s.t.(1-\tau)\theta - \frac{1}{\gamma p} \ge 1$$

Because net revenue is obviously increasing in τ and decreasing in p, the constraint in (2) will bind. The ruler will be compelled to choose τ and p such that $\tau = 1 - \frac{1+\gamma p}{\theta \gamma p}$. When this is substituted into (1), the ruler's problem can be solved from its first order conditions. At an interior solution, these give the ruler's optimal p and τ :

$$p^* = \sqrt{\frac{1}{\gamma}}$$
$$\tau^* = \frac{\theta - 1}{\theta} - \frac{1}{\theta\sqrt{\gamma}}$$

If $\theta \tau^* \leq p^*$, then γ and θ are such that no territory can be administered profitably. For a given S, the ruler will choose to set $\tau = p = 0$ in order to minimize his losses. The ruler's net revenue, conditional on S, can now be written as:

$$V^{R}(S) = \max\left\{ \left(\theta - 2\sqrt{\frac{1}{\gamma}} - 1\right)S - cS^{2}, -cS^{2} \right\}$$

If the ruler maximizes this with respect to *S*, the degree of state centralization that maximizes the ruler's self interest is:

(3)
$$S^* = \min\left\{1, \max\left\{\frac{1}{2c}\left(\theta - 2\sqrt{\frac{1}{\gamma}} - 1\right), 0\right\}\right\}$$

Define θ^L as the value of θ that solves $\theta \tau^* = p^*$. This is the minimum θ for which any state centralization is profitable. Below this threshold, the ruler does not bring any of the ethnic group's territory under his control. Similarly, define θ^H as the level of θ for which $S^* = 1$. For this level of θ and above, the ruler centralizes the entire territory. If $\theta \in (\theta^L, \theta^H)$, three results hold that highlight mechanisms by which ecologically-determined gains from trade spurred state centralization in pre-colonial Africa:

- (1) $\frac{\partial S^*}{\partial \theta} > 0$. Greater gains from trade will directly increase the profitability of state centralization.
- (2) $\frac{\partial S^*}{\partial c}$ < 0. If greater access to trade makes it cheaper to project authority over space, centralization will increase.
- (3) $\frac{\partial S^*}{\partial \gamma} > 0$. If access to trade makes the ruler more effective at providing public goods, state centralization becomes more profitable.

2. ADDITIONAL RESULTS MENTIONED IN THE TEXT BUT NOT REPORTED

I present a condensed version of the results from Bates (1983) in Table A1. I report coefficients on the full set of controls in Table A2.

3. ADDITIONAL FIGURES MENTIONED IN THE TEXT BUT NOT REPORTED

Vegetation types from White (1983) are mapped in Figure 1. The bimodal distribution of ecological diversity is presented in Figure 2. Ecological diversity is mapped for the artificial countries in Figure 3.

4. ROBUSTNESS CHECKS MENTIONED IN THE TEXT BUT NOT REPORTED

- 4.1. **Validity of the state centralization measure.** For nearly thirty variables from the SCCS that capture ordinal measures of various aspects of state strength, I regress the variable on my measure of state centralization and report the results in Table A3.
- 4.2. **Validity of the estimation.** In Table A6, I re-estimate the main results using a generalized ordered probit model (Maddala, 1986), in which the coefficients on the latent variables are allowed to vary across the cutoff points of the latent variable. I show in Table A6 that excluding the date of observation or controls that could be interpreted as proxies for trade barely affects the results.

In Table A7, I drop influential observations from the sample. I estimate the main results by OLS with the full set of controls. I then compute the leverage and dfbeta (for ecological diversity) statistics for each observation. In Table A7, I drop all observations with leverage greater than 2(df+2)/N. I remove any observations with absolute dfbeta greater than $2/\sqrt{N}$. I drop each of the "South African bantu," "Ethiopia/horn," 'Moslem sudan" and "Indian Ocean" in turn. I also show in this table that the results are not driven by the presence of non-agricultural societies, animal husbandry, or the desert fringe in the data.

5. ADDITIONAL MECHANISMS MENTIONED IN THE TEXT BUT NOT REPORTED

I show the correlation of several measures of trade from the SCCS with several measures of states from the SCCS in Table A9. I show that no one form of trade better predicts state centralization in Table A10. I show that local and long distance trade are strongly correlated, but that long distance performs better when both are included in Table A11.

6. Other items mentioned in the text but not reported

I show summary statistics by colonial power and by country within the British empire in Table A12. I give the full definitions of the controls of interest in Table A13. I give matches between the Ethnographic Atlas and map names from Murdock (1959) in Table

A14. I give matches between place names from Sundström (1974) and real places in Table A15.

7. ROBUSTNESS CHECKS IN THE GLOBAL SAMPLE

Robustness checks are reported in Tables W1 through WA7 that mirror the robustness checks carried out in the sub-Saharan sample.

REFERENCES

- Bates, R. (1983). *Essays on the political economy of rural Africa*. University of California Press.
- Maddala, G. (1986). *Limited-dependent and qualitative variables in econometrics*. Cambridge University Press.
- Murdock, G. (1959). Africa: Its Peoples and Their Culture History. Nueva York.
- Sundström, L. (1974). *The exchange economy of pre-colonial tropical Africa*. C. Hurst & Co. Publishers.
- White, F. (1983). The vegetation of Africa: a descriptive memoir to accompany the UN-ESCO/AETFAT/UNSO vegetation map of Africa. *Natural resources research*, 20:1–356.

FIGURE 1. White's Vegetation Map

Notes: Each shade of grey represents a different major vegetation class in White (1983).

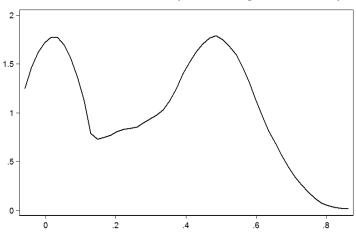


FIGURE 2. Kernel density of ecological diversity

Notes: This figure depicts the kernel density of ecological diversity in the estimation sample.

6

 ${\tt Figure 3. \ Ecological \ diversity: Artificial \ countries}$

Notes: Darker areas are more diverse.

Table A1. Bates' evidence

	(1)	(2)	(3)
	Abuts ecological divide	Diversified area	No ecological variation
		Political structure	
Kinship	12%	17%	40%
Chiefs	38%	50%	20%
Central monarch	50%	33%	40%
N	8	6	20
		Central bureaucracy	
Absent	25%	40%	67%
Present	75%	60%	33%
N	8	5	18
		National army	
Absent	38%	40%	50%
Present	62%	60%	50%
N	8	5	20
		Army commanded at	
Local level	62%	40%	50%
Regional level	0%	20%	10%
National level	38%	40%	40%
N	8	5	20

Adapted from Bates (1983), p. 43.

Table A2. Coefficients on the other controls in the main results

Table AZ. Coefficients	Table Az. Coefficients on the other controls in the main results						
	(1	.)	(2)				
	State centralization						
Ecological diversity	0.794***	(0.266)	0.484**	(0.207)			
Ag. constraints			-0.056	(0.059)			
Elevation			0.000	(0.000)			
Malaria			-0.158	(0.340)			
Precipitation			-0.000	(0.000)			
Temperature			-0.000	(0.000)			
Crop: None			-1.620**	(0.787)			
Crop: Trees			0.134	(0.392)			
Crop: Roots/tubers			0.316*	(0.181)			
Ruggedness			0.000	(0.000)			
ln(Area)			0.155**	(0.074)			
Dist. coast			0.018	(0.026)			
Dist. L. Victoria			0.000***	(0.000)			
Dist. Atlantic ST			-0.000	(0.000)			
Dist. Indian ST			-0.000	(0.000)			
Date observed			-0.003	(0.002)			
Major river			0.218	(0.172)			
Observations	440		440				

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit. Standard errors in parentheses clustered by region.

Table A3. Alternative measures of states from the SCCS are strongly correlated with state centralization

Table A3. Alternative measures of states from the SCCS are strong	(1)	(2)	(3)
Dependent variable	Coef	s.e.	N
v81: Political autonomy	0.485	0.082	182
v82: Trend in political autonomy	0.395	0.069	182
v84: Higher political organization	0.400	0.071	181
v85: Executive	0.801	0.086	181
v89: Judiciary	0.261	0.022	181
v90: Police	0.889	0.080	178
v91: Administrative hierarchy	0.943	0.071	181
v700: State punishes crimes against persons	0.185	0.033	91
v701: Full-time bureaucrats	0.242	0.026	91
v702: Part of kingdom	0.136	0.029	86
v756: Political role specialization	1.220	0.167	89
v759: Leaders' perceived power	0.432	0.069	89
v760: Leaders' perceived capriciousness	0.240	0.097	66
v761: Leaders' unchecked power	0.385	0.076	85
v762: Inability to remove leaders	0.420	0.100	77
v763: Leaders' independence	0.426	0.070	86
v764: Leaders' control of decisions	0.584	0.136	87
v776: Formal sanctions and enforcement	0.412	0.068	89
v777: Enforcement specialists	0.461	0.076	88
v779: Loyalty to the wider society	0.228	0.104	83
v784: Taxation	0.536	0.069	84
v785: Rareness of political fission	0.154	0.102	64
v1132: Political integration	1.185	0.070	118
v1134: Despotism in dispute resolution	0.132	0.023	104
v1135: Jurisdictional perquisites	0.172	0.067	34
v1736: Tribute, Taxation, Expropriation	0.961	0.152	77
v1740: Levels of political hierarchy	1.600	0.196	100
v1741: Overarching jurisdiction	0.331	0.070	94
v1742: Selection of lower officials	0.524	0.061	95

Each row reports the estimated coefficient and standard error when the listed variable in the SCCS is regressed on state centralization and a constant (not reported). All results are significant at conventional levels. I have reversed the signs for variables 756, 759, 760, 761, 762, 763, 764, 765, 776, 777, 779, and 784, so that higher values correspond to greater state strength. I have re-labeled these variables to capture the positive re-coding, and have re-labeled some other variables so that their meaning is clearer. I have removed the "missing" values 0 and 8 from variable 1132, and converted variable 89 into a binary "judiciary present" measure, since the categories of judiciary were not clearly ordered.

Table A4. The main result holds with alternative measures of states and diversity

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Any cent.				ralization		
Ecological diversity	0.220*						
	(0.121)						
Dist. ecological boundary		-0.315***					
		(0.076)					
Ecological polarization			0.243*				
			(0.129)				
Any diversity				0.239**			
				(0.115)			
Ecological diversity (Simpler classes)					0.585**		
					(0.275)		
Ecological diversity (High density areas)						0.410**	
						(0.187)	
Eco. Div. (FAO)							0.910***
							(0.220)
Other controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	440	440	440	440	440	440	440

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit with coefficients reported. Standard errors in parentheses clustered by region. Other controls are log area, major river, agricultural constraints, distance to coast, elevation, malaria, precipitation, ruggedness, temperature, distance to Lake Victoria, distance from the Atlantic and Indian Ocean slave trades, and dummies for crop type, unless otherwise specified.

Table A5. The main result is robust to unobserved heterogeneity	

	(1)	(2)	(3)	(4)	(5)
	Including area shares	Latitude longitude cubic	Conley's OLS	Including neighbors' X	Interactions with de- meaned controls
		Sto	ate centralizati	ion	
Ecological diversity	0.522**	0.498***	0.345*	0.354**	0.584***
	(0.232)	(0.192)	(0.201)	(0.156)	(0.216)
Other controls	Yes	Yes	Yes	Yes	Yes
Observations	440	440	440	440	440
	(6)	(7)	(8)	(9)	(10)
	Altonji-Elder-				
	Taber	Ethno. region	UN region		Lang. family
	<u>Statistic</u>	F.E.	F.E.	Country F.E.	F.E.
		Sto	ate centralizati	ion	
Ecological diversity		0.535**	0.635**	0.619**	0.744***
		(0.256)	(0.273)	(0.265)	(0.254)
Altonji-Elder-Taber Statistic	2.71				
Other controls	No	No	No	No	No
Observations	440	440	440	440	437

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit with coefficients reported, unless otherwise indicated. Standard errors in parentheses clustered by region. Other controls are log area, major river, agricultural constraints, distance to coast, elevation, malaria, precipitation, ruggedness, temperature, distance to Lake Victoria, distance from the Atlantic and Indian Ocean slave trades, and dummies for crop type, unless otherwise specified.

(1) (2) (3) (5) (6) (4) Drop distance from Indian Drop distance Drop distance Generalized Drop distance from lake from Atlantic Ocean Slave Slave Trade ordered probit from coast Victoria Trade No date control

	ordered probit	ji oni coust	VICTOTIU	Siuve Truue	Truue	No date control
			State cer	ntralization		
Ecological diversity	-	0.460**	0.422**	0.473**	0.454**	0.481**
		(0.194)	(0.215)	(0.207)	(0.212)	(0.212)
Equation 1	0.850**	(, ,)	()	()	()	(-)
•	(0.414)					
Equation 2	0.486*					
•	(0.272)					
Equation 3	0.645					
	(0.493)					
Equation 4	-21.761***					
	(0.797)					
Other controls	Yes	Yes	Yes	Yes	Yes	Yes
Observations	440	440	440	440	440	440

Table A6. The main results hold using alternative estimators

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit with coefficients reported, unless otherwise indicated. Standard errors in parentheses clustered by region. Other controls are log area, major river, agricultural constraints, distance to coast, elevation, malaria, precipitation, ruggedness, temperature, distance to Lake Victoria, distance from the Atlantic and Indian Ocean slave trades, and dummies for crop type, unless otherwise specified.

m 11 Am m) · 1.	1 1	1. 1.	.11		1
Table A7. The main results ar	e robuct to d	liccarding	and and	wariniic ciih.	.camnlec
Table 117. The main results at	c robust to u	iiscai aiiig	outilets and	various sub	Sampics

	(1)	(2)	(3)	(4)	(5)	(6)
			South African	Ethiopia and		
Dropped	High leverage	High dfbeta	Bantu	Horn	Moslem Sudan	Indian Ocean
			_			
				ralization		
Ecological diversity	0.457*	0.589**	0.489**	0.468**	0.475**	0.552***
	(0.270)	(0.293)	(0.206)	(0.229)	(0.226)	(0.189)
Other controls	Yes	Yes	Yes	Yes	Yes	Yes
Observations	411	410	421	400	417	435
	(7)	(8)	(9)	(10)	(11)	
	Not mostly		Mostly			
Dropped	agric.	Non-agric.	husbandry	Mostly desert	Any desert	
			State cent	ralization		
Ecological diversity	0.379*	0.527***	0.438*	0.435**	0.473**	
	(0.210)	(0.199)	(0.230)	(0.217)	(0.212)	
Other controls	Yes	Yes	Yes	Yes	Yes	
Observations	378	429	402	437	432	

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit with coefficients reported, unless otherwise indicated. Standard errors in parentheses clustered by region. Other controls are log area, major river, agricultural constraints, distance to coast, elevation, malaria, precipitation, ruggedness, temperature, distance to Lake Victoria, distance from the Atlantic and Indian Ocean slave trades, and dummies for crop type, unless otherwise specified.

Table A8. The Ricardian interpretation is consistent with the histories of six influential states

	(1)	(2)	(3)	(4)	(5)	(6)
	Name	Cent.	dfbeta	Name	Cent.	dfbeta
	Songhai	3	0.194	Suku	3	0.108
	Lozi	3	0.173	Ababda	1	0.103
	Bijogo	1	0.166	Luba	3	0.103
	Chiga	0	0.145	Giriama	3	0.102
	Yoruba	3	0.129	Bunda	2	0.096
	Bagirmi	3	0.128	Kunama	0	0.096
	Toro	3	0.128	Baya	0	0.094
	Laketonga	0	0.127	Fang	0	0.094
_	Sherbro	2	0.126	Rundi	3	0.093
	(7)	(8)	(9)	(10)	(11)	(12)
	Yoruba	Songhai	Toro	Suku	Luba	Lozi
Participated in trade?	Yes	Yes	Yes	Yes	Yes	Yes
Trade a source of wealth?	Yes	Yes	Yes	Unclear	Yes	Yes
Trade a source of state power?	Yes	Yes	Yes	Yes	Yes	Yes
No capture of trading regions?	Yes	Yes	No	Yes	No	Yes

These summarize the results of the case studies described in the text.

Table A9. Mechanisms: Trade and states are strongly correlated in the SCCS

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
			00 5 1111 1	v732:		v1733:	v1734:
			v93: Political	Importance of		Exchange	Exchange
	v1: Trade for	v2: Food trade	power via	trade in	v1007: Trade	within	beyond
	food	intermediation	commerce	subsistence	and markets	community	community
v81: Political autonomy			**		**		
v82: Trend in political autonomy	***	***	***	**			**
v84: Higher political organization	**	*	***				
v85: Executive	***	*	***	**	**		*
v89: Judiciary	***	***	***	**	**		*
v90: Police	***	***	***	**	**	*	**
v91: Administrative hierarchy	***	**	***	**	***		
v700: State punishes crimes against persons	**	***	***	**			
v701: Full-time bureaucrats	***	**	***				
v702: Part of kingdom					***		
v756: Political role specialization	**			*			
v759: Leaders' perceived power	**						**
v760: Leaders' perceived capriciousness	**			*		*	
v761: Leaders' unchecked power	**						
v762: Inability to remove leaders	**					*	*
v763: Leaders' independence			*	**			*
v764: Leaders' control of decisions							**
v776: Formal sanctions and enforcement	***			*			**
v777: Enforcement specialists						*	
v779: Loyalty to the wider society				**			
v784: Taxation	**		**	**			
v785: Rareness of political fission							
v1132: Political integration	***	**	***	**			
v1134: Despotism in dispute resolution					*		
v1135: Jurisdictional perquisites							
v1736: Tribute, Taxation, Expropriation	***	**	*	**	***		
v1740: Levels of political hierarchy	***	**	***	**	**	*	*
v1741: Overarching jurisdiction	***	*	**		***	**	*
v1742: Selection of lower officials	***			***	**	*	

^{***} p<0.01, ** p<0.05, * p<0.1. Each row reports the significance of the estimated coefficient the listed "state" variable in the SCCS is regressed on the listed "trade" variable and a constant (not reported). I have reversed the signs for variables 756, 759, 760, 761, 762, 763, 764, 765, 776, 777, 779, and 784, so that higher values correspond to greater state strength. I have re-labeled these variables to capture the positive re-coding, and have re-labeled some other variables so that their meaning is clearer. I have removed the missing values 0 and 8 from variable 1132, and converted variable 89 into a binary "judiciary present" measure, since the categories of judiciary were not clearly ordered. I have also reversed the sign for variable 732 so that higher values correspond to greater trade. I have converted variable 93 into a binary "power depends on commerce" measure if v93 (the most important source of political power) is either 2 (tribute or taxes), 7 (foreign commerce), or 8 (capitalistic enterprises).

Table A10. No one type of trade best predicts states in the SCCS

	(1)	(2)	(3)
Dependent variable	Coef	s.e.	N
v1: Trade for food	0.324	0.071	181
v2: Food trade intermediation	0.289	0.087	123
v93: Political power via commerce	0.064	0.018	181
v732: Importance of trade in subsistence	0.154	0.056	92
v1007: Trade and markets	0.382	0.104	52
v1733: Exchange within community	0.200	0.096	95
v1734: Exchange beyond community	0.098	0.079	98

Each row reports the estimated coefficient and standard error when the listed variable in the SCCS is regressed on state centralization and a constant (not reported). I have reversed the sign for variable 732 so that higher values correspond to greater trade. I have converted variable 93 into a binary "power depends on commerce" measure if v93 (the most important source of political power) is either 2 (tribute or taxes), 7 (foreign commerce), or 8 (capitalistic enterprises).

Table A11. Long distance trade survives in a horse race with local trade

Table 111. Bong distance trade survives in a norse race with local trade							
	(1) (2)						
	Ecological diversity	State centralization					
Ecological diversity		0.056					
		(0.306)					
Dist. ecological divide	-0.284***	-0.300***					
	(0.016)	(0.115)					
Other controls	No	Yes					
Observations	440	440					

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit with coefficients reported, unless otherwise indicated. Standard errors in parentheses clustered by region. Other controls are log area, major river, agricultural constraints, distance to coast, elevation, malaria, precipitation, ruggedness, temperature, distance to Lake Victoria, distance from the Atlantic and Indian Ocean slave trades, and dummies for crop type, unless otherwise specified.

Table A12. Outcomes differ across colonial powers, and within the British empire

Table A12. Outcomes differ	(1)	(2)	(3)	(4)	(5)
Colonial Power	$\overline{}$	l diversity	State cent		(3)
Golomai i owei	Mean	s.d.	Mean	s.d.	N
Belgium	0.26	0.24	1.08	0.92	50
Britain	0.31	0.23	1.13	0.93	202
Ethiopia	0.31	0.25	1.00	0.89	6
France	0.22	0.23	1.00	0.88	108
None	0.46	0.19	1.55	0.92	38
Portugal	0.24	0.21	1.10	0.72	20
South Africa	0.46	0.17	1.67	1.15	12
Spain	0.12	0.16	2.50	2.12	2
Spuiii .	0.12	0.10			_
	(6)	(7)	(8)	(9)	(10)
Country	$\overline{}$	l diversity	State cent		
-	Mean	s.d.	Mean	s.d.	N
Botswana	0.57	0.09	1.00	1.41	2
Egypt	0.00		1.00		1
Ghana	0.15	0.22	0.94	1.00	18
Kenya	0.42	0.18	0.95	0.76	20
Malawi	0.42	0.04	1.50	0.71	2
Nigeria	0.16	0.21	1.02	0.93	60
Sierra Leone	0.39	0.25	1.67	0.58	3
Somalia	0.55	0.05	1.00	1.41	2
Sudan	0.42	0.18	0.87	0.76	31
Swaziland	0.45		3.00		1
Tanzania	0.44	0.18	1.25	0.94	36
Uganda	0.41	0.16	1.47	1.06	15
Zambia	0.25	0.22	1.64	0.92	11
Zimbabwe	0.19	0.27	2.50	0.71	2

	Table A13. Detailed definitions of the control variables
Major river	This is a dummy that equals one if the Benue, Blue Nile, Chire, Congo, Lualaba, Lukaga, Niger, Nile, Orange, Ubangi, White Nile, or Zambezi Rivers intersect the ethnic group's territory.
Ag. constraints	This is an index of combined climate, soil and terrain slope constrains on rainfed agriculture, taken from the FAO-GAEZ project (see Fischer et al. (2001)). I interpret it as an inverse measure of land quality.
Dist. coast	This is average distance from each point in the ethnic group territory to the nearest point on the coast, in decimal degrees, calculated in ArcMap.
Elevation	This is average elevation in meters.
Malaria	This is average climatic suitability for malaria transmission, computed by Adjuik et al. (1998).
Precipitation	This is average annual precipitation (mm). Because some societies are too small for a raster point to fall within their territory, I impute missing data using the nearest raster point. I treat 55537 is as an error code and drop these points.
Ruggedness	This is a measure of terrain ruggedness used by Nunn and Puga (2009). It computes the average absolute difference in elevation between a grid cell and that of its neighbors.
Temperature	This is the accumulated temperature on days with mean daily temperature above 0 degrees celsius, computed using monthly data from 1961 to 2000 collected by the Climate Research Unit (CRU) of the University of East Anglia. I treat 55537 is as an error code and drop these points. I impute missing values using the nearest raster point.
Dist. L. Victoria	I compute the distance between each ethnic group's centroid and that of Lake Victoria using the globdist function in Stata.
Date observed	This is the rough date at which the information on the society was recorded, according to the <i>Ethnographic Atlas</i> . Dates of observation are missing for the Bomvana and Betsileo. I recode the Bomvana to 1850, to match the date of observation for the other Xhosa. I recode the Betsileo to 1900, the modal date for the other Malagasy societies in the data.
Dist. Atlantic ST	This is the minimum distance between the ethnic group's centroid and the nearest major source of new world demand for slaves (Virginia, Havana, Haiti, Kingston, Dominica, Martinique, Guyana, Salvador, or Rio), computed using the globdist function in Stata. The choice of ports here follows Nunn (2008).

Dist. Indian ST

ln(Area) Crop type This is, similarly, the distance to the nearest of Mauritius and Muscat. This is in decimal degrees, computed using the Murdock (1959) map.

I construct dummy variables out of the major crop types recorded in the *Ethnographic Atlas*. I treat these as exogenous characteristics determined by the natural environment.

Table A14. Matches from Atlas

Name in map	Name in atlas	Match type
JERAWA, CHAWAI (SW)	CHAWAI	Alternative Spelling
ВАКО	SHANGAMA	Alternate Subgroup
AVIKAM	ALAGYA	Alternate Subgroup
GURENSI	NANKANSE	Alternate Subgroup
BAKO	UBAMER	Alternate Subgroup
KATAB	KAGORO	Alternate Subgroup
LUNGU	MAMBWE	Alternative Name
JANJERO	JIMMA	Alternative Name
BARI	KAKWA	Alternative Name
KEMANT	FALASHA	Alternative Name
NYAKYUSA	NGONDE	Alternative Name
RIF	RIFFIANS	Alternative Name
BRONG	ABRON	Alternative Name
KINDIGA	HATSA	Alternative Name
SOKOTO	BOROROFUL	Alternative Name
SAGARA	KAGURU	Alternative Name
NYASA	LAKETONGA	Alternative Name
GRUNSHI	AWUNA	Alternative Name
LESE	MBUTI	Alternative Name
RESHIAT	GALAB	Alternative Name
GURO	TURA	Alternative Name
BANZA	MBANDJA	Alternative Spelling
XOSA	XHOSA	Alternative Spelling
BUSANSI	BISA	Alternative Spelling
KARAMOJONG	KARAMOJON	Alternative Spelling
NGURU	NGULU	Alternative Spelling
KURAMA, GURE (NE)	KURAMA	Alternative Spelling
GYRIAMA	GIRIAMA	Alternative Spelling
CHAGA	CHAGGA	Alternative Spelling
SHAWIA	SHAWIYA	Alternative Spelling
KIPSIGI	KIPSIGIS	Alternative Spelling
BAKAKARI	DAKAKARI	Alternative Spelling
FUNGON	FUNGOM	Alternative Spelling
FIA	BAFIA	Alternative Spelling
ZUANDE, BATU (E)	ZUANDE	Alternative Spelling
HLENGWE	LENGE	Alternative Spelling
BIRIFON	BIRIFOR	Alternative Spelling
AMER	BENIAMER	Alternative Spelling
KONA	HONA	Alternative Spelling
ZENEGA	ZENAGA	Alternative Spelling
KURAMA, GURE (NE)	GURE	Alternative Spelling
NGUMBE	NGUMBI	Alternative Spelling
SABEI	SAPEI	Alternative Spelling
BIRA	PLAINSBIR	Alternative Spelling
TONGA	PL TONGA	Alternative Spelling
SIWA	SIWANS	Alternative Spelling
FOUTADJALON	FUTAJALON	Alternative Spelling
LAKA (ADAMAWA	LAKA	Alternative Spelling
LI	BALI	Alternative Spelling
MBESA	BOMBESA	Alternative Spelling
ANYANG	BANYANG	Alternative Spelling

BASA Alternative Spelling **BASAKOMO** MUM **Alternative Spelling BAMUM AULLIMINDEN AULLIMIND Alternative Spelling SINZA** ZINZA **Alternative Spelling SUK** HILLSUK **Alternative Spelling SARA Alternative Spelling SALA** NEN **BANEN Alternative Spelling SUK PLAINSSUK Alternative Spelling** NYANKOLE **Alternative Spelling NKOLE**

TALODI MORO Location **GURENSI KUSASI** Location **KELA LALIA** Location **OMETO BADITU** Location **BODI** TOPOTHA Location **KEREWE KARA** Location **KAFA SHAKO** Location **KANURI WODAABE** Location **NAMSHI DJAFUN** Location **KOALIB MESAKIN** Location **KOALIB NYARO** Location **TALODI** TIRA Location **TUMTUM KORONGO** Location **BORAN** BURJI Location **TAGALI** OTORO Location **WABA ISALA** Location Location NANDI TIRIKI **AFUSARE ANAGUTA** Location Location **NYIMA TULLISHI**

BIRIFON LOWIILI Location **MIJERTEIN SOMALI** Subgroup **KAMBATA SIDAMO** Subgroup **NGWATO TSWANA** Subgroup KARANGA **SHONA** Subgroup **TENDA BASSARI** Supergroup **KONSO TSAMAI** Supergroup **KONSO ARBORE** Supergroup **HAUSA KANAWA** Supergroup **OMETO** MALE Supergroup **VUGUSU DORSE KASENA**

LUO Supergroup **OMETO** Supergroup **GRUNSHI** Supergroup **BASKETO OMETO** Supergroup **IBO AFIKPO** Supergroup **TENDA CONIAGUI** Supergroup **HAUSA** ZAZZAGAWA Supergroup **XOSA BOMVANA** Supergroup **SENGA NGONI** Supergroup MOSSI **YATENGA** Supergroup MAO **ANFILLO** Supergroup **OMETO** DIME Supergroup **OMETO HAMMAR**

OMETO HAMMAR Supergroup
IBIBIO EFIK Supergroup
OMETO BANNA Supergroup

Table A15. Matches to Sundstrom

Location	Name in map	Lat.	Lon.	Resource
Air		18.28	8.00	Iron
Akpa- fu		7.26	0.49	Iron
Alur (Okebo)	Alur	2.52	31.22	Iron
Babua (Bonyoro and Ganyoro)	Babwa	2.49	25.34	Iron
Balandougou		12.90	-8.88	Iron
Bambouk	Malinke	11.87	-10.65	Iron
Bamungu				Iron
Banamba area		13.55	-7.45	Iron
Banjelli	Basari	9.20	0.79	Iron
Bassari	Basari	9.20	0.79	Iron
Baule	Baule	7.29	-4.79	Iron
Bida		9.08	6.02	Iron
Birgo		12.66	-12.29	Iron
Boubou		13.37	-1.80	Iron
Buberuka		-1.49	-29.84	Iron
Budu	Budu	2.12	28.12	Iron
Chagga	Chaga	-3.21	37.45	Iron
Chokwe	Chokwe	-9.66	20.32	Iron
Dagari	Dagari	10.77	-2.56	Iron
Dakwa	J	-17.72	18.17	Iron
Daura		13.04	8.32	Iron
Dentila		13.50	9.92	Iron
Duru	Duru	8.10	14.13	Iron
Ekpe		5.75	8.50	Iron
Follona				Iron
Gantsa				Iron
Golungo Alto		-9.13	14.77	Iron
Gurgara				Iron
Hoggar		23.29	5.53	Iron
Ifoghas		19.12	1.75	Iron
Iru		6.43	3.42	Iron
Jifa				Iron
Jur	Jur	8.08	28.04	Iron
Kanioka	,	-4.87	-21.65	Iron
Kano		12.00	8.52	Iron
Kete				Iron
Kissenje				Iron
Kuriga				Iron
Kwanyama	Ambo	-17.59	16.04	Iron
Kwoteru				Iron
Longo in Sindja				Iron
Ma- kandiambougou		12.62	-7.94	Iron
Mandara	Mandara	11.45	14.19	Iron
Mao	Mao	9.03	34.78	Iron
Misumba		-4.27	-21.95	Iron
Mofu		10.58	14.33	Iron
Moussodougou		10.83	-4.95	Iron
Naparba		_0.00		Iron
Ndjembo		•	•	Iron
Ndulo		•	•	Iron
Ngapu		5.77	20.68	Iron
- · O r		*		

Ngbandi	Ngbandi	3.77	21.83	Iron
Ngele	Ngballul	5.33	39.58	Iron
Nugar		10.00	-18.58	Iron
Nyaneka (Mbi)	Nyaneka	-15.55	13.96	Iron
Osaka	Nyaneka	-13.33		Iron
Oule		•	•	Iron
		7.85	3.93	
Oyo	Dagan			Iron
Pegue	Dogon	14.44 -4.48	-3.22	Iron
Pianga			-21.60	Iron
Sambabougou		14.58	8.17	Iron
San-Trokofi		7.20	0.50	Iron
Sappo Sap	C f -	0.25	E (1	Iron
Senufo of Kanedougou	Senufo	9.25	-5.61	Iron
Shimba	C - 1 - 4 -	-4.28	20.42	Iron
Sokoto	Sokoto	12.78	4.42	Iron
Sundi	Sundi	-4.49	13.99	Iron
Teke (N'galiema)	Teke	-2.88	15.46	Iron
Totela	Totela	-16.35	24.53	Iron
Toto	**.1.			Iron
Vili	Vili	-4.66	12.06	Iron
Yaka	Yaka	-6.26	17.15	Iron
Yakoma	Yakoma	4.30	21.78	Iron
Yanzi (Nguli)	Yanzi	-3.98	18.10	Iron
Yende		8.88	-10.17	Iron
Zanfara		11.75	5.02	Iron
Zaouar		20.45	16.52	Iron
Zargu				Iron
Zigueri				Iron
Abimi				Salines
Accany				SeaSalt
Accra		5.55	-0.20	SeaSalt
Adamawa	Adamawa	7.56	13.18	VegetableSalt
Alima		-1.59	16.62	VegetableSalt
Alur	Alur	2.52	31.22	Salines
Amadror		24.83	6.42	RockSalt
Ambriz		-7.85	13.12	SeaSalt
Andulo		-11.48	15.83	Natron
Aquamboe		5.42	-1.32	SeaSalt
Ardra		6.65	2.15	SeaSalt
Arguin		20.60	-16.45	SeaSalt
Assinie	Assini	5.18	-2.87	SeaSalt
Attaka				VegetableSalt
Awei		2.00	32.78	Salines
Azara		5.48	7.15	Salines
Babua		0.15	10.13	VegetableSalt
Bachama	Bachama	9.47	11.99	VegetableSalt
Baga	Baga	10.38	-14.25	SeaSalt
Bagrimi	Bagirmi	11.30	16.41	VegetableSalt
Banda	Banda	6.72	22.16	VegetableSalt
Banyang	Anyang	5.77	9.47	VegetableSalt
Bari	Bari	4.74	31.73	Salines
Baya	Baya	5.58	15.78	Salines
Baya	Baya	5.58	15.78	Animal
,	<i>J</i> -	-	-	-

Baya	Baya	5.58	15.78	VegetableSalt
Bemba	Bemba	-10.67	31.34	Salines
Bena Lulua	Lulua	-5.94	22.35	VegetableSalt
Benguella		-12.55	13.42	SeaSalt
Benin	Edo	6.32	5.80	SeaSalt
Benin	Edo	6.32	5.80	VegetableSalt
Bilma		18.68	12.92	Salines
Bishi		10.25	10.10	Salines
Biskra		34.85	5.73	RockSalt
Bolobo		-2.17	16.23	VegetableSalt
Bomanda		7.22	8.05	VegetableSalt
Bomokandi		3.65	26.13	VegetableSalt
Bondjo	Bondjo	2.52	18.02	VegetableSalt
Bongo	Bongo	6.84	28.69	VegetableSalt
Bonny		4.43	7.17	SeaSalt
Borgu		9.35	2.62	Salines
Bornu		11.50	13.00	VegetableSalt
Bouavere				VegetableSalt
Boubou		13.37	-1.80	VegetableSalt
Brass		4.32	6.24	SeaSalt
Budu	Budu	2.12	28.12	Salines
Buduma	Buduma	13.53	14.42	VegetableSalt
Buduma	Buduma	13.53	14.42	VegetableSalt
Bunda	Bunda	-5.08	19.62	VegetableSalt
Bungu		7.75	33.00	Salines
Busa	Busa	10.52	4.20	Salines
Bussamai		8.37	-9.18	VegetableSalt
Calabar		4.95	8.33	SeaSalt
Cape Corso		5.10	-1.25	SeaSalt
Cape Lahou		5.13	-5.02	SeaSalt
Cape Lope		-0.63	8.65	SeaSalt
Cape Mesurado		6.31	-10.81	SeaSalt
Cape Mount		7.17	-11.00	SeaSalt
Cape Mount		7.17	-11.00	VegetableSalt
Cape Verdes		15.11	-23.62	SeaSalt
Chad		13.00	14.00	Natron
Chad		13.00	14.00	VegetableSalt
Chokwe	Chokwe	-9.66	20.32	VegetableSalt
Commenda		-32.90	17.98	SeaSalt
Daboya		14.07	-0.90	Salines
Dagera	Kanuri	12.05	12.75	VegetableSalt
Dimi		-1.15	15.85	RockSalt
Dirki		19.00	12.90	Salines
Djenne		13.90	-4.55	VegetableSalt
Dombu		7.32	-11.27	Salines
Duma	Duma	-1.87	13.16	VegetableSalt
Ekoi	Ekoi	5.62	8.81	Salines
Elmina		5.08	-1.35	SeaSalt
Etosha		-18.95	15.90	Salines
Ewe	Ewe	6.61	0.85	VegetableSalt
Facki				Salines
Fang	Fang	1.73	11.75	VegetableSalt
Fernan Vaz		-1.57	9.25	VegetableSalt

Fetu		5.08	-1.35	SeaSalt
Fez		34.03	-1.33 -5.00	RockSalt
Fezzan	Fezzan	26.21	15.13	Salines
Fogha	rezzan	31.77	14.05	Salines
Fooli		31.77	14.03	Salines
Gagu	Cagu	6.41	-5.66	VegetableSalt
•	Gagu	15.79	-3.66 -16.53	SeaSalt
Gandiole (Aoulil) Gannawari		13.79	-10.55	
		-8.00	35.00	VegetableSalt VegetableSalt
Gesera				O
Gold Coast		5.10	-1.25 1.25	SeaSalt
Gold Coast		5.10	-1.25	VegetableSalt
Gonsalves		1467	17.40	SeaSalt
Goree		14.67	-17.40	SeaSalt
Gurio	C	7.26		Salines
Guro	Guro	7.36	-6.02	VegetableSalt
Gurunsi	Gurensi	10.82	-0.44	VegetableSalt
Habe	**	11.87	-3.13	VegetableSalt
Hausa	Hausa	12.37	7.15	VegetableSalt
Hima		0.29	30.18	Salines
Hoggar		23.29	5.53	RockSalt
Huana				VegetableSalt
Hunde	Hunde	-1.03	28.62	VegetableSalt
Idjil		22.63	-12.55	RockSalt
Ijaw	Ijaw	4.81	6.28	VegetableSalt
Imbangala		-3.24	17.37	RockSalt
Irangi		-0.35	39.48	VegetableSalt
Jekri	Itsekiri	5.59	5.49	VegetableSalt
Joal		14.17	-16.83	SeaSalt
Kagoro	Kagoro	14.14	-8.74	VegetableSalt
Kakonto		-13.02	24.68	Salines
Kanem	Kanembu	13.99	14.43	VegetableSalt
Kanga Bonu	Guro	7.36	-6.02	VegetableSalt
Kango		0.15	10.13	VegetableSalt
Kanyenne		9.37	-6.63	Salines
Kasai		-10.96	19.32	VegetableSalt
Kasuku		-2.95	25.95	VegetableSalt
Katab	Katab	9.76	8.32	VegetableSalt
Katwe		0.30	32.58	Salines
Kavirondo		1.13	34.55	Salines
Keaka	Ekoi	5.62	8.81	Salines
Keana		8.53	8.30	Salines
Kela	Kela	-1.98	23.71	VegetableSalt
Kete				VegetableSalt
Khassonke	Kasonke	14.32	-10.66	VegetableSalt
Kibila		-6.45	24.58	VegetableSalt
Kibiro		1.68	31.25	Salines
Kikuyu	Kikuyu	-0.85	36.99	Natron
Kita		13.05	-9.48	RockSalt
Kita		13.05	-9.48	VegetableSalt
Kivu		-2.50	28.00	VegetableSalt
Kongo	Kongo	-6.62	14.62	SeaSalt
Kongo	Kongo	-6.62	14.62	VegetableSalt
Konkomba	Konkomba	9.84	0.57	VegetableSalt

Votelro	Vatalra	11 70	15 15	Animal
Kotoko Kotoko	Kotoko Kotoko	11.70 11.70	15.15 15.15	Animal VegetableSalt
		7.43	-9.11	J
Kpelle Kuba	Kpelle Kuba	-4.69	21.88	VegetableSalt VegetableSalt
Kuku	Kuba Kuku	3.93	31.54	Animal
Kuku	Kuku Kuku	3.93	31.54	
	Nuku			VegetableSalt RockSalt
Kunene		-17.26	11.75 17.37	Salines
Kwango Lake Albert		-3.24 1.68	_	Salines
Lake Edward			30.92	Salines
		-0.33	29.60	
Lake Kioga Lake Kivu		1.50	33.00	Salines
		-2.00	29.00	Salines
Lake Nyiri		-2.00	36.87	Natron
Lake Rukwa	Lala	-8.00	32.42	Salines
Lala	Laia Lamba	-13.59	30.28	VegetableSalt
Lamba		-12.75	27.91	Salines
Latuka	Lotuko	4.52	32.71	Animal
Lendu	Lendu	1.92	30.52	VegetableSalt
Lese	Lese	1.98	29.17	VegetableSalt
Liberia		6.32	-10.80	SeaSalt
Liberia		6.32	-10.80	VegetableSalt
Little Popo		6.23	1.60	SeaSalt
Loanda		-8.84	13.23	RockSalt
Loango	7.1.	-2.27	9.58	SeaSalt
Lobi	Lobi	10.01	-3.34	VegetableSalt
Logu		3.83	31.60	VegetableSalt
Lomami		-6.13	24.48	VegetableSalt
Lomela		-3.52	23.60	Salines
Lomela		-3.52	23.60	VegetableSalt
Lualaba		2.15	22.48	Salines
Lualaba		2.15	22.48	VegetableSalt
Luanda River		-8.84	13.23	Salines
Lufubu		-9.90	28.78	Salines
Lugowa		-2.50	28.87	Salines
Luigila				VegetableSalt
Lukenie		3.47	22.45	VegetableSalt
Lulua	Lulua	-5.94	22.35	Salines
Lumbo	Lumbo	-2.51	10.90	SeaSalt
Lunda	Lunda	-8.57	22.58	Salines
Lunda	Lunda	-8.57	22.58	VegetableSalt
Lupolo	Lupolo	-10.33	15.14	VegetableSalt
Luvira		-11.00	33.75	Salines
Majumba				SeaSalt
Malagarasi		-5.20	29.78	Salines
Malinke	Malinke	11.87	-10.65	VegetableSalt
Mamfe	_	5.77	9.28	Salines
Mandja	Mandja	5.96	18.32	VegetableSalt
Manga	Manga	13.41	11.35	Salines
Manga	Manga	13.41	11.35	Natron
Mano		6.92	-11.51	VegetableSalt
Mao	Mao	9.03	34.78	Salines
Mao	Mao	9.03	34.78	Animal
Marra Mountains		12.95	24.27	Salines

Marungu		-3.73	30.80	Salines
Masai	Masai	-2.92	36.42	Natron
Mbala	Mbala	-4.82	18.21	Salines
Mbala	Mbala	-4.82	18.21	VegetableSalt
Mbere	Mbere	7.12	15.86	VegetableSalt
Mbi				VegetableSalt
Mfini				VegetableSalt
Miltou		17.40	10.23	VegetableSalt
Moashia				Salines
Moroa		9.73	8.40	VegetableSalt
Munio		<i>y</i> 0	0.10	Natron
Munza		-8.65	15.40	Salines
Murzuk		25.90	13.90	Natron
Musgu	Musgu	10.99	15.31	VegetableSalt
Mweru	Musgu	-9.17	28.50	Salines
Nankanse	Gurensi	10.82	-0.44	VegetableSalt
Ndiki	Fia	4.82	11.33	VegetableSalt
				J
Ngala	Ngala	1.27	18.86	VegetableSalt
Nganza	Manakat	-5.16	18.96	Salines
Ngbetu	Mangbetu	3.40	27.80	VegetableSalt
Ngelima		1.55	25.33	VegetableSalt
Ngigmi		14.25	13.11	Salines
Ngimi				VegetableSalt
Ngongo	Ngongo	-5.33	18.39	VegetableSalt
Nkutshu		-2.70	23.20	VegetableSalt
North African Sebkras		22.27	-11.43	Salines
Northern Liberia		8.00	-10.00	VegetableSalt
Nouakchott		18.10	-15.95	SeaSalt
Nuba		12.00	30.75	Salines
Nyamwezi	Nyamwezi	-5.07	32.81	Salines
Nyangwe		-4.22	26.18	Salines
Ouidah		6.37	2.08	SeaSalt
Popoie				VegetableSalt
Porto da Salines				SeaSalt
Porto Novo		6.50	2.61	SeaSalt
Quissama		-9.98	14.48	RockSalt
Rega	Rega	-2.93	27.73	VegetableSalt
Rivers Mano and Mahfa		6.92	-11.51	SeaSalt
Ruanda	Ruanda	-1.93	29.94	VegetableSalt
Rundi	Rundi	-3.28	30.09	VegetableSalt
Rusugi		-7.80	35.60	Salines
Rutshuru		-1.18	29.45	Salines
Ruwenzori		0.39	29.87	Salines
Sakata	Sakata	-2.84	17.78	VegetableSalt
Samba		-8.88	13.20	Salines
Sankuru		-4.28	20.42	Salines
Sankuru		-4.28	20.42	VegetableSalt
Sarua		10.50	17.00	VegetableSalt
Sebe		20100		Salines
Semliki		1.22	30.50	Salines
Senegal Mouth		15.79	-16.53	SeaSalt
Sengere		-1.80	17.50	VegetableSalt
Shari		12.91	14.57	Animal
Jilui i		14.71	11.07	1 miniai

Shari		12.91	14.57	VegetableSalt
Sierra Leone		8.48	-13.23	VegetableSalt
Sierra Leono		8.48	-13.23	SeaSalt
Soko	Soko	1.45	23.68	VegetableSalt
Soko	Soko	1.45	23.68	VegetableSalt
Songe	Songe	-5.40	25.42	VegetableSalt
Songo Meno	Songomeno	-3.73	22.69	VegetableSalt
Taodeni-Tegazza		23.60	-5.00	RockSalt
Teda	Teda	21.74	16.33	VegetableSalt
Tetela	Tetela	-3.68	24.46	VegetableSalt
Tigidda		17.52	6.78	Salines
Timbuctoo		16.78	-3.01	VegetableSalt
Tofoke		0.52	25.20	VegetableSalt
Toma	Toma	8.20	-9.37	VegetableSalt
Tuburi	Tuburi	10.31	15.09	Animal
Tumba		-0.83	18.00	VegetableSalt
Tumbwe		-6.02	29.13	VegetableSalt
Ubangi		-0.50	17.70	VegetableSalt
Uelle		4.15	22.43	VegetableSalt
Upper Likwala		-1.00	17.00	Salines
Vili	Vili	-4.66	12.06	SeaSalt
Vinza		-5.00	31.00	Salines
Volta		5.77	0.68	SeaSalt
Wadi		30.43	-30.27	Salines
Wadi l'Natrum		30.42	30.33	Natron
Waja		12.28	39.60	Natron
Wasau				RockSalt
Yaka	Yaka	-6.26	17.15	VegetableSalt
Yanzi	Yanzi	-3.98	18.10	VegetableSalt
Yaunde		3.87	11.52	VegetableSalt
Yoruba	Yoruba	8.32	4.11	VegetableSalt
Zaberma	Zerma	13.58	2.72	Natron
Zande	Azande	4.58	26.45	Salines
Zande	Azande	4.58	26.45	VegetableSalt

Table W1. Summary Statistics

	(1)	(2)	(3)	(4)	(5)
	Mean	s.d.	Min	Max	N
State centralization	0.90	1.05	0	4	1,077
Ecological diversity (FAO classes)	0.42	0.25	0	0.84	1,077
Land quality	1.29	0.90	-4.0e-07	3.98	1,077
Date observed	1,900	103	-800	1,965	1,077
Precipitation	1,236	836	12.6	6,164	1,077
Temperature	7,119	2,834	35.5	10,830	1,077
Absolute latitude	21.1	17.4	0.017	78.1	1,077
Pct. malarial	0.17	0.20	0	0.69	1,077
Dist. to coast	4.32	3.88	0	15.4	1,077
Elevation	167	9.68	141	230	1,077
Major river	0.30	0.46	0	1	1,077
Ruggedness	120,983	134,492	137	977,941	1,077
Crop: None	0.22	0.42	0	1	1,077
Crop: Non-food	0.0019	0.043	0	1	1,077
Crop: Vegetables	0.0028	0.053	0	1	1,077
Crop: Trees	0.056	0.23	0	1	1,077
Crop: Roots/tubers	0.19	0.39	0	1	1,077
Log Area	0.45	1.77	-5.41	7.19	1,077

Table W3. The instrumental variables results do not hold in the global sample

Table W.S. The mistrui	illelitai variables result			
	(1)	(2)	(3)	(4)
	OLS: B	aseline		V
		State cent	tralization	
Ecological diversity	0.275**	0.275**	0.060	0.060
	(0.125)	(0.125)	(0.908)	(0.908)
Other controls	Yes	Yes	Yes	Yes
Observations	863	1,077	863	1,077
F-statistic			9.945	9.945
	(5)	(6)	(7)	(8)
	OLS: Redi	OLS: Reduced form		
	State cent	ralization	Ecologica	l diversity
Log rainfall range	0.001	0.001	0.021***	0.021***
	(0.019)	(0.019)	(0.007)	(0.007)
Other controls	Yes	Yes	Yes	Yes
Observations	863	1,077	863	1,077

^{***} p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses clustered by region. Other controls are log area, land quality, distance from coast, elevation, malaria, rainfall, temperature, date, crop dummies, major river, ruggedness and absolute latitude. The excluded instrument is the log rainfall range. In columns 3, 5, and 7, missing values of the log rainfall range are recoded to zero. In columns 2, 4, 6, and 8, these observations are excluded.

Table W4. The Ricardian interpretation better explains the main result than six alternatives

	(1)	(2)	(3)
			Drop Area Q1 and
	Drop Area Q1	Drop Area Q5	Q5
		State centralizatio	n
Ecological diversity	0.610***	0.734***	0.993***
	(0.206)	(0.181)	(0.236)
Other controls	Yes	Yes	Yes
Observations	861	862	646
	(4)	(5)	(6)
		State centralizatio	n
Ecological diversity	0.332	0.344*	0.459**
	(0.208)	(0.185)	(0.190)
Ag. Constraints Range	0.092*		
	(0.048)		
Pop. density		0.002***	
		(0.001)	
Subsistence diversity			-1.545***
			(0.385)
Other controls	Yes	Yes	Yes
Observations	1,077	1,074	1,077

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit unless otherwise indicated. Standard errors in parentheses clustered by region unless otherwise indicated. Other controls are log area, land quality, distance from coast, elevation, malaria, rainfall, temperature, date, crop dummies, major river, ruggedness and absolute latitude unless otherwise indicated.

Table W5. Trade supports class stratification and local democracy, and no one type of trade matters most

	(1)	(2)	(3)	(4)	(4)
			Headman is		
			appointed		
		Class	(ordered		Headman is
	Local state	Stratification	logit)	High gods	democratic
Ecological diversity	-0.197	0.542*	-0.343	-0.332	0.492**
	(0.208)	(0.282)	(1.011)	(0.345)	(0.228)
Other controls	Yes	Yes	Yes	Yes	
Observations	1,076	981	823	687	823
	(6)	(7)	(8)		
		St	ate centralizatio	on	
% dep. on fishing	-0.047				
,,,,,,,,,,,,,,,,,,,,,,	(0.055)				
Iron production	(* * * * *)	1.129***			
•		(0.221)			
Gold production			0.319**		
•			(0.134)		
Other controls	Yes	Yes	Yes		
Observations	1,077	884	884		

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit unless otherwise indicated. Standard errors in parentheses clustered by region unless otherwise indicated. Other controls are log area, land quality, distance from coast, elevation, malaria, rainfall, temperature, date, crop dummies, major river, ruggedness and absolute latitude unless otherwise indicated.

Table WA4. The main result holds with alternative measures of states and some alternative measures of diversity

	(1)	(2)	(3)	(4)	(5)
	Any cent.	Cent. > 1	Sta	te centralizat	ion
Ecological diversity	0.191**	0.139**			
	(880.0)	(0.064)			
Ecological polarization			0.241		
			(0.147)		
Any diversity				-0.013	
				(0.188)	
Ecological diversity (Hist. pop den.>1 per skm)					0.426**
					(0.204)
Other controls	Yes	Yes	Yes	Yes	Yes
Observations	1,075	1,075	1,077	1,077	796

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit unless otherwise indicated. Standard errors in parentheses clustered by region unless otherwise indicated. Other controls are log area, land quality, distance from coast, elevation, malaria, rainfall, temperature, date, crop dummies, major river, ruggedness and absolute latitude unless otherwise indicated. Two observations are lost in columns (1) and (2) because non-food crops are a perfect predictor.

(1) (2) (3) (4) (5)

	Including area shares	Latitude longitude cubic	Conley's OLS	Including neighbors' X	Interactions with de- meaned controls
		St	ate centralizat	ion	
Ecological diversity	-0.216	0.459**	0.276**	0.439**	0.499***
,	(0.258)	(0.194)	(0.133)	(0.179)	(0.173)
Other controls	Yes	Yes	Yes	Yes	Yes
Observations	1,077	1,077	1,077	1,077	1,077
	(6)	(7)	(8)	(9)	(10)
	Altonji-Elder-		Broader		
	Taber	Ethno.	ethno.		Lang. family
	Statistic	region F.E.	region F.E.	Country F.E.	F.E.
				-	
		St	ate centralizat	ion	
Ecological diversity		0.407***	0.743***	0.592***	0.630***
		(0.137)	(0.135)	(0.165)	(0.145)
Altonji-Elder-Taber Statistic	2.396				
Other controls	Yes	No	No	No	No
Observations		1,077	1,077	1,077	1,031

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit unless otherwise indicated. Standard errors in parentheses clustered by region unless otherwise indicated. Other controls are log area, land quality, distance from coast, elevation, malaria, rainfall, temperature, date, crop dummies, major river, ruggedness and absolute latitude unless otherwise indicated.

Table WA6. The main results hold using alternative estimators

	(1) Generalized	No "trade"	(3)
	ordered probit	controls	No date control
	S	tate centralizatio	n
Ecological diversity		0.457**	0.453**
		(0.187)	(0.183)
Equation 1	0.485**		
	(0.212)		
Equation 2	0.626**		
	(0.258)		
Equation 3	0.405*		
	(0.245)		
Equation 4	-0.551		
	(1.069)		
Other controls	Yes	Yes	Yes
Observations	1 077	1 077	1 077

Observations 1,077 1,077 1,077 1,077 *** p<0.01, *** p<0.05, * p<0.1. Regressions estimated by ordered probit unless otherwise indicated. Standard errors in parentheses clustered by region unless otherwise indicated. Other controls are log area, land quality, distance from coast, elevation, malaria, rainfall, temperature, date, crop dummies, major river, ruggedness and absolute latitude unless otherwise indicated.

Table WA7. The			

Table WA7. The main result	(1)	(2)	(3)	(4)
			Not mostly	
Dropped	High leverage	High dfbeta	agric.	Non-agric.
				_
		State centi	ralization	
Ecological diversity	0.473**	0.375*	0.565***	0.552***
	(0.189)	(0.198)	(0.213)	(0.207)
Other controls	Yes	Yes	Yes	Yes
Observations	1,051	1,010	656	833
	(5)	(6)	(7)	(8)
	Mostly			High ag.
Dropped	husbandry	Mostly desert	Any desert	constr.
		State centi	ralization	
Ecological diversity	0.601***	0.484**	0.697***	0.562***
	(0.187)	(0.212)	(0.198)	(0.182)
Other controls	Yes	Yes	Yes	Yes
Observations	1,002	956	709	969

^{***} p<0.01, ** p<0.05, * p<0.1. Regressions estimated by ordered probit unless otherwise indicated. Standard errors in parentheses clustered by region unless otherwise indicated. Other controls are log area, land quality, distance from coast, elevation, malaria, rainfall, temperature, date, crop dummies, major river, ruggedness and absolute latitude unless otherwise indicated.