International Business and Finance Seminar 3

Junxi Liu 19 Jul 2023

Road Map

- In the first two seminars, we've mainly covered

 - Bond essentials: interest rate; compounding; present value and future value

will talk extensively about derivatives

Bank essentials: balance sheet; how banks make money; measurements of banks' performance

Today's seminar will be a bridge between the first two seminars and Friday's seminar, when we

2

More on Future Value and Present Value

Formal way of defining intra-year compounding

FV = PV

And if $m \to +\infty$, usin FV

The present value of a multiple cash inflows

$$PV = \frac{C_1}{(1+r)} + \frac{C_2}{(1+r)^2} + \dots + \frac{C_t}{(1+r)^t} = \sum_{i=1}^t \frac{C_i}{(1+r)^i}$$

$$V\left(1+\frac{r}{m}\right)^{m.t}$$

$$\lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m = e, \text{ then}$$
$$= PV. e^{r.t}$$

If an investment project has a series of expected cash flows C_1, C_2, \dots, C_t extending over t years and if we also assume that the interest (or discount) rate r has no significant change in this period, the present value of all expected returns will be calculated by :

Net Present Value

- Net present value, is a measure of "is it a good deal?"

 - Positive NPV usually indicates good investment, because well, why not?

NPV is essentially all your future earnings discounted to today, minus all costs discounted to today

$$\frac{C_i}{(1+r)^i} - I_0 > 0$$

$$\sum_{j=0}^{m} \frac{I_j}{(1+r)^j} > 0 \quad (m \le t)$$

Some Very Important Algebra

$$\begin{cases} a_{n} = a_{1} + (n-1)d \\ S_{n} = \frac{n}{2} [2a_{1} + (n-1)d] \\ = \frac{n}{2} [a_{1} + a_{n}] \\ d = a_{n} - a_{n-1} \end{cases}$$

where,

→
$$a_n = n^{th}$$
 term
→ $a_1 = 1^{st}$ term
→ $n = number of terms$
→ $S_n = Sum of n terms$
→ $a_{n-1} = n^{-1} th$ term

nthterm of a geometric sequence a , ar , ar²,..... is,

Sum of n term of a finite geometric sequence is,

a + ar² + ar³ + + arⁿ⁻¹

= (a(1 - rⁿ), when r ≠ 1 1 - r

Sum of infinite geometric sequence is,

$$a + ar^2 + ar^3 + \dots = \begin{bmatrix} a \\ 1 - r \end{bmatrix}$$
, when $r < 1$

When Sequences Meet Infinity

$$\lim_{n o\infty}\sum_{k=1}^n a*r^k = \lim_{n o\infty}a*rac{r(k+1)}{n}$$

The PV of a perpetuity:

$$PV = \frac{C}{(1+r)} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots = \sum_{t=1}^{\infty} \frac{C}{(1+r)^t}$$

 \bigcirc

So, $\frac{PV}{r} = \frac{C}{r}$ and the rate of return for a perpetuity can be obtained as: $r = \frac{C}{PV}$

Present Value of Bond

$$PV = \frac{C}{(1+r)} + \frac{C}{(1+r)^2} + \dots + \frac{C}{(1+r)^t} + \frac{Face \ Value}{(1+r)^t} = \sum_{i=1}^t \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} = \frac{C}{(1+r)^i} + \frac{Face \ Value}{(1+r)^i} + \frac{Face \ V$$

$$PV = \frac{C}{(1+r)} + \frac{C}{(1+r)}$$

Growing Perpetuity

Growing Perpetuity:

Let's consider the situation that the stream of a cash flow growing at a constant rate g, so, the PV for growing perpetuity can be written as follows:

$$PV = \frac{C_1}{(1+r)} + \frac{C_2}{(1+r)^2} + \frac{C_3}{(1+r)^3} + \cdots$$
$$= \frac{C_1}{(1+r)} + \frac{C_1(1+g)}{(1+r)^2} + \frac{C_1(1+g)^2}{(1+r)^3} + \cdots$$
$$= \sum_{i=1}^{\infty} \frac{C_1(1+g)^{i-1}}{(1+r)^i} = \frac{C_1}{r-g}$$

$$= \frac{C_1}{(1+r)} + \frac{C_2}{(1+r)^2} + \frac{C_3}{(1+r)^3} + \cdots$$
$$= \frac{C_1}{(1+r)} + \frac{C_1(1+g)}{(1+r)^2} + \frac{C_1(1+g)^2}{(1+r)^3} + \cdots$$
$$= \sum_{i=1}^{\infty} \frac{C_1(1+g)^{i-1}}{(1+r)^i} = \frac{C_1}{r-g}$$

l=1

The Present Value of Equity: Valuation of Common Stocks

The Present Value of Equity:

There are two sources of payoff for the shareowners (if they stay with their shares for a year): a) cash dividends and b) capital gain or loss.

If P_0, P_1 are the current and expected price (after a year) of a share, respectively, and Div_1 is the expected dividend at the end of a year; the expected rate of return r at the end of the year is:

$$r = \frac{Div_1 + (P_1 - P_0)}{P_0}$$

If dividends grow at a constant rate *g* each year (like growing perpetuity), the current share price can be calculated by:

$$P_0 = \frac{Div_1}{r-g} \quad (if \ r > g)$$

We can re-write the formula to show r (expected return) as the subject. In this case; $r = \frac{Div_1}{P_0} + g$

Quiz Questions

Question 5: In March 2012, the French bank, RCI Banque, issued an 18-month bond with a face value of €10,000, and an annual coupon rate of 2%, paid quarterly. The issue price was **€9,984.50**. What was it yield to maturity (YTM)?

Question 5: Quarterly coupon interest rate = 0.02/4 = 0.005, so:

€9,984.

We can assume $R/_4 = X$ and use the Binomial expansion of $(1 + X)^6$, we have: $(1+X)^6 = 1 -$

As

|X| <

So,

9,984.50 = 5

Changes to:

$$9,984.50 = \frac{300 + 10,000}{1 + 6X} \Longrightarrow X = 0.0052 \Longrightarrow R = 0.02106 = 2.106\%$$

$$.50 = \underbrace{\in} 50.A_{R/4}^{6} + \frac{10,000}{\left(1 + \frac{R}{4}\right)^{6}}$$

$$+ 6X + 15X^2 + 20X^3 + \dots + X^6$$

$$1 \Longrightarrow (1+X)^6 \approx 1 + 6X$$

$$50\left[\frac{1}{X} - \frac{1}{X(1+X)^6}\right] + \frac{10,000}{(1+X)^6}$$

10

Text

Question 6: In 2019, Daimler Chrysler had just paid a dividend of €2 per share on its equity. The dividends are expected to grow at a constant rate of 5% per year indefinitely. If investors require an 11% return on the company's equity:

- a. What is the current price?
- b. What will be the price in 2022?
- c. What will be the price in 2034?

Question 6:

a. Current price at a constant growth of 5 per cent per year indefinitely

P = Div₁/ (R − g), whereas Div₁ = D₀ (1+g) i.e. Div₁ = €2 (1.05) = €2.1 P = €2.1/ (0.11 − 0.05) = €35

b. Price in 3 years: $P = P_0(1+g)^3 = \text{€35}(1.05)^3 = \text{€40.52}$

c. Price in 15 years: $P = P_0(1+g)^{15} = \text{(}35(1.05)^{15} = \text{(}72.76)^{15}$

11