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Corporate Policy

 Main goal for this part: apply the financial theories into
corporate policy (especially those not covered in A)

« CWS13: The Rolf of the CFO, Performance Measurement, and
Incentive Design
- Read the book

« CWS15: Capital Structure and the Cost of Capital: Theory and
Evidence

- Equity versus Debt to fund a firm
- Value of a Firm

- Modigliani-Miller propositions

« CWS16: Dividend Policy: Theory and Empirical Evidence

- How to pay dividend without and with taxes

- Repurchases



Imagine You Are Running a Firm...

Your firm needs money.

- (Unless you are from a billionaire family)

You can borrow money.

- Debt: requires repayment; often with interests; usually tax-free

You can also sell some shares of your firm

- Equity: an ownership in the firm; no need to repay; if your firm skyrockets then
you are losing a LOT of money...

o Gearing (or Leverage, in the rest of the world)
- In simple words: borrowing money to invest

- For corporate policy: the relationship, or ratio, of a company's debt-to-equity

- For example, a gearing ratio of 70% shows that a company’s debt levels are 70%
of its equity.



Imagine You Are Running a Firm...

e You have to keep a balance of debt and equity

o If you know your business is going to be a great success but the
investors in the market don't think so

- you will only be able to sell your shares (equity) at a very low price — which
you believe can be a LOT of money in the future!

e So you want to borrow money instead — you don’t have to “sell
yourself”.

- However, borrowing means that you will have to repay the money within a
certain time frame, and also pay quite a lot interests — you are under pressure!



Let's See an Successful Story of Equity Investment

« BYD was the world's largest plug-in hybrids and pure electric
i .vehlcles maker |n 2022 with a total of 1.86 million cars sold.
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Let's See an Successful Story of Equity Investment

e Inlate 2008, Berkshire Hathaway ponied up the aforementioned
$232 million for a roughly 10% stake in BYD.

o As Buffett recalled, Berkshire initially tried to buy 25% of the
company, but Wang (CEO of BYD) refused to release more than
10% of BYD's stock.

o Currently, BYD's market capitalization is ~$120 billion, which
means a 10% stake would worth $12 billion

« What if Wang used debt to finance, instead of selling the shares
to Buffett?



Modigliani-Miller Propositions

« The market value of a company is correctly calculated as the
present value of its future earnings and its underlying assets,
and is independent of its capital structure.

o Assumptions:
- Market efficiency and no asymmetric information
- No taxes
- No transaction or bankruptcy costs

- Hold constant the firm’s investment policies

« MM is not to be taken literally, but has implications
- See Johnathan’s slides 22-28



When There Are Tax and Bankruptcy Costs...

e In many countries, interest is deductible as a cost of doing
business while dividends are taxed as income — obviously

favours debt financing
- Tax shield of debt (affect Earnings Before Interest and Taxes EBIT)

Interest Tax Shield Calculation

($ in 000s) Company A Company B
Revenue $50,000 $50,000
Less: Cost of Goods Sold (COGS) (10,000) (10,000)
Gross Profit $40,000 $40,000
Less: Operating Expenses (OpEx) (5,000) (5,000)
EBIT $35,000 $35,000
Less: Interest Expense ] - ] (4,000) \
Pre-Tax Income (EBT) $35,000 $31,000
Less: Taxes TaxRate | 21.0% |  (7,350) (6,510)
Net Income $27,650 $24,490
‘Tax Shield $840 |

e PV = PV(equity) + PV(tax shield) — PV(distress costs)

- If you borrow way too much, investors will lose confidence and your firm might
g0 into bankruptcy




And Here Comes Income Tax...

I is income, D is Debt, V(D) is value of firm with debt D

TiE is personal tax rate on equity (what you got from the stock)
TZ-B is personal tax rate on interest (from investment on bonds)
Tc 18 corporate tax rate

rp, Tg are returns to debt (interest rate) and equity (ROE), respectively.

For an all-equity firm:
E(EBIT)(1 —1.)(1 — 1)
P
. where p 1s the discount rate for an all-equity firm.

Vo =

Alternatively, if the firm has outstanding bonds, payment to shareholders will be
(EBIT — r4D)(1 — 7.)(1 — 7}°)

, where D is the number of bonds shareholders hold;

and payment to bondholders after personal taxes are

r¢D(1 — 7p) Tax Shield!
Discount the sum of the two, we V(V
(1- TiE)(l — ) B

VL:VU—I—[I—

| — |
1
, where B 1s the market value of Bond, —TdD(lE )



Discussion on the Firm Value with Personal Tax

o Essentially, the gain from having debt is [1 (1_IiE)(1]3_TC)

- When it is positive, firm has the incentive to hold debts

- In addition, investor’s demand for bonds changes with tax rate on interest
income, and investors will be indifferent between bonds and equity if

rD(l — ’T,L-D) = TE(l — TiE)
- Firms, who supply bonds, will be indifferent between supplying and not
supplying if B TR
P M)
- Connecting the above two equations, you will get
(1 — TZ-E)(]. —T.) =1— TZ-B

- Which means tax shield is 0!

e« Think about the real world...

. . . E B
- Which is higher, 7., 7;", orT;

- In reality, there are not that many investors for whom post-tax return on debt 1s
less than post-tax return on equity



Dividend Policy: Why Pay Dividends?

o Historically and currently, this has been a very robust trend

- Theoretically, in perfect markets dividend policies cannot affect value, and with
higher tax dividends are almost always a bad deal compared with repurchases

« Many, many research papers look into this problem...

- We combine annual stock market data for the most important equity markets of
the last four centuries: the Netherlands and UK (1629-1812), UK (1813—1870),
and US (1871-2015). We show that dividend yields are stationary and
consistently forecast returns. (Golez and Koudijs, 2018)

- Dividend payments remained prevalent even though repurchases were legal
(Turner et al., 2013) and dividend taxation was present (Moortgat et al., 2017).

Panel A: Dividend-to-price ratio and five-year-ahead returns
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Repurchases

A share repurchase is a transaction whereby a company buys
back its own shares from the marketplace. A company might
buy back its shares because management considers

them undervalued.

Buyback payments to investors may be tax-efficient if treated
as capital gain/loss

Ownership re-concentrated, shareholder alignment with
management may be improved

Used when companies have lots of cash, want to increase
leverage.



Starting on Game Theory

o Define a problem
- A finite set of players

« Who have their own strategy space

- A strategy space (also called action space)
o Contains all possible strategies for each player

o The vector of strategies for all players is a strategy profile

- A payoff function (also called rewards function)

A mapping from a strategy profile to a real number

« Example

H T
H|1-1]|-11
T|-1,1]1,-1

Figure 2.18: The matching pennies



Cheap Talk Model

« Games with incomplete information: Perfect Bayesian Equilibrium

- Both players choose their best responses
- Their beliefs follow Bayes’ rule where possible: [P)( B | A)

- Another two components:

P(BN A)
P(A)

e O is player i's type space and every element 6, O.is a type

e Vi: Ax O = Risi's payoff function; where A = A;x ... x A,is the set of action
profiles and © = ©,x...x0,is the set of type profiles
e Player 1 has private information and the payoffs exhibit common

values, so that both players’ payoffs depend on player 1's private

information. Player 1's action is a message that has no direct

effect on payoffs.
1. Nature selects a type of player 1 8 € © from some common-knowledge distribution p.
2. Player 1 learns 6 and chooses some message (action) a; € Aj.

3. Player 2 observes message a; and chooses action as € As.
4., Payoffs v1 (as, 0) and v (a2, 0) are realized.



A Motivating Example

To formalize the game we can think of me as player 1 , who is the sender of information, and my friend as
player 2, who is the receiver of information, and we can imagine that expected traffic conditions are given by

6 € {1,3,5}, where 1 is bad, 3 is mediocre, and 5 is good. Player 1 knows the true value of 8, but player 2
knows only the prior distribution of . Player 1 transmits a message (his action) to player 2 about the traffic
conditions. Player 2 then chooses an action (where to live) as € A2 = {1,2,3,4,5}, where 1 is San Francisco,
5 1s Palo Alto, and 2, 3, and 4 are towns in between the two cities in that order.

The preferences of player 2 are described by the following payoff function: !

’Uz(a,g, 9) =5 — (0 — a2)2.

Notice that player 2 has a clear best response: given any level of traffic, he wants to choose his residence
location equal to the traffic level. That is, his optimal choice is a*(6) = 6. To capture the fact that player 1 is
biased toward having player 2 live closer to location 5 , the preferences of player 1 are given by the following
payoff function:

vi(ag,0) =5 — (6 +b— ay)’,

where b > 0 is the bias of player 1 .

This is a dynamic game of incomplete information: player 1's type, or the state of the world 6, is known only to
player 1 , while player 2 knows only the distribution of . Player 1's type affects both his payoff and the payoff
of player 2, making this a common-values game. Player 1's action set includes messages that he can transmit to
player 2, and player 2's action set includes choosing where to live. To further fix ideas, imagine that player 1 is
restricted to sending only one of three messages corresponding to one of these states of nature:

a; € A; = {1,3, 5}.2



A Motivating Example

Nature

A
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FIGURE 18.1 The commuting conditions information-transmission game.




A Motivating Example

Claim 18.1 There is no perfect Bayesian equilibrium in which player 1 reports the
true state of the world.

Proof Assume in negation that player 1 truthfully reporting a; = 6 is part of a perfect
Bayesian equilibrium. It therefore must follow that when player 1 sends the message

ay € {1, 3, 5} player 2 chooses a, = a;. We saw that when 6 = 3 player 1 prefersa, =5
over a, = 3. But if player 1 believes that player 2 will follow his advice then when
6 = 3 player 1’s best response is a; = 5, a contradiction. =

The intuition behind this result is simple, and easily generalizes to all such
information-transmission games in which there is a bias between the sender and
receiver with respect to the receiver’s optimal choice. If it is indeed the case that the
sender is reporting information truthfully, then it is in the receiver’s best interest to
take the sender’s information at face value. But then if the receiver is acting in this way
the sender has an incentive to lie.” The next observation is also quite straightforward:




A Motivating Example

Claim 18.2 There exists a babbling equilibrium in which player 1’s message reveals
no information and player 2 chooses an action to maximize his expected utility given
his prior belief.

Proof To construct the babbling (perfect Bayesian) equilibrium let player 1’s strat-
egy be to send a message a; € {1, 3, 5} with equal probability of % each regardless
of 6. This means that the message is completely uninformative: player 2 knows that
regardless of the message, Pr{f} = % for all 6 € {1, 3, 5}. This implies that player 2
maximizes his expected payoff,

IR VR N P SR N PR SR
aze{?%,4,5}Ev2(a2’9)_5 H=(1—a)?) + (=B —a)?) + ;=5 —ap?),

which is maximized when a, = 3. Because each of player 2’s information sets is
reached with positive probability, player 2’s beliefs are well defined by Bayes’ rule
everywhere, and player 1 cannot change these beliefs by changing his strategy.” Hence
player 1 is indifferent between each of the three messages and is therefore playing a
best response. =

Claims 18.1 and 18.2 paint a rather disappointing picture for our simple game. Not
only will truthful messages never be part of an equilibrium (claim 18.1), but there is
an equilibrium in which player 1’s valuable private information will have no effect
on player 2’s choice. The remaining question is whether there are other equilibria in
which there is some valuable information transmitted from the sender to the receiver.




A Motivating Example — Continuous Cheap Talk

A &

The game is basically the same as the one described in the previous section, with
the exception of § € ® = [0, 1] and the assumption that the state of the world 6 is
uniformly distributed on [0, 1]. Let player 2’s action set include all real numbers,
a, € R. Player 1’s action set can be any arbitrary set of messages A, but it will
be convenient to let A; = [0, 1] so that the message space conforms with the state
space ©. Player 2’s payoff is v,(a,, ) = —(a, — 0)?, while player 1’s payoff is
vi(ay, 0) = —(ay, + b — 6)2, which implies that for any given value of 6 € [0, 1],
player 2’s optimal choice is a, =6, while player 1’s is a, =6 + b. The payoff
functions of the two players are depicted in Figure 18.2.

As in the finite example, both players would prefer a higher action to be taken
when the state 6 is higher, but player 1 has a constant bias, making him prefer even
higher actions than player 2. This immediately implies that claim 18.1 generalizes to
the continuous setting because of the same reasoning: If player 2 believes that player 1
is reporting 6 truthfully, then player 2’s best response is to choose a, = 6. But if this
is player 2’s strategy then player 1 will report a; = 6 + b for any b # 0. Hence there
can never be a fully truthful equilibrium. Not surprisingly a babbling equilibrium still
exists:




Claim 18.4 There exists a babbling perfect Bayesian equilibrium in which player
1’s message reveals no information and player 2 chooses an action to maximize his
expected utility given his prior belief.

Proof We construct the equilibrium in a similar way to the finite case. Let player
1’s strategy be to send a message a; = alB € [0, 1] regardless of 6. This means that
the message is completely uninformative and player 2 believes that 6 1s distributed
uniformly on [0, 1]. This implies that, conditional on receiving the message af ,

player 2 maximizes his expected payoff,

1
max Ev,(a,, ) = / —(0 —ay)?dd =—1% +2a, — a,
0

aeR
which is maximized when a, = % Let player 2’s off-equilibrium-path beliefs be

Pr{0 = %lal = af } = 1 so that his off-the-equilibrium-path best response to any other

message 1s a, = % as well. It is easy to see that player 1 is indifferent between any of
his messages and hence choosing a; = alB 1s a best response. =




We see that the continuous-space cheap-talk model has the same two extreme re-
sults demonstrated for the discrete-space game: there is no truthful equilibrium and
there is always a babbling equilibrium. The question then is, how much information
can the sender, player 1, credibly transmit to the receiver, player 2? We begin by
constructing a perfect Bayesian equilibrium in which player 1 uses one of two mes-
sages, a; and aj, and player 2 chooses a different action following each message,
ay(@)) < ay(a)) !

Claim 18.5 In a two-message equilibrium player 1 must use a threshold strategy as
follows: if 0 < 6 < 0* he chooses a;, whereas if 6* < 0 < 1 he chooses af.

Proof For any 6 player 1’s payoffs from a} and af are as follows:

vi(ay(ay), 6) = —(ay(a) + b — 6)
vi(az(a)), 0) = —(ax(a)) + b — 6)*,

which implies that the extra gain from choosing a{’ over a; is equal to

Avy(8) = —(ay(@)) + b — 0)* + (ay(@)) + b — ).

The derivative of Av(9) is equal to 2(a,(a}) — ay(a})) > 0 because a,(a}) <
a,(ay). This implies that if type 6 prefers to send message a] over a; then every
type 6’ > 6 will also prefer af. Similarly if type 6 prefers to send message a; over
ai then so will every type 6" < 0. This in turn implies that if two messages are sent
in equilibrium then there must be some threshold type 6* as defined in claim 18.5.
It follows that when 8 = 6* player 1 must be indifferent between sending the two
messages. ®




Claim 18.6 In any two-message perfect Bayesian equilibrium in which player 1 is

using a threshold 0 strategy as described in claim 18.5, player 2’s equilibrium best

; 0* 1—6*
response is ay(a}) = % and ay(a}) = 5.

Proof This follows from player 2’s posterior belief and from him playing a best
response. In equilibrium player 2’s posterior following a message a; is that 6 is
uniformly distributed on the interval [0, 6*], and his posterior following a message a;
is that 6 is uniformly distributed on the interval [6*, 1]. Player 2 plays a best response
if and only if he sets a,(a;) = E[0]a,], which proves the result. m

Claim 18.7 A two-message perfect Bayesian equilibrium exists if and only if b < 41.

Proof From claim 18.5 we know that when 6 = 6* player 1 must be indifferent
between his two messages so that

vl(aZ(a;)a 9*) — vl(aZ(ai/)a 0*),

which from claim 18.6 and from the fact that 92—* <60* < 1_2—9* is equivalent to

* _ %
9*+b—%=—(9*+b—129 ) (18.1)

The solution to (18.1) is 8* = % — b, which can result in a positive value of 6* only
if b < }1. To complete the specification of off-the-equilibrium-path beliefs, let player
2’s beliefs be Pr{f = % la; & {a}, ai}} = 1, so that he chooses a, = %, which causes
player 1 to be indifferent between sending the message a; and any other message
a; ¢ {a}, a}}, implying that his threshold strategy is a best response. =




Example from 2021 Exam

A government procurement officer is trying to decide how many doses of a new
coronavirus vaccine to order. This decision will depend on the effectiveness of the
vaccine, which will be determined by clinical trials conducted by a scientific advisor. You
may assume that the effectiveness of the vaccine is given by a random variable ¢,
uniformly distributed on the interval [E,, E, + 1]. The scientific advisor believes the
utility of ordering a quantity Q is U4(Q|e) = 1 + €Q — Q?; if perfectly-informed about
effectiveness, the procurement officer would value Q at U;(Qle) = 1 + (¢ + B)Q — Q?
where f is a non-negative constant. After the trials, the government officer asks the
scientific advisor to report on the vaccine’s effectiveness and purchases the quantity that
maximises his expected utility. The scientific advisor is not paid for his efforts.
a. How would you set up this problem? Can the government advisor be sure of
purchasing the optimal quantity (according to his preferences)? If so, how? If not,
~ why not? How does your answer depend on the size of f7? (15 marks)

b. Suppose that the minimum effectiveness is E, = 25% and that f = 5%. Find the
‘babbing equilibrium’ for this situation — how much will the government order and
what expected utilities will the two parties get? (7 marks)

c. Now construct a two-part equilibrium — depending on the advice they receive, the
government will place either a small order Q° or a large order Q*. At what reported
level of effectiveness will the government switch its order size, and what are the
values of Q° and Q%? (10 marks)

d. How would you find the most efficient equilibrium (you do not have to compute it
explicitly, but should say how it could be identified)? (10 marks)



d

This is a cheap talk problem; should note that first-best can be achieved only if § = 0.
They should note that there is always an equilibrium in which the government ignores
the advisor and purchases the a priori optimal amount Q,(E,, E, + 1), which they
compute in the next part. The optimal strategy is to partition the range of effectiveness
into intervals [x,y] and associate to each interval the order that maximises expected

utility Q*(x,y) = argmax f;v U;(Q|e)de. The more intervals, the more efficient is the
Q

outcome, but the number (and thus the efficiency) are bounded above by a decreasing
function of [. Finally, they should note that for any two adjacent intervals
[x,y] and [y, z], the scientific adviser would be indifferent between the purchase levels
for both intervals if she was convinced that the true effectiveness was exactly y —in other

words U, (Q*(x, »)|y) = U4(Q*(y, 2)|y).

b

In this case, there is only one purchase level regardless of report. If the government
believes that the true state is uniformly distributed on [a, b], it’s expected utility for
purchasing Q is

b
ede a+b+2
EUG(Q)=1+({;‘_a +B>Q—QZ=1+( 2o ¢
Optimal Q is ™22, In this case, @ = 222 = 0.4, Ug = 1.16, U, = 1.14.




C

Denote the critical report level by €*. The two order sizes are
25+¢&¢"+2+x.05 .35+¢

QS

4 4
L_1.25+£*+2*.05_1.35+e*
Q"= 4 4

€* is defined by the condition that the advisor should be indifferent between Q° and Q*

.35+¢&* 1.35+¢&*
8*) - UA( 4

e*) for £* gives € = (in

when the true state is €*. Solving U, (
general, for any level of B8), €* = 0.75 + 2f; in this case,

e*=0.85
Q5 =0.3
QL = 0.55

d

The most efficient equilibrium is the one with the greatest number of intervals, so they
should look for the largest n s.t. there exists a sequence 0.25 = €1, ..., ™ = 1.25 (or .26
for the 1% case) where
0 = g+t 401
4

And foreachi=1,..,n—1
st4 e+l 4 0.1 gl + git1 4 0.17° 14t gl 4 gi+2 4 09 gl 4 gi*2 4 017
4 4 -TeE 4 4

1+£l+1[
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