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Introduction

This document follows on from the document Givewin 2 and PcGive 10. That document
discussed the option Econometric Modelling (PcGive). In this document we discuss the
other options available for estimation. Figure 1 reports the range of estimation methods
available within PcGive, which are obtained by clicking on Package.

Figure 1: Alternative estimation methods available in PcGive

1.0 Time Series Models (Arfima)

Choosing Time Series Models (Arfima) you get Figure 2.

Figure 2: Time series models options

Clicking on Formulate you get Figure 3. This is the formulate window observed in
Single-equation Dynamic Modelling (see Figure ? in the document Givewin 2 and
PcGive 10). To move a variable from the Database box to the Model box, click on the
variable and click <<Add.
Consider estimating the ARMA(1,1) model for the variables DLM4, written as:

tt )L1(4DLM)L1( εθ++µ=φ−
The data selection box therefore appears as Figure 3.

1.1 Model formulation
Figure 3: Model selection window
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Clicking OK you get Figure 4 and are required to specify the order of the AR and MA
elements.

1.2 Model setting

Figure 4: Model setting window

I specify the AR order at 1 and the MA order at 1. Additionally, within the selection of
the Fractional parameter d, select Fix d and ensure it is fixed at 0 (the fractional
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parameter refers to the number of times you wish your underlying series to be differenced
to induce stationarity as DLM$ is the first difference of he log of M4, we believe d=0).

1.3 Model estimation
Clicking OK in Figure 4 you get Figure 5. This requires you to specify the estimation
method. In general Maximum Likelihood would appear the best option:

Figure 5: Estimation options

In addition to choosing the estimation method, you must select he sample period over
which you wish to estimate the model. While recursive options are not available, it is still
possible to save some of the data points for forecasting. Clicking OK gives you the
results below:

---- Maximum likelihood estimation of ARFIMA(1,0,1) model ----
The estimation sample is: 1970 (2) - 1996 (4)
The dependent variable is: DLM4 (Money.xls)

Coefficient Std.Error t-value t-prob
AR-1 0.892437 0.05999 14.9 0.000
MA-1 -0.481616 0.1247 -3.86 0.000
Constant 0.0307707 0.004264 7.22 0.000

log-likelihood 343.092885
no. of observations 107 no. of parameters 4
AIC.T -678.18577 AIC -6.33818477
mean(DLM4) 0.0311847 var(DLM4) 0.000178658
sigma 0.00976613 sigma^2 9.53772e-005

BFGS using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence
Used starting values:

0.84885 -0.30387 0.031185
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in which 892.0ˆ =φ  and 482.0ˆ −=θ  and both parameters are highly significant.

To estimate an ARFIMA(1,d,1) model, which is written as:
tt

d )L1(4DLM)L1()L1( εθ++µ=φ−−

in which d is a fractional parameter and for stationarity is assumed hat –0.5<d<0.5 In this
case I feel that the unit difference imposed in creating DLM4 is not precisely correct and
I have either under-differences and 0.0<d<0.5 or I have over-differenced and –0.<d<0.0.
To estimate this model we have the same model formulation window (see Figure 3) and
in Figure 4, you choose the Estimate d option (see Figure 6 below)

Figure 6: Model settings window

Clicking OK and in Figure 5 clicking OK and using maximum likelihood, you estimate
the ARFIMA(1,d,1) model, the results are reported below.

---- Maximum likelihood estimation of ARFIMA(1,d,1) model ----
The estimation sample is: 1970 (2) - 1996 (4)
The dependent variable is: DLM4 (Money.xls)

Coefficient Std.Error t-value t-prob
d parameter 0.00613175 0.7064 0.00868 0.993
AR-1 0.891442 0.1300 6.85 0.000
MA-1 -0.486757 0.6007 -0.810 0.420
Constant 0.0307653 0.004301 7.15 0.000

log-likelihood 343.092921
no. of observations 107 no. of parameters 5
AIC.T -676.185841 AIC -6.31949384
mean(DLM4) 0.0311847 var(DLM4) 0.000178658
sigma 0.009766 sigma^2 9.53748e-005
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BFGS using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence
Used starting values:

0.40000 0.89971 -0.44404 0.031185

From these results we have 006.0d̂ = and this is insignificantly different from zero at all
conventional levels of significance, in which case the ARMA(1,1) model for DLM seems
a better model.

1.4 Model testing

Clicking on Test you get Figure 7.

Figure 7: Testing window

The options here are very similar to those for Single-equation Dynamic Analysis (see
section ? in the document Givewin 2 and PcGive 10 for a discussion of these options).
Clicking on Test Summary, you get the results below, which suggest that the ARMA(1,1)
model has severe non-normality problems as well s evidence of ARCH errors. The test of
additional serial correlation in the error term is only just accepted at the 5% significance
level.

Descriptive statistics for residuals:
Normality test: Chi^2(2) = 30.023 [0.0000]**
ARCH 1-1 test: F(1,102) = 8.8584 [0.0036]**
Portmanteau(10): Chi^2(8) = 14.223 [0.0761]

The plot of the residuals suggests that at least the non-normality problem is due to the
existence of outliers, which may also account for the ARCH errors

Figure 8: Residuals for the ARMA(1,1) model
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[Further investigation discovered that both the non-normality and ARCH resultsare
produced by the two outlier points – although serial correlation remains a problem].
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2 Volatility models (Garch)

To estimate models from the ARCH family, in Figure 1 choose Volatility models. Then
in PcGive select Model and then Formulate to get Figure 2. Specify the linear levels
models you wish to estimate. For interest rates (r ) we are wish to estimate the model:

1t
2

1t10t

tttt

hh

)h,0(II~zr

−− β+εα+α=

ε+µ=

which is a simple GARCH(1,1) model.

2.1 Model formulation

Select r as the dependent variable and use a constant as the only explanatory variable, and
you get Figure 9.

Figure 9: Model formulation window

2.2 Model settings

Clicking OK you get Figure 10. From this Figure it is clear there are many estimation
options available. In PcGive you can estimate (i) ARCH models (set q=0), (ii) GARCH
models (p>0 and q>0), (iii) EGARCH models, (iv) Threshold GARCH models, and a
variety of (v) GARCH in mean models. Additionally you are able to impose parameter
restrictions on the ARCH-type models as well as allow non-normality in the error term.
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From Figure 10, we estimate a GARCH(1,1) model (imposing stationarity, that is,
10 1 <β+α< , with normal errors and with no feedback from the error variance model to

the mean model

Figure 10: Model settings window

2.3 Model estimation

Setting p=1 and q=1 and selecting No conditional variance in mean and then selecting
OK you get Figure 11.

Figure 11: Model estimation window
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Here you choose the sample size (and select some observations for forecasting or select
recursive estimation). Selecting OK produces the results below:

VOL( 1) Modelling r by restricted GARCH(1,1) (Money.xls)
The estimation sample is: 1970 (1) to 1996 (4)

Coefficient Std.Error robust-SE t-value t-prob
Constant X 6.92391 0.1082 0.07689 90.0 0.000
alpha_0 H 0.568883 0.2463 0.1931 2.95 0.004
alpha_1 H 0.955098
beta_1 H 0.0449017 0.08368 0.08454 0.531 0.596

log-likelihood -239.035403 HMSE 0.750458
mean(h_t) 14.08 var(h_t) 734.956
no. of observations 108 no. of parameters 4
AIC.T 486.070805 AIC 4.50065561
mean(r) 8.2537 var(r) 11.6063
alpha(1)+beta(1) 1 alpha_i+beta_i>=0, alpha(1)+beta(1)<1

Initial terms of alpha(L)/[1-beta(L)]:
0.95510 0.042886 0.0019256 8.6464e-005 3.8824e-006

1.7433e-007
7.8275e-009 3.5147e-010 1.5782e-011 7.0862e-013 3.1818e-014

1.4287e-015

Used sample mean of squared residuals to start recursion
Robust-SE based on analytical Information matrix and analytical OPG
matrix
BFGS using analytical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence
Used starting values:

8.2537 2.3472 0.64847 0.14929

2.4 Model Testing

Clicking Test you get Figure 12.choosing Test Summary you get all but the Portmanteau
test of squared residuals, that is:

Descriptive statistics for scaled residuals:
Normality test: Chi^2(2) = 14.269 [0.0008]**
ARCH 1-2 test: F(2,98) = 0.24172 [0.7857]
Portmanteau(10): Chi^2(10)= 223.87 [0.0000]**

Which indicates that the mean model is mis-specified and there is non-normality.
Selecting graphical analysis produces Figure 13
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Figure 13: Graphical analysis

Selecting Residuals and Conditional standard deviation produces Figure 14.

Figure 14
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Figure 12: Test options

Selecting test options it is possible to undertake some basic tests of the mean model as
well as the variance equation of this model.
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3. Limited Dependent Models (LOGITJD)
Prior to formulating the model you must specify the nature of your dependent variables as
either a Binary Discrete Choice (two possible outcomes, for example, Success vs
Failure); Multinomial Discrete Choice (many outcomes of the dependent variable – no
ordering, for example, Mode of transport, e.g. walking, car, bus, train, bicycle), Count
Data (for example, number of times…). We will only discuss the first of these options
Binary Discrete Choice.

Figure 15: Estimation options in LOGITJD

3.1 Model formulation

Figure 16: Formulating model

No lag options choose variables for the model in an identical fashion as elsewhere. We
are interested in estimating a model of what determines whether students dropout of
university. Figure 17 has the dependent variable as DROP2 and a series of 4 explanatory
variables (excluding the intercept).
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Figure 17: Model formulating

3.2 Model settings
Clicking OK in Figure 17, produces Figure 18.

Figure 18: Model settings

A probit model assumes that the error distribution is normal, whereas the logit model
assumes the error distribution is logistic (which has fatter tails than the normal). Evidence
shows that there is often little difference between the two sets of results.
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3.3 Model estimation
Clicking OK produces the estimation model window (see Figure 19).

Figure 19: Model estimation

In addition, you must also select the estimation sample. Clicking OK produces the output
below:

CS( 1) Modelling DROP2 by Logit
The estimation sample is 1 - 3353

Coefficient Std.Error t-value t-prob
Constant 5.02067 0.3120 16.1 0.000
ASLSCORE -0.338614 0.01422 -23.8 0.000
SEX 0.101642 0.1568 0.648 0.517
ALPHYS 0.0452791 0.02239 2.02 0.043
ACASAL 5.66246e-005 9.475e-006 5.98 0.000

log-likelihood -646.986183 no. of states 2
no. of observations 3353 no. of parameters 5
baseline log-lik -1084.941 Test: Chi^2( 4) 875.91 [0.0000]**
AIC 1303.97237 AIC/T 0.388897216
mean(DROP2) 0.099314 var(DROP2) 0.0894508
Newton estimation (eps1=0.0001; eps2=0.005): Strong convergence

Count Frequency Probability loglik
State 0 3020 0.90069 0.90069 -201.4
State 1 333 0.09931 0.09931 -445.6
Total 3353 1.00000 1.00000 -647.0

In the sample some 9.9% of observations are dropouts (DROP2=1) and 90.9% are non-
dropouts (DROP2=0). All variables with the exception of sex are significant at the 5%
level.

3.4 Testing
Clicking on Test you get Figure 20.
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Figure 20: Test window

3.4.1 Graphical analysis

The graphical analysis available for these limited dependent variable models is different
from those seen elsewhere.

Figure 21: Graphical analysis

The graphs available are not particularly useful.
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3.4.2 Forecasting

Figure 22: Forecasting

I don’t know what these are

3.4.3 Further output

Figure 22: Further output

Putting a cross in the second and third boxes you get the output below:
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Table of actual and predicted
State 0 State 1 Sum actual

State 0 2982 38 3020
State 1 122 211 333
Sum pred 3104 249 3353

Derivatives of probabilities at regressor means
Probabilities:
State 0 0.95698
State 1 0.043017
Derivatives:

mean State 0 State 1
Constant 1.0000 -0.20668 0.20668
ASLSCORE 25.599 0.013940 -0.013940
SEX 0.54578 -0.0041843 0.0041843
ALPHYS 6.2368 -0.0018640 0.0018640
ACASAL 3660.7 -2.3310e-006 2.3310e-006
Quasi-elasticities:

State 0 State 1
Constant -0.20668 0.20668
ASLSCORE 0.35683 -0.35683
SEX -0.0022837 0.0022837
ALPHYS -0.011625 0.011625
ACASAL -0.0085332 0.0085332
Elasticities:

State 0 State 1
Constant -0.19779 0.0088909
ASLSCORE 0.34148 -0.015350
SEX -0.0021854 9.8237e-005
ALPHYS -0.011125 0.00050008
ACASAL -0.0081662 0.00036707
t-values:

State 0 State 1
Constant -16.093 16.093
ASLSCORE 23.810 -23.810
SEX -0.64840 0.64840
ALPHYS -2.0223 2.0223
ACASAL -5.9763 5.9763

Initially we have a cross-tabulation of actual and predicted values and we can see that
whereas the were 333 dropouts, we only predict 249 dropouts. Of the 249 predicted  211
actually did drop out and 38 continued their studies. The model fails to identify 122
individuals who did dropout and the model predicts would continue.

The output the reports the derivatives of probabilities at regressor means and the
derivatives. These derivatives for State 1 represent a change in the probability of
(DROP2=1) for a unit change in x. Below this are reported quasi-elsticities and
elasticities.   

3.4.4 Norm observations

This produces identical output to that in Further output (see section 3.4.3).

3.4.5 Outliers



18

Figure 23: Outliers

This lists those cases where the probability of being in State 1 (DROP2=1) is less han
0.05 (5%).

3.4.6 Store in database

This option allows you to store Probabilities (for State 1 and State 2) the log likelihood
and the Prediction set probabilities.
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4. Panel Data Models (DPD)

Selecting DPD in Figure 1 and then in Model you have Figure 24. Select Static Panel
Methods.

Figure 24: Model options

Clicking on Formulate you get Figure 25, which requires you to specify the panel model
you are estimating.

4.1 Model formulation

In this you select variables from the Database box and include them into the Model box.
As this is a Static Panel Methods set the lag length at zero. The dependent variable will
be denoted as Y, other variables are assumed to be explanatory variables. However, for
panel estimation it is essential to have a variable which tells the computer the unit of
observation for the individual or firm or country. In addition, it is essential to have a
further variable denoting the period of observation, e.g. year.

Figure 25: Model Formulate
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I used an excel database which looked like Figure 26.

Figure 26: Excel spreadsheet for the panel database
A B C D E

1 index time y x1 x2
2 1 1 4.138105 2.438337 0
3 1 2 3.195262 2.472945 0
4 1 3 7.174431 2.930174 1
5 1 4 5.201367 1.924894 0
6 1 5 7.391777 2.193426 1
7 1 6 4.806744 1.073611 0
8 2 1 2.360313 2.543901 0
9 2 2 5.560429 1.79461 1
10 2 3 8.669472 3.57445 1
11 2 4 5.504351 2.591052 1
12 2 5 8.427841 3.118046 2
13 2 6 2.681069 2.371502 0
14 3 1 2.065898 1.912809 0
15 3 2 2.489945 1.467574 0

Where column A indicates the country (1=Australia, 2=Brazil, 3=Canada etc) and
column B indicates the time period (1=1980, 2=1981 etc). PcGive needs to have this
information in order to be able to construct time dummies and individual dummies as
well as for constructing lags.

In Figure 27 we estimate a simple model

itit2it1tiit u2x1xy +β+β+δ+α=
Selecting the variables, we have
Figure 27:
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where you must also have the two variables index and time included in the Model box.
Highlight index variable in the Model box and click N:Index button and then highlight in
the model box and click the R: Year button. Clicking OK gives Figure 28

4.2 Model settings

Figure 28: Model settings

Here you choose the nature of the fixed effect dummy variables: whether you want time
dummies (δt) or individual dummies (αi) or both or neither. In addition, within this
window you select the diagnostic tests you require to be reported. Clicking OK gives
Figure 29

4.3 Model estimation
Figure 29: Estimate model
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In this box there are a series of alternative estimation methods. A good discussion of the
various alternatives is in Greene, W. H. (2000) Econometric Analysis, Prentice Hall).
Given the model we have specified in Figures 27 and 28) OLS (pooled regression) and
LSDV (fixed effects) will give the same answer. Choosing LSDV the output is:

DPD( 1) Modelling y by LSDV (using panel.xls)

Coefficient Std.Error t-value t-prob
x1 1.06617 0.1537 6.94 0.000
x2 2.18986 0.2170 10.1 0.000
Constant 1.90528 0.3973 4.80 0.000
T2 0.0603626 0.4817 0.125 0.901
T3 0.512915 0.3993 1.28 0.206
T4 0.727171 0.3690 1.97 0.055
T5 0.531014 0.5132 1.03 0.307
T6 0.368951 0.5200 0.709 0.482
I1 -1.40497 0.1636 -8.59 0.000
I2 -1.57171 0.02998 -52.4 0.000
I3 -0.407746 0.03807 -10.7 0.000
I4 0.151752 0.02882 5.26 0.000
I5 0.0599882 0.03498 1.71 0.094
I6 -0.820595 0.1105 -7.43 0.000
I7 -0.669321 0.2528 -2.65 0.011
I8 -1.44334 0.09427 -15.3 0.000
I9 -0.499907 0.08120 -6.16 0.000

sigma 1.117822 sigma^2 1.249525
R^2 0.8003609
RSS 53.729589851 TSS 269.13362677
no. of observations 60 no. of parameters 17
Using robust standard errors

Transformation used: none

constant: yes time dummies: 5
group dummies: 0 time*group: 0
individual: 9
number of individuals 10
longest time series 6 [1 - 6]
shortest time series 6 (balanced panel)

Wald (joint): Chi^2(2) = 104.2 [0.000] **
Wald (dummy): Chi^2(15) = 174.1 [0.000] **
Wald (time): Chi^2(5) = 6.503 [0.260]
AR(1) test: N(0,1) = -1.312 [0.190]
AR(2) test: N(0,1) = -0.2098 [0.834]

Note: T2 through to T6 reflect the time dummy variables and I1 through to I9 reflect the
individual dummy variables. The diagnostic test indicate the joint significance of all
dummy variables, but suggest the time dummies are insignificant. There is no evidence of
either AR(1) or AR(2) behaviour in the error term.
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4.4 Dynamic Model

In Figure 24 clicking on Dynamic model, and assuming we wish to estimate the model
it1it4it31it2it1tiit u2x2x1x1xy +β+β+β+β+δ+α= −−

we get from clicking Formulate Figure 30

Figure 30: Data Selection

Clicking OK yields Figure 31,

Figure 31: Functions box

For this simple model there are no created functions and so clicking OK yields the Model
setting window in Figure 32
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Figure 32: Model settings window

Again select the types of dummy variables you wish to include as well as the type of
transformations as specified in Figure 31. Clicking OK yields Figure 33:

Figure 33: Model estimation

Selecting One and two-step estimation and clicking OK , this gives the output:

DPD( 8) Modelling y by 1 and 2 step (using panel.xls)

---- 1-step estimation using DPD ----
Coefficient Std.Error t-value t-prob

x1 0.964864 0.1927 5.01 0.000
x2 2.05568 0.2137 9.62 0.000
x2(-1) 0.0647789 0.2870 0.226 0.823
x1(-1) -0.204478 0.2985 -0.685 0.498
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Constant 2.68701 0.8600 3.12 0.004
T3 0.466145 0.5365 0.869 0.391
T4 0.865348 0.5101 1.70 0.100
T5 0.600639 0.7277 0.825 0.415
T6 0.384191 0.5746 0.669 0.509
I1 -1.14044 0.2910 -3.92 0.000
I2 -1.53650 0.1257 -12.2 0.000
I3 -0.756884 0.2508 -3.02 0.005
I4 0.142443 0.07619 1.87 0.071
I5 -0.210862 0.1883 -1.12 0.271
I6 -0.711124 0.3064 -2.32 0.027
I7 -0.247149 0.4131 -0.598 0.554
I8 -1.30884 0.2348 -5.58 0.000
I9 -0.679173 0.1355 -5.01 0.000

sigma 1.196984 sigma^2 1.432772
R^2 0.7915696
RSS 45.848693703 TSS 219.97120713
no. of observations 50 no. of parameters 18
Using robust standard errors

Wald (joint): Chi^2(4) = 113.7 [0.000] **
Wald (dummy): Chi^2(14) = 1245. [0.000] **
Wald (time): Chi^2(4) = 3.322 [0.505]
AR(1) test: N(0,1) = -1.216 [0.224]
AR(2) test: N(0,1) = -0.2481 [0.804]

---- 2-step estimation using DPD ----
Coefficient Std.Error t-value t-prob

x1 1.15526 0.1431 8.07 0.000
x2 2.13731 0.1510 14.2 0.000
x2(-1) 0.0707533 0.2043 0.346 0.731
x1(-1) 0.175055 0.08677 2.02 0.052
Constant 0.422824 0.09269 4.56 0.000
T3 0.691457 0.3923 1.76 0.088
T4 0.736456 0.3650 2.02 0.052
T5 0.648314 0.5547 1.17 0.251
T6 0.429357 0.4146 1.04 0.308
I1 -0.00407564 0.1056 -0.0386 0.969
I2 0.0218380 0.07776 0.281 0.781
I3 0.459037 0.2342 1.96 0.059
I4 0.137315 0.05339 2.57 0.015
I5 0.107467 0.05484 1.96 0.059
I6 -0.242633 0.09781 -2.48 0.019
I7 -0.0992556 0.2012 -0.493 0.625
I8 -0.0569096 0.1041 -0.547 0.588
I9 -0.0589598 0.06322 -0.933 0.358

sigma 1.414495 sigma^2 2.000796
R^2 0.7089371
RSS 64.025459373 TSS 219.97120713
no. of observations 50 no. of parameters 18
Using robust standard errors

Transformation used: none

constant: yes time dummies: 4
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group dummies: 0 time*group: 0
individual: 9
number of individuals 10
longest time series 5 [2 - 6]
shortest time series 5 (balanced panel)

Wald (joint): Chi^2(4) = 306.8 [0.000] **
Wald (dummy): Chi^2(14) =2.137e+005 [0.000] **
Wald (time): Chi^2(4) = 8.448 [0.076]
AR(1) test: N(0,1) = 1.025 [0.305]
AR(2) test: N(0,1) = 1.621 [0.105]
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