Key Concepts — Consumption

Definition 3.1. The Consumption Set is defined as the set of commodities (or goods) consumers can consume. Let there be J goods then we define the consumption set by $X = \mathbb{R}^J_{\geq 0}$. A typical member of this set is $\mathbf{x} = (x_1, x_2, \dots, x_J)$ where x_j is the consumer's consumption of good j, for $j \in \{1, 2, \dots, J\}$

Definition 3.2. The budget constraint equation is: $p_1x_1 + \ldots + p_Jx_J \leq M$.

This leads us onto the next definition:

Definition 3.3. The Walrasian budget set is the set of bundles our consumer can choose between

$$ig\{(x_1,\ldots x_J)\in \mathbb{R}_{\geq 0}^J\mid p_1x_1+\ldots+p_Jx_J\leq Mig\}$$

Key Concepts — Preferences

Definition 3.5. Given \succeq we define:

The strict preference relation: $\hat{\mathbf{x}} \succ \overline{\mathbf{x}} \iff \hat{\mathbf{x}} \succeq \overline{\mathbf{x}}$ and not $\hat{\mathbf{x}} \preceq \overline{\mathbf{x}}$.

The indifference relation: $\hat{\mathbf{x}} \sim \overline{\mathbf{x}} \iff \hat{\mathbf{x}} \succeq \overline{\mathbf{x}}$ and $\hat{\mathbf{x}} \preceq \overline{\mathbf{x}}$.

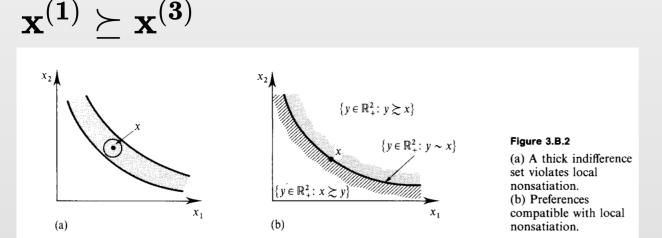
Two important axioms on preferences are completeness and transitivity:

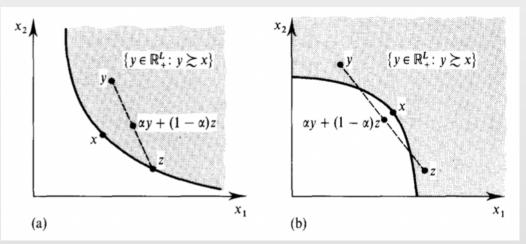
Definition 3.6. Completeness: For any two bundles of goods in $X, \hat{\mathbf{x}} = (\hat{x}_1, \dots \hat{x}_J)$ and

 $\overline{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_J)$, at least one of $\hat{\mathbf{x}} \succeq \overline{\mathbf{x}}$ or $\overline{\mathbf{x}} \succeq \hat{\mathbf{x}}$ must hold. (If both hold then $\overline{\mathbf{x}} \sim \hat{\mathbf{x}}$)

Definition 3.7. Transitivity: If we prefer bundle 1 to bundle 2 and bundle 2 to bundle 3,

then we should also prefer bundle 1 to bundle 3 . If $\mathbf{x^{(1)}} \succeq \mathbf{x^{(2)}}$ and $\mathbf{x^{(2)}} \succeq \mathbf{x^{(3)}}$ then



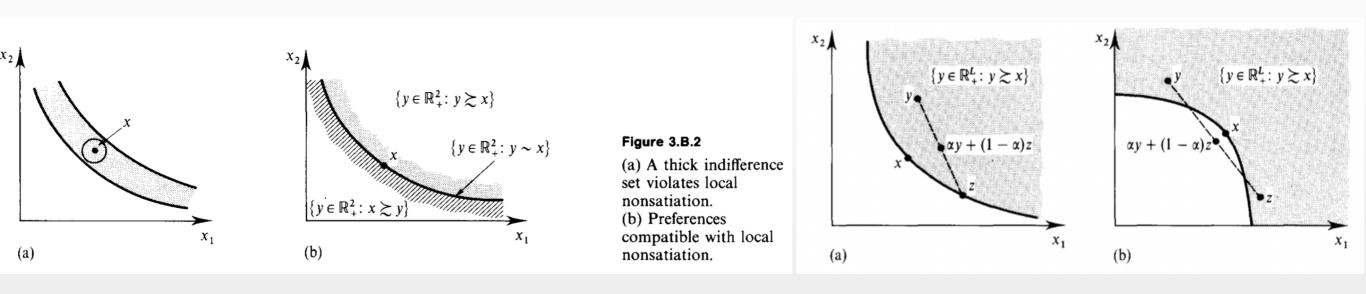


Definition 3.8. Convex preferences: For every $\mathbf{x} \in X$, the upper contour set $\{\hat{\mathbf{x}} \in X \mid \hat{\mathbf{x}} \succeq \mathbf{x}\}$ is a convex set. In other words, if $\hat{\mathbf{x}} \succeq \mathbf{x}$ and $\overline{\mathbf{x}} \succeq \mathbf{x}$ then $\alpha \hat{\mathbf{x}} + (1 - \alpha)\overline{\mathbf{x}} \succeq \mathbf{x}$ for any $\alpha \in [0, 1]$

Definition 3.11. Preferences are Monotone if for every $\mathbf{x}, \hat{\mathbf{x}} \in X$, if $x_j < \hat{x}_j \forall j \in J$ then $\hat{\mathbf{x}} \succ \mathbf{x}$.

Definition 3.12. Preferences are locally non-satiated if for every $\mathbf{x} \in X$, $\forall \varepsilon > 0$, $\exists \hat{\mathbf{x}} \in X$ such that $\|\mathbf{x} - \hat{\mathbf{x}}\| < \varepsilon^7$ and $\hat{\mathbf{x}} \succ \mathbf{x}$

Key Concepts — Preferences



Definition 3.8. Convex preferences: For every $\mathbf{x} \in X$, the upper contour set $\{\hat{\mathbf{x}} \in X \mid \hat{\mathbf{x}} \succeq \mathbf{x}\}$ is a convex set. In other words, if $\hat{\mathbf{x}} \succeq \mathbf{x}$ and $\overline{\mathbf{x}} \succeq \mathbf{x}$ then $\alpha \hat{\mathbf{x}} + (1 - \alpha) \overline{\mathbf{x}} \succeq \mathbf{x}$ for any $\alpha \in [0, 1]$

Definition 3.9. Strictly convex preferences: For every $\mathbf{x} \in X$, if $\hat{\mathbf{x}} \succeq \mathbf{x}$ and $\overline{\mathbf{x}} \succeq \mathbf{x}$, with $\hat{\mathbf{x}} \neq \overline{\mathbf{x}}$ then for any $\alpha \in (0,1)$, $\alpha \hat{\mathbf{x}} + (1-\alpha)\overline{\mathbf{x}} \succ \mathbf{x}$

Definition 3.10. Preferences are Strongly Monotone if for every $\mathbf{x}, \hat{\mathbf{x}} \in X$, if $x_j \leq \hat{x}_j \forall j \in J$ and $\exists j \in J$ with $x_j < \hat{x}_j$ then $\hat{\mathbf{x}} \succ \mathbf{x}$.

Definition 3.11. Preferences are Monotone if for every $\mathbf{x}, \hat{\mathbf{x}} \in X$, if $x_j < \hat{x}_j \forall j \in J$ then $\hat{\mathbf{x}} \succ \mathbf{x}$.

Definition 3.12. Preferences are locally non-satiated if for every $\mathbf{x} \in X$, $\forall \varepsilon > 0$, $\exists \hat{\mathbf{x}} \in X$ such that $\|\mathbf{x} - \hat{\mathbf{x}}\| < \varepsilon^7$ and $\hat{\mathbf{x}} \succ \mathbf{x}$

Key Concepts — Utility Functions and Sets

Definition 3.13. The preference relation \succeq can be represented by a utility function $u: X \to \mathbb{R}$ if for every pair of bundles $\overline{\mathbf{x}}, \hat{\mathbf{x}} \in X, \hat{\mathbf{x}} \succeq \overline{\mathbf{x}} \Longleftrightarrow u(\hat{\mathbf{x}}) \geq u(\overline{\mathbf{x}})$ Definition 3.14. A function $u: X \to \mathbb{R}$ is quasi-concave if its upper level sets, $\{x \in X: u(x) \geq c\}$, are convex for every $c \in \mathbb{R}$.

Definition M.G.1: The set $\mathbf{A} \subset \mathbb{R}^N$ is convex if $\alpha x + (1 - \alpha)x' \in A$ whenever $x, x' \in A$ and $\alpha \in [0, 1]$.

