EC202 Seminar Week 5 Covering Materials from Week 3

Junxi Liu 31 Oct 2022

Recap

- Pure exchange economy
- Utility function
- Edgeworth Box
 - Convex indifference curves
 - Pareto dominating set
 - Pareto optimal set
- Marginal Rate of Substitution (MRS)
- Marginal utility
- Budget set
- Allocation

Notions

Excess demand and supply

The excess demand of good j, denoted z_j can be calculated as

$$z_j = \sum_{i \in I} x_{ij} - \sum_{i \in I} e_{ij}$$

For a 2×2 economy, this means:

$$z_1 = (x_{A1} + x_{B1}) - (e_{A1} + e_{B1})$$
 $z_2 = (x_{A2} + x_{B2}) - (e_{A2} + e_{B2})$

Utility Maximisation Problem

$$\max_{\mathbf{x}_i \in X} u_i(\mathbf{x}_i) ext{ subject to } \mathbf{p} \cdot \mathbf{x}_i \leq \mathbf{p} \cdot \mathbf{e}_i$$

• Walrasian Equilibrium

Definition A price vector $\mathbf{p}^* = (p_1^*, p_2^*, \dots, p_J^*) \in \mathbb{R}_{\geq 0}^J$ and an allocation $\mathbf{x}^* = (\mathbf{x}_i^*)_{i \in I} \in \mathbb{R}_{> 0}^{I \times J}$ constitute a Walrasian Equilibrium if

- i) For each consumer $i \in I$, bundle \mathbf{x}_i^* solves the consumer's (UMP) at prices p^* .
- ii) All markets clear: $\sum_{i \in I} \mathbf{x}_i^* = \sum_{i \in I} \mathbf{e}_i$

We call \mathbf{p}^* a Walrasian Equilibrium price vector and \mathbf{x}^* a Walrasian Equilibrium allocation.

- Existence?
- Uniqueness?

More Notions...

- What is an Walrasian Equilibrium allocation, x?
- Aggregate demand and supply function

Definition 3.2. The aggregate demand function $\sum_{i \in I} \mathbf{x}_i(\mathbf{p}) \in \mathbb{R}^J_{\geq 0}$ is the total demanded by consumers as a function of prices. This is a J-dimensional vector whose j^{th} element is $\sum_{i \in I} x_{ij}(\mathbf{p})$

Excess demand and supply function

Definition 3.3. The excess demand function is $\mathbf{z}(\mathbf{p}) = \sum_{i \in I} \mathbf{x}_i(\mathbf{p}) - \sum_{i \in I} \mathbf{e}_i \in \mathbb{R}^J$. We can also talk about the excess demand for good j as the j^{th} element of this, which is $z_j(\mathbf{p}) = \sum_{i \in I} x_{ij}(\mathbf{p}) - \sum_{i \in I} e_{ij}$. When $z_j(\mathbf{p}) > 0$ we say that there is excess demand of good j and when $z_j(\mathbf{p}) < 0$ we say there is excess supply of good j.

- What is a price vector, v?
- What (the heck) is, Walras' Law? Proposition 3.1. Walras' Law: Assuming all individuals have locally nonsatiated preferences, for every price vector $\mathbf{p} \in \mathbb{R}^J_{\geq 0}$ for which individuals' demand functions are finite, $\mathbf{p} \cdot \mathbf{z}(\mathbf{p}) = p_1 z_1(\mathbf{p}) + \cdots + p_J z_J(\mathbf{p}) = 0$. In words the value of the excess demand vector equals 0. This holds for all prices regardless of whether they are equilibrium prices or not.

In-class Question

- Q3. Consider a 2×2 economy where preferences are represented by $u_A, u_B : \mathbb{R}^2_{\geq 0}$ where $u_A = x_{A1}^{\alpha} x_{A2}^{1-\alpha}$ and $u_B = x_{B1}^{\beta} x_{B2}^{1-\beta}$ for some $\alpha, \beta \in (0, 1)$. Assume both goods are in stretly positive supply.
- a) Argue that, for any initial endowment, there are no Walrasian Equilibria where one good has price 0 and hence in an Walrasian Equilibrium we must have $(p_1, p_2) \in \mathbb{R}^2_{>0}$.
- b) Let prices be $(p_1, p_2) \in \mathbb{R}^2_{>0}$ and incomes be M_A, M_B . Verify that optimal demands are

$$\mathbf{x}_A(\mathbf{p}, M_A) = \left(rac{lpha M_A}{p_1}, rac{(1-lpha) M_A}{p_2}
ight)$$

$$\mathbf{x}_B(\mathbf{p}, M_B) = \left(rac{eta M_B}{p_1}, rac{(1-eta) M_B}{p_2}
ight)$$

In-class Question

- c) Consider the initial endowment $\mathbf{e}_A = (0,1), \mathbf{e}_B = (1,0)$:
- i) Find optimal demands $\mathbf{x}_A(\mathbf{p})$ and $\mathbf{x}_B(\mathbf{p})$. Show that these demands satisfy Walras' Law.
- ii) Find the Walrasian Equilibrium and illustrate it on an Edgeworth box.
- iii) Verify on your Edgeworth box and algebraically that both players prefer the Walrasian Equilibrium to their initial allocation.
- d) Repeat b) for initial endowment $\mathbf{e}_A = \left(\frac{1}{2}, \frac{1}{2}\right), \mathbf{e}_B = \left(\frac{1}{2}, \frac{1}{2}\right)$ and $\alpha < \beta$