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Abstract

Strong evidence has been emerging that major democracies have become more

politically polarized, at least according to measures based on the ideological positions of

political elites. We ask: have the general public (‘citizens’) followed the same pattern?

Our approach is based on unsupervised machine learning models as applied to issue-

position survey data. This approach firstly indicates that coherent, latent ideologies are

strongly apparent in the data, with a number of major, stable types that we label as:

Liberal Centrist, Conservative Centrist, Left Anarchist and Right Anarchist. Using this

framework, and a resulting measure of ‘citizen slant’, we are then able to decompose

the shift in ideological positions across the population over time. Specifically, we find

evidence of a ‘disappearing center’ in a range of countries with citizens shifting away

from centrist ideologies into anti-establishment ‘anarchist’ ideologies over time. This

trend is especially pronounced for the US.
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1 Introduction

In political terms, we seem to be living in the midst of the proverbial ‘interesting times’.

Across established democracies there appear to be strong trends of political populism and

ideological polarization. In the US, a large body of evidence indicates that the political

positions taken by elected representatives in legislatures have sharply polarized. For example,

this is apparent in recent work examining partisanship in the use of political language (Jensen

et al., 2012; Gentzkow et al., 2016). In particular, Gentzkow et al. (2016) isolate this increase

as occurring from the mid-1990s onwards, a period when the nature of political communication

changed as parties became more acutely strategic with their use of language. Further evidence

of ‘elite polarisation’ is also found in the extensive literature (following Poole and Rosenthal,

1985) that has measured the evolving ideological positions of elected representatives using

data on Congressional rollcall voting.

By comparison, the evidence about political polarisation amongst the general public (or

‘citizens’) is more contested than the findings that have emerged for political elites. In the US,

contributions such as Fiorina and Abrams (2008) make the point that both the underlying

distribution of views across issues and the level of self-identification with ‘strong’ political

positions has been stable over time. Similar skepticism about citizen polarisation in the US

is also evident in the studies of Glaeser and Ward (2006) and Ansolabehere et al. (2006) . In

Europe, recent contributions by Algan et al. (2017) and Guiso et al. (2017) have documented

a strong pattern of populist politics across the continent that appears to have roots in

changing economic conditions. However, this populist trend is not necessarily symptomatic

of ideological polarisation. For example, Algan et al. (2017) detect no significant shift in

political positioning along the left-right scale in their cross-country sample and actually pick

up a decline in close party identification.

In this paper we offer a new approach to measuring citizen ideology and political

polarisation using unsupervised machine learning tools as applied to ‘issue-position’ data on

individual political views. In short, the core of our approach is based on applying Latent

Dirichlet Allocation (LDA) topic models (Blei et al., 2003) to individual-level survey responses

across a typical range of social and economic issues. Topic models are mainly known in the

social sciences for their use in the analysis of text, in particular for their capacity in identifying

the latent topic structure that underpins the generation of documents across various corpora.

Applications of topic modelling have thus proliferated recently with empirical studies of text
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data across a range of social science questions (Gentzkow et al., 2017).

In contrast, rather than analysing text we instead make discretely coded ‘issue-positions’

the main objects of analysis in our application. Following along from this, we then frame the

latent topics as the political ideologies that underpin the generation of individual political

beliefs amongst the general public. The unique advantage of this approach is that it is based

on a probabilistic generative model of ideology, allowing individual beliefs to be explained as

mixtures of latent ideologies. As such, it is a concept of ideology that is directly empirical,

that is, built up from the statistical pattern of political views across the population. Our

approach also allows the identified citizen ideologies - defined practically as probability

distributions over issue-positions - to evolve over time such that ‘within’ and ‘between’ shifts

in ideology can be clearly measured. The general approach we adopt of using topic models to

analyse discrete, non-text data is closest to (and indeed, draws inspiration from) Bandiera

et al. (2017)’s empirical model of behavioral manager ‘types’ in CEO time-use data.

We use this methodology to explore two main questions. Firstly, we are able to ask: to

what extent do the general public hold beliefs that can be summarised as statistically coherent

‘ideologies’? Further to this point, to what extent do the latent ideologies found in the data

conform to the traditional left-right ideological line that dominates both popular discourse

and classic formal models in the spirit of Downs (1957)? This assumption of systematic

coherence in political views within the population has been challenged by recent critiques

of the principle of retrospective voting that have explored how voters use information on

political performance (Healy and Malhotra, 2013)1, as well as puzzles about citizen political

views that have emerged from research on subjects such as preferences over redistribution

(e.g Ashok et al., 2015)2.

Building further on this, the second main question we address is then: how do the

empirically-based citizen ideologies we identify vary across countries and over time? In

practical terms, this involves studying the factors that determine the ideological mixture of

views held by citizens at the individual level and assessing the extent to which aggregate

shifts can be explained in terms of changing demographics or other observables. Importantly,

1This literature has focused on how voters use information as part of voting decisions. For example, Achen
and Bartels (2002) point out the apparent sensitivity of voters to arbitrary local events while contributions
such as Wolfers (2002) and Leigh (2009) test for evidence of economic voting.

2For example, data on evolving political views indicates that the demand for re-distribution via taxation
is not increasing despite higher economic inequality. Ashok et al. (2015) show that, in US data, this cannot
be explained by a general ideological shift to the right and focus their explanations on how re-distributive
preferences vary by demographic sub-group.
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because our topic modelling approach allows for the mixed membership of individuals with

respect to latent ideologies, this lets us parse individual ideological positions very finely. As

a result, we are able to develop a measure of ‘citizen slant’ that captures the degree to which

individuals weigh alternative ideologies within their overall beliefs, for example, the extent

to which a given person is, say, ‘a bit conservative and a bit liberal’. We are then able to

use this measure of slant to better characterise overall patterns of political polarisation. In

particular, we put forward an analysis of multidimensional polarisation over more than two

ideologies following the framework of Esteban and Ray (1994) and Duclos et al. (2004).

The main empirical setting for applying our methodology is the cross-country World

Values Survey (WVS) which provides a wide-ranging set of consistently asked questions from

the late 1980s onwards. In answer to our first major question, a series of coherent citizen

ideologies do indeed emerge from our modeling. A left-right dimension is strongly evident in

the data but alongside this there is another major ideological dimension that pivots on citizen

confidence in institutions. We generically label the ideological types that are characterized by

low confidence in institutions as ‘anarchist’ but note that the broad position that this type

represents is consistent with the anti-establishment or populist positions that have been the

focus of recent research (Acemoglu et al., 2013; Piketty, 2018; Rodrik, 2017). The anarchist

label that we use is meant to avoid pejorative interpretations of terms such as populist3

and emphasize opposition to current institutional structures as the defining feature of this

ideological type.

Our main empirical model of ideology therefore takes the shape of a 4-type model

where we label the main types as Liberal Centrist, Conservative Centrist, Left Anarchist,

and Right Anarchist. These types emerge as part of a clear hierarchy of empirical ideologies

that becomes apparent as we allow our unsupervised learning models to identify different

numbers of latent issue-position clusters. Hence, an important finding from our analysis

is that anti-establishment or populist trends in opinion are potentially rooted in a formal,

statistically coherent citizen ideology.

This first finding regarding the nature of the ideologies at play then feeds into our

second set of findings on the variation that is evident across countries and time periods.

Firstly, at the level of the latent ideologies we find that our 4 main ideological types are stable

over time with limited ‘within ideology’ changes, as measured by the weighting of different

3For example, see media critiques such as ‘Populism: It’s the BBC’s new buzzword, being used to sneer at
the ‘uneducated’ 17 million who voted for Brexit’ from the UK’s Daily Mail (Murray (2016)).
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issue-positions. The most notable finding here is an increase in the intensity of socially liberal

attitudes. For example, the Conservative Centrist type shifts in their attitudes on issues such

as homosexuality and the status of immigrants. The Right Anarchist type also shows signs of

moving in a potentially authoritarian direction by expressing higher confidence in institutions

such as the police and the armed forces, as well as more acute hostility towards immigration.

Secondly, we analyse aggregate type shares, that is, the extent to which citizens are

drawing from the different ideological types when we sum across all individuals. This shows

an ordering across countries that is consistent with previous studies of cross-national political

attitudes, for example, northern European countries are more liberal while countries with

stronger religious traditions are more conservative. In turn, this is reinforced by a sensible

pattern of correlations between individual level characteristics and type shares (eg: women

are more liberal and conservatism increases with age). The composition of the aggregate

type shares is also stable across time for most countries. However, a notable exception is the

US where the total type share for the two Anarchist types increases from around 30% in the

1989-1993 wave to 50% by the fifth WVS wave in 2005-2009. The majority of this increase is

accounted for by the Right Anarchist type.

The final part of our analysis then studies individual-level ‘citizen slant’ and societal

polarization. The citizen slant measure we calculate provides a within-person measure of

ideological concentration and is constructed following a basic Gini index logic. It directly

exploits the mixed membership format of our unsupervised learning framework to capture

the extent to which individuals might be heterogeneous in their views (ie: ‘a bit conservative

and a bit liberal’). We find that the mean citizen slant across types, countries and years is

relatively high at around 0.7 on a 0-1 scale. The degree of slant or within-person concentration

has also increased over the time we consider. There is a slight increase in the case of Europe

(of around 2-3% relative to the baseline in the initial wave) but much stronger shifts are

apparent in the US. The rise in the US is also focused heavily on the Anarchist types (which

increased their slant by around 15%) as well as the Centrist Conservative type (a 4.3%

increase).

We then develop an overall measure of polarization that builds on the framework of

Esteban and Ray (1994) and Duclos et al. (2004). This framework is novel for offering a

systematic, multi-polar analysis of ideology in terms of own-group identification and between-

group alienation. We find that changes in the level of polarization over time are muted, with

an average 5-10% increase the our sample period. Again, the US stands out as experiencing
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the sharpest increase, chiefly driven by the compositional change in type shares noted above.

Related Literature. The nature of this paper’s main topic (pun unintended) means

that it has connections with many literatures and contributions. Some areas to highlight

are the following. Firstly, there is the literature on democratic politics and populism, with

recent examples that include: Acemoglu et al. (2013), Algan et al. (2017), Buisseret and

Van Weelden (2017), Bursztyn et al., Dal Bo et al. (2017), Dal Bo et al. (2018), Guiso et al.

(2017), and Rodrik (2017)4. As discussed, our work sheds light on the potential long-run

ideological underpinnings of these political trends in the population.

Secondly, there is fast-growing literature that studies aspects of ideology, policy-making

and political communication using tools from machine learning and natural language pro-

cessing. This includes the already noted Gentzkow et al. (2016) and Jensen et al. (2012), as

well as other text-based studies such as: Ash (2015), Grimmer (2009), Hansen et al. (2014)

and Jelveh et al. (2015). Another branch of this overall literature (Blaydes and Grimmer

(2013), Gross and Manrique-Vallier (2012)), Wang et al. (2017)) has also begun to explore

the application of unsupervised learning tools to survey response data.

Finally, there is a large literature that explicitly addresses polarization and fractional-

ization along political, ethnic and cultural lines. This literature often focuses on measuring

group structure in societies and relating this to patterns of conflict. An indicative list includes:

Alesina et al. (2003), Bossert et al. (2011), Caselli and Coleman (2013), Duclos et al. (2004),

Esteban and Ray (1994) and Montalvo and Reynal-Querol (2005). Our paper adds to this

literature by applying this perspective to the analysis of ideologically-defined groups.

Structure. The paper is organized in the typical way. In section 2, we outline the main

data used, namely the World Values Survey (WVS) as well as our approach to defining

answers to survey questions as ‘issue-positions’. Section 3 outlines an unsupervised learning

methodology for studying this issue-position data. This includes details on how we develop a

hierarchy of ideological types and select the optimal number of topics in our LDA models.

Section 4 outlines the results and section 5 concludes.

4A range of studies that have looked at the recent determinants of voting patterns are also relevant here:
Becker et al. (2017), Dippel et al. (2015), Dorn et al. (2016) and Che et al. (2016).
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2 Data

World Values Survey

For our main analysis, we use data from the World Values Survey (WVS) and the European

Values Study (EVS). These surveys are an output of a global research project conducted by

a large network of social scientists and run via a non-profit association based in Stockholm.

They have been widely deployed in social science research and some prominent studies using

the data include: Alesina et al. (2013, 2001); Blanchflower and Oswald (2008); Inglehart

(1997); and Norris (2016).

The WVS consists of 6 waves from 101 countries while the EVS consists of 4 Waves

from 48 countries. We construct what is formally known as the Integrated Value Survey

(IVS) by combining the two datasets. The resulting dataset contains the 4 EVS waves and

the corresponding waves 1, 2, 4 and 5 from the WVS5. For the sake of simplicity we refer to

this combination of the data as the ‘World Values Survey (WVS)’.

The set of questions asked and countries covered differs across successive waves of

the WVS. We therefore develop a sample of WVS observations based on the principle of

capturing the widest range of consistently asked questions over waves and across countries.

Since the first wave has limited country and question coverage6 we construct our sample from

the second wave onwards and develop a set of 17 countries in Europe and North America

(Austria, Belgium, Canada, Denmark, Finland, France, Germany, Iceland, Ireland, Italy,

Malta, Netherlands, Portugal, Spain, Great Britain, United States, North Ireland) and 29

questions. The selected questions cover issues such as abortion, immigration, sexuality, the

role of government, and confidence in institutions. The resulting dataset contains a total of

82,338 observations over 3 waves spanning the years from 1989 to 2010.

Construction of Features

As part of the data preparation, we unify the coding of the questions and convert them to the

same scale. The intention here is to represent the answers to the survey questions as discrete

‘features’ for the subsequent topic modelling. Specifically, we recode the responses for each of

the 29 questions into two indicator variables expressing either support or opposition to each

issue, for example an indicator variable if the person believes that abortion is justifiable and

5There is no wave of EVS that corresponds to the 6th wave of the WVS. Therefore, our main dataset
ends in 2010 so as to focus on a consistently defined set of repeated country-question cross-sections .

6The countries Austria and Portugal as well as 7 complete questions are not contained in the first wave.
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a second indicator variable if the person opposes abortion. In cases where a person expressed

neither support or opposition to an issue both binary variables are coded as zero.

Summary statistics for the 58 recoded issue positions can be found in Table 1. Impor-

tantly, the features cover a broad range of salient political issues. A number deal with what

would be typically classified as ‘social issues’ such as abortion, prostitution and attitudes

towards minority groups while three questions deal with classic economic questions relating to

the role of government, private sector competition and support for the welfare state. Finally,

there is a set of questions dealing with confidence in a comprehensive set of social and political

institutions.

The information in Table 1 indicates a rich mix of positions across political issues.

There is a current of anti-foreigner sentiment with 12.3% of respondents preferring not to

have immigrants as neighbours, and this is backed up by an overwhelming 60% endorsing

a priority for native workers in the allocation of scarce jobs. However, most respondents

either hold liberal or neutral views on leading social issues such as abortion and prostitution.

There is also a widespread lack of confidence in key institutions, with only around 35-45%

expressing a favourable view of the press, parliaments, the civil service and major companies.

3 Discovering Latent Ideology using LDA

We develop an approach based on machine learning topic models that investigates the pattern

of responses in the WVS data in terms of a generating structure characterized by latent

political ideologies. To be clear, we will define an ‘ideology’ as a probability distribution of

issue-position responses across questions. Since the basic methods we use are most commonly

applied to the analysis of text in terms of underlying topics or subjects, we first outline how

we adapt the methods to study citizen ideology. We then describe an approach for model

selection, that is, discerning the number of topics or ideological types that best describe the

data. Finally, we discuss how we track changes over time within our overall topic model

methodology.

3.1 Discovering Citizen Ideology via Latent Dirichlet Allocation
(LDA)

The basis of our approach is Latent Dirichlet Allocation (LDA) (Blei et al., 2003) which can

be summarised as a Bayesian hierarchical model that defines a probabilistic structure for
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joint distributions of observed data and latent generating factors. It was originally developed

for the unsupervised classification of text data into a user-chosen number of topics.

In the context of text-based applications LDA makes use of the fact that authors tend

to use similar words when they talk about the same topic. For example, a text containing

the words ‘equilibrium’ and ‘preferences’ is far more likely to be about economics than

sports. LDA is therefore built on the principle of algorithmically classifying any corpus of

text documents as a probabilistic mixture of underlying topics. Again, as an example, a

document discussing a Pigovian tax might get classified as a mixture of a taxation and an

environmental policy topic. Each LDA topic is therefore defined as a probability distribution

over words. A taxation topic for example might put high weights on the words ‘tax’, ‘revenue’

and ‘IRS’. Since the LDA algorithm itself does not provide any topic labels and the standard

machine learning topic labeling approaches (e.g Lau et al., 2011; Aletras et al., 2014) are not

applicable in our setting, it is up to the user to interpret and judge the focus of each topic.

However, some metrics for ‘topic coherence’ are available for assessing the quality of a given

topic model and assisting in this process of labeling and interpretation.

At its core LDA is a clustering algorithm for discrete data. As a result, LDA can

therefore be used in non-text applications, for example image classification tasks in the field

of computer vision (e.g. Putthividhy et al., 2010)7. For our study, we apply LDA to the

WVS survey responses of individuals. Instead of clustering frequently co-occurring words

into a topic, LDA will combine issue positions that are frequently held together into an

‘ideological type’. Each of the respondents in the WVS will also be classified as a mixture of

ideological types based on their answers to questions, for example, as 20% ‘conservative’ and

80% ‘liberal’.

Each ideological type will be described by a probability distribution over issue positions.

This probability distribution describes how important the individual issue positions are for

each ideological type. Our general approach is most closely analogous to Bandiera et al.

(2017) who model CEO time use across discretely-defined activities.

The advantage of LDA in comparison to other clustering algorithms is that it provides

a generative model of the data and thereby a quasi-microfoundation. For example, neither

Principal Component Analysis (PCA) or Factor Analysis (FA) model the latent types of

each individual directly. Moreover, both PCA and FA use linear transformations of the data

while LDA allows for non-linear relationships. Overall, LDA is better suited for categorical

7See also the collection by Airoldi et al. (2014) for a diverse set applications of mixed membership modeling.
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data than either PCA or FA. Another advantage of LDA is that it is a mixed membership

model which describes every observation as a mixture of types rather than in terms of some

attachment to a single type or category as Latent Class Analysis, k-means, or spectral

clustering.

Underlying our LDA model of citizen ideology is a probabilistic model which assumes

that every individual i ∈ I can be described as a probabilistic mixture of t ∈ T topics or

‘types’. These probabilities are contained in a vector θi of type proportions. The latent

T types are described by ‘type vectors’ βt with a question response profile for each of the

Q questions. The entries in the type vector give the probability of holding a particular

issue-position when drawing from particular latent type. The generative process underlying

the data is defined as:

1. For each individual i in the data draw ideological type proportions θi ∼ Dir(α)

2. For each of the q question of individual i:

• Draw a type assignment zi,q ∼Mult(θi)

• Draw a response ri,q from P (ri,q|zi,q, β)

Given this generative process the probability of the observed survey responses is:

I∏
i=1

P (θi|α)

 Q∏
q=1

∑
zi,q

P (zi,q|θi)P (ri,q|zi,q, β)

 (1)

The first term describes how likely it is to observe an individuals ideological type proportions

θi. The second term in brackets is the probability of observing the individual’s i responses to

the Q questions. LDA identifies ideological types by finding parameter values for α, β and θi

such that this probability is maximized. Simply maximizing this likelihood for the relevant

parameters is computationally unfeasible. LDA therefore makes use of an approximate

inference algorithm. We use the inference algorithm developed by Hoffman et al. (2010, 2013)

and implemented by (Pedregosa et al., 2011).

In our application the assumptions of the independence of responses do not strictly hold.

If a question has been answered the same question cannot be answered again by the same

person. The inference of LDA is nonetheless still valid, since the bias in P (ri,q|zi,q) is identical

for all types. Therefore, zi,q still represents the correct probability of a person belonging to
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one ideological type. Only the interpretation of the β vector changes. We discuss this point

in detail in Appendix C.

3.2 Determining the Optimal Number of Types

LDA makes it possible to estimate any number of ideological types. Therefore, the question of

model selection is crucial for understanding which level of topic model best describes the data.

To find the optimal number of ideological types we modify the methods for understanding

topic cohesion which have been developed in recent years (e.g. Chang et al., 2009; David

Newman et al., 2010; Aletras and Stevenson, 2013; Lau et al., 2014). Following standard

k-fold cross-validation principles, we randomly split the data from the largest wave in our

sample (wave 5) into 10 folds (each 10% of the data). Nine folds are then grouped into a

training sample and the remaining becomes the test sample. Afterwards, we fit LDA models

with different numbers of topics to the training sample and formally evaluate them according

to statistical criteria relative to the test sample. In each run of LDA a different test sample

is chosen. The resulting ideological types for the different models can be found in Table 2.

We then chose the optimal number of ideological types based on the cohesion of the

generated types. A type is more coherent if the issue positions with the largest weight for that

type also frequently appear together in the held-out survey responses of WVS participants.

The intuition behind this is that more coherent ideological types should put more weight

on issue positions that people frequently hold together, e.g. the co-occurrence of the views

that abortion and suicide are not justifiable. This approach is preferable to evaluating the

likelihood or perplexity of the model in the hold out data, since the hold-out likelihood is not

necessary a good predictor for human judgment of topic cohesion (see for example Chang

et al., 2009).

As a measure of co-occurrence of issue positions, we use Normalized Pointwise Mutual

Information (NPMI). NPMI is defined as:

NPMIi,j =
PMIi,j
− ln(p(i, j))

=
ln
(

p(i,j)
p(i)·p(j)

)
− ln(p(i, j))

(2)

Pointwise Mutual Information (PMI) is simply defined as the log-ratio of the joint and

marginal probabilities. Hence, PMI measures how probable it is that two features i and j

appear together in comparison to how often we would expect them to appear together if

the features were independent from each other. NPMI additionally normalizes PMI between
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[−1, 1]. If two features always appear together their NPMI will be 1. In the case where two

features never appear together their NPMI will be −1.8

The average NPMI for all pairwise combinations of the B most important issue positions

of an ideological type t is then given by:

NPMIt =

∑B
i

∑
j 6=i(NPMIi,j)

B · (B − 1)
(3)

Similarly, the overall cohesion for a model with M ideological types can therefore be

calculated from the hold-out sample as:

Cohesionm =

∑M
t NPMIt
M

(4)

Follow the findings of Lau and Baldwin (2016) we average our measure of cohesion over

different number of features B ∈ (5, 10, 15, 20). The type cohesion scores can be found in

Figure 2. As we discuss later, based on these scores we choose the 4 type LDA specification as

our benchmark model, since it seems to best describe the pattern of responses across citizens.

3.2.1 Dynamic Type Models - Ideological Change Over Time.

The three waves of the WVS that we use stretch over 20 years. For our analysis we therefore

want to allow for the ideological types to change over time. We do this by fitting LDA

models separately to the 3 waves in our sample and only linking the ideological types together

afterwards based on the similarity of their issue positions. Our approach is more generic than

a dynamic topic model (Blei and Lafferty, 2006) or continuous topic model (Wang et al.,

2008) since we neither impose any assumptions on the dynamics of the ideological types nor

on the shares of the types over time. The general structure of our approach is most closely

related to the topic chains suggested in Kim and Oh (2011) and has the advantage of allowing

for completely different ideological patterns to emerge in each wave. But, as we will see, the

topic structure in our WVS data displays a remarkable level of stability over time.

4 Results

We report our results across four linked sub-sections. In the first sub-section, we show the

results of our LDA models in terms of different variants of type model - from 2-types to

8More details on the topic cohesion literature and an example for the calculation of NPMI can be found
in Appendix F.
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5-types. The results here indicate a coherent hierarchy of types across the models such

that types can be seen to ‘split off’ into related families as we move to higher order models.

The second sub-section then applies the NPMI model selection criteria outlined above to

the different orders of type models with the conclusion that the 4-type model is the most

preferred.

We then use the 4-type model as our main vehicle of analysis in the third sub-section,

focusing on within-type and between-type differences over time. To guide the reader, this

boils down to a close study of the β type vectors in the LDA model, that is, the probability

distribution of issue-positions per estimated type. In the final subsection we focus on how

the distribution of type proportions - essentially the θi values outputted by the LDA model -

play out over countries and time. In turn, this leads to our analysis of within-person slant

and country-level polarization.

4.1 Hierarchy of Ideological Types.

In Table 2 we summarize the results of various orders of LDA model, reporting the ‘top

ten’ features for each type. These top ten features represent the issue-positions with the

highest probability values in the β type vectors and are effectively the defining features of

each ideological type. We present the results as separate panels in the table per order of type

model.

Panel (a) shows the results for the basic 2-type model in the first column. These

two types are distinguished by stances on social issues - for example, a liberal attitude

towards minority groups (eg: reporting ‘no problems’ with neighbours who are homosexuals

or immigrants) by one type and conservative positions on social issues such as abortion and

prostitution by the other type. We therefore label these types in panel (a) generically as ‘Left’

and ’Right’. Across the 58 features the β topic vectors for these types have a correlation of

0.39, indicating that they have some common components.

The second column of panel (a) then reports the top features for the 3-type model.

Two ‘Left’ and ’Right’ types distinguished mainly by their positions on social issues such

as sexuality, race and abortion are still apparent. However, the most striking result from

this model is the nature of the third type. Rather than being a simple mixture of the basic

Left-Right types of the earlier model the third type draws on a qualitatively different set of

issue-positions for its top features. Specifically, the third type draws heavily on features that

represent low confidence in major institutions such as parliament, the civil service and major
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companies. We provide a more detailed discussion of the rationale for our type labels in the

next sub-section but here we flag type 3 as an ‘Anarchist’ type to reflect this type’s opposition

to the current workings of major social institutions. In contrast, the main left and right types

in the 3-type model report confidence in institutions across the majority of features in this

category. We therefore label these types as ‘Liberal Centrist’ and ‘Conservative Centrist’

to reflect their contrasting positions on social issues but common pattern of support for

established political institutions.

The top features for the 4-type model are reported in the third column of panel (a),

Table 2. The type structure continues to evolve here. Most notably, two anarchist types

now become apparent, again distinguished by contrasting views on social issues but similar

positions in terms of confidence (or lack thereof) in institutions. These are labeled ‘Left

Anarchist’ and ‘Right Anarchist’ to reflect this. Intuitively, the top ten features reported in

panel (c) suggest a splitting of the Anarchist type from the 3-type model has occurred.

We can validate this by examining the cross-model correlations in the weights on

issue-positions in the β type vectors. These correlations are useful for indicating how close

the individual types in the 4-type model are to those in the lower order 3-type order. We

report these in Figure 1. In line with the intuitive ‘eyeballing’ of the top features, the Left

Anarchist and Right Anarchist types are most strongly correlated with the Anarchist type

from the 3-type model, with correlation measures of 0.92 and 0.64 respectively. This splitting

of the Anarchist type is reinforced by the continuity in the Liberal Centrist and Conservative

Centrist types as we go from the 3-type to 4-type model. These two types can be tracked

across the different hierarchies of type model, with correlations of 0.98 (Liberal Centrist) and

0.87 (Conservative Centrist) across the models.

The top features for a further 5-type model are reported in panel (b) of Table 2. Greater

subtlety in the types becomes evident here. The set of Liberal Centrist, Conservative Centrist

and Left Anarchist types remain intact relative to the 4-type model but there appears to

a splitting of the Right Anarchist type. Two variants of the Right Anarchist emerge. One

variant still expresses a lack of confidence in institutions but appears to be liberal on social

issues and is notably pro-competition, one of the only instances when an economy-focused

feature makes it into the top ten features for a type across our models. We label this type as

‘Market Liberal’9.

9Our nickname for this anarchistic, pro-market and socially liberal type is ‘George Mason University
(GMU) Blogger’ in reference to the well-known Marginal Revolution blog.
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The other variant of the Right Anarchist is not socially liberal, with a string of

conservative positions on minorities and social issues amongst its top ten features. The

correlations indicate that this type is strongly correlated (0.644) with the original Right

Anarchist from the 4-type model but negatively correlated with the Liberal Centrist (-0.157)

and Left Anarchist types (-0.306) types. In line with, our label for this type is ‘Right Anarchist

(Hard Social Conservative)’.

Further results on potential 6-type and 7-type models are reported in the Appendix

Table 7. These indicate a further splitting of the right-wing types (6-type model) and the

emergence of a nihilistic ‘Super Anarchist’ type (7-type model). We defer detailed discussion

of these models for the appendix but note here that (as might be expected) intuitive labels for

types in the higher order models are less obvious. So far, the results presented above indicate

that both the low-order (2 or 3 type) and higher-order (4 plus types) models offer plausible

sets of types and, considered together, can be interpreted in terms of coherent hierarchy. We

therefore turn to the question of formal model selection using the NPMI framework outlined

above.

4.2 Model Selection and Type Labeling.

4.2.1 Automatic Model Selection

Our NPMI framework for assessing model cohesion is based on comparing predictions of

feature co-occurrence in hold-out data. Simply put, the approach asks: to what extent do

the (say) top 10 features suggested by our type models occur together in data held out from

the original estimation of the given model? Figure 2 reports the results of this exercise. The

x-axis denotes the order of model we are estimating (going from a 1-type model up to a

10-type model) while the y-axis denotes the resulting cohesion score.

The cohesion scores show a inverse u-shape pattern. At first, the cohesion score increases

with the number of topics. After the number of topics increases beyond 7 the cohesions

scores begin to fall. Overall, the most cohesive models (M) appear to be either the 4 or 7

type model. We decided to use the 4 type model, since it delivers nearly identical fit to the 7

type model but with a smaller number of model parameters. Our analysis from this point

therefore employs the 4-type model composed of the Liberal Centrist, Conservative Centrist,

Left Anarchist and Right Anarchist types.
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4.2.2 Alternative Models

In our appendix we discuss two further modeling issues that relate to the quality of the

information provided via the LDA framework. Firstly, in Appendix D we look at the sensitivity

of our baseline 4-type model to the removal and addition of features. The basic model is very

robust to the removal of features with types from iterative ‘leave one out’ models showing a

high correlation with the types in the original model. The relative ordering of β weights is

also preserved when we substantially widen the feature set (ie: add lots more questions). Both

of these exercises provide re-assurance that our overall baseline feature set is comprehensive

enough to identify stable types in the data.

The second modeling issue that we examine (in Appendix E) is a comparison of our LDA

approach with other unsupervised learning methods. Specifically, we apply principal compo-

nents analysis (PCA), factor analysis (FA) and k-means clustering to the same discretized

feature data as our LDA models. As we discuss in Appendix E, these alternative approaches

are distinct from LDA in that they are linear methods and capture mixed membership

relationships in a less intuitive way. For example, a method such as PCA will pick out linear

combinations of features with the highest degrees of variance in the data and therefore may

not parse more complex data generating processes.

This is borne out in the types derived from these models which are reported in Appendix

Tables 13, 14 and 15. The PCA models tend to identify conservative and anti-establishment

types as part of the main model components, with no clear centrist or socially liberal types

emerging. The identified types also display some counter-intuitive groupings of features. The

FA and k-means models produce similar results. Further to this, no plausible hierarchy or

‘family’ of types emerges from these alternative models. Again, this provides re-assurance

that our LDA models - which are, after all, specifically intended for the analysis of discrete

multinomial data - identify stable and interpretable types that are difficult to pin down using

other methods.

4.2.3 Type Labeling

The labeling of our LDA-derived types is a point for discussion. An important advantage of

our approach is that it is based on ideologies that emerge from the ‘bottom-up’ collection of

views amongst the general public. The topics that we identify are empirical ideologies and
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may not necessarily have a tight mapping to traditional taxonomies of ideology10.

Our labeling is therefore based on capturing the main empirical differences in issue-

positions between types. Arguably, the main issue here is the labeling of types 3 and 4,

which we have dubbed Left and Right Anarchist respectively. These two types are strongly

distinguished by issue-positions that hinge on (low) confidence in institutions11. We use the

term ‘anarchist’ to denote a pattern of opposition to current structures of political authority

and hierarchical organization. That is, our use of the term is meant to be distinct from

historical uses of the label, as per early socialist or syndicalist thinkers such as, inter alia,

Proudhon, Bakunin or Kropotkin.

Other plausible labels for these types are ‘Populist’ or ‘anti-Establishment’. In particular,

the fact that recent studies of populism (such as Algan et al. (2017)) have directly leveraged

data on institutional trust provides some foundation for such a branding. However, we choose

Anarchist as our label for this type because (i) it is a more generic and potentially neutral

term for the concept of an opposition to existing institutional structures12, and (ii) the types

that we identify are clearly apparent from the early 1990s, thereby pre-dating the latest wave

of populist politics. That is, our empirical results indicate that there may be some clear

historical roots to the current populist trend, extending at least as far back as the late 1980s.

4.3 Changing Ideologies?

Given the baseline 4-type model established above our next exercise examines within and

between-type shifts across the different waves of the WVS. Recall that our approach here is

to estimate the 4-type topic model separately for each wave and compare the β type vectors

over time.

The first point to note is that our main types are stable and repeat themselves across

waves. This is evident in Table 3a which reports the correlations between the separately

estimated types across waves. It is straightforward to pin down similar types across waves

since the correlations are high with, for example, the nominated Liberal Centrist type showing

10These taxonomies, covered in texts such as Vincent (2009) and Geoghegan (2003), are centered on
‘classical’ ideologies (eg: liberalism, conservatism, socialism) that are often explicitly articulated as bodies of
thought by key writers (Locke, Burke, Stuart Mill, Marx), as well as modern ‘post-materialist’ ideologies (eg:
environmentalism, feminism).

11See Appendix Table 9 for a breakdown of the largest differences in β issue-position weights across pairs
of types. This shows the points of separation between the Centrist and Anarchist types.

12As mentioned the term ‘populist’ can be considered pejorative - see the blunt critique of UK’s Daily Mail
(Murray (2016)). The term ‘anti-establishment’ is subject to similar concerns, with competing claims of who
the elite or establishment are.
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a correlation of 0.97 between waves 2 and 3 or the the Right Anarchist type reporting a

correlation of of 0.94 betweens waves 2 and 5.

These high correlations also imply that there are fairly limited ‘within-type’ shifts over

time, as measured by the probability weights in the β type vectors. Since we are using the

same issue-position features across waves we can directly report the shifts in probabilities

per feature. To facilitate the interpretation we have re-scaled the β vectors as described in

Appendix C13.

These probabilities can be interpreted as statistics for the ‘likelihood of expression’ for

a given issue-position conditional on drawing on a latent type. For example, a (re-scaled) β

weight of 0.72 for ‘Confidence: Labor Unions’ within the Liberal Centrist type indicates that

an individual drawing on this type to form their issue-position will express confidence in this

institution 72% of the time.

The ten largest shifts in probabilities for the Wave 2-5 difference are shown in Figure 3

for each type. The baseline numbers are also reported in Appendix Table 8 along with the

changes. The most noticeable trend is an increase in socially liberal attitudes across types

with, for example, the Conservative Centrist increasing their weights on issue-positions such

as ‘No problem neighbours: Homosexual’ and ‘No problem neighbours: People with AIDS’.

Also notable is the the Right Anarchist type, which shows higher confidence in the police

and armed forces over time, along with more intense hostility towards immigration. Some of

these changes are nominally large, with 15-20% increases in liberal attitudes on gay rights

for the Conservative Centrist and 50-60% increases in confidence for the armed forces and

police for the Right Anarchist. However, the overall changes in the β weights have not been

pervasive enough to drastically shift the between-wave correlations evident in Table 3a14.

The between type differences can also be summarized using correlations across the β

type vectors within the WVS waves and we show these in Table 3b. The increase in the

intensity of socially liberal issue-positions is now most clearly seen via the increasing closeness

between the Conservative Centrist type and the the two left-wing types. Between waves 2

and 5 the negative correlation with the Left Anarchist type moderates (going from -0.599

to -0.341) while the correlation with the Liberal Centrist type strengthens (from 0.446 to

13Since the rescaling of the β vectors is a non-linear transformation, the changes between the re-scaled β
vectors and unscaled β vectors can differ.

14In the case of Right Anarchist attitudes towards the the police and armed forces it should be noted that
this shift brings this type closer to the mean β for these issue-positions displayed by the two Centrist types.
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0.547). Hence, at the type level defined by the β-vectors, we can say that there has been

some convergence in the overall ideologies driven by attitudes on social issues.

4.4 Analysis of Type Shares

4.4.1 Determinants of Type Shares and Country Differences.

We start out the analysis of the θi individual type shares by studying the micro-level

determinants. In Table 4 we run some simple regressions of the type shares on individual

characteristics. Since the dependent variable is a continuous share the regression results

have the interpretation of telling us how the intensity of ideological positions changes with

different covariates.

We run four regressions corresponding to each type. These indicate some intuitively

plausible correlations - women are more liberal and centrist, with a magnitude of 0.7 - 1.9%

points, and the unemployed have higher shares in the two anarchist ideologies. Furthermore,

there are clear shifts in the distribution of type shares over time. After conditioning on

covariates it is evident that the Liberal Centrist share increases by around 5.7% points after

Wave 2 with the Conservative Centrist share falling by a similar amount. Following a similar

pattern, the Left Anarchist share rises in Waves 4 and 5 while the Right Anarchist share falls.

Hence, across the sample of countries the net result is a growth in the share of the two

left-wing types (ie: Liberal Centrist and Left Anarchist). However, there are also significant

country-level factors evident from the individual level analysis. The country fixed effects in

Table 4 account for 50-75% of the explained variation and we plot the country-level means

by type in Figure 4. This again shows some intuitively plausible relationships - northern

European countries (eg: Denmark, Finland, Netherlands) are more liberal while countries

with strong religious traditions (Malta, Ireland, Portugal) are more conservative.

To summarize the changes across countries over time we implement some splits along

different ideological dimensions. Firstly, in Figure 5a we examine the left-right distinction

and pool the type shares for the left-wing Liberal Centrist and Left Anarchist types. The plot

of changes in these pooled type shares between Waves 2 (1989-1993) and 5 (2005-2009) shows

that most countries have moved left ideologically, with a mean shift of 9% points. In Figure

5b we then plot the changes for the pooled Left and Right Anarchist types. This provides an

indicator of the overall strength of anti-establishment ideological sentiment across countries.

The results show a large increase in the Anarchist type shares for the US (around 18% points),
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with significant increases also evident for the Anglo-Celtic domains (Great Britain, Northern

Ireland) and the Netherlands. In net terms however, the anti-establishment trend is more

muted across countries, with a mean increase of only 1.5%.

In Figure 6, we further probe the sharp increase in the Anarchist ideologies for the US.

The clearest development is the growth in the US Right Anarchist share, which increases

from a 24.2% share in Wave 2 (1989-1993) to 35.5% in Wave 5 (2005-2009). Note here though

that this increase actually took place as a single step change between Waves 4 (1999-2004)

and 5 (2005-2009). By comparison, the rise of the US Left Anarchist share from 7.4% to

14.5% was more gradual across the waves.

Overall, these country-level findings are generally consistent with other international

studies of shifts in political attitudes (Inglehart (1997); Inglehart et al. (2010)). Taken

together with the within-type analysis, the basic message on ideological change that follows

from our methodology so far is one of a stable structure of ideologies over 20 years and some

increase in social liberalism. This increase in social liberalism has occurred both on the

intensive margin (ie: the weights on liberal issue-positions in the β vectors) as well as the

extensive margin (the growing individual-level type shares for the Liberal Centrist and Left

Anarchist types). The other major development in the data so far is the strong tilt towards

anti-establishment Anarchist ideologies in some countries - particularly the US.

4.4.2 ‘Citizen Slant’ - Within-Person Concentration

Our analysis so far has focused on changes at the level of the ideological types as well as the

total shares in the types across the sample. However, for the analysis of the polarization

the loadings of individuals on the four types is of key importance. In particular, the ‘mixed

membership’ structure of our approach means that two countries with the same overall type

distribution can have completely different individual type compositions.

For example, imagine a country which has an overall 50% share in Type 1 and 50%

share in a second Type 2. This country can either consist of completely identical individuals

with 50% shares in the two types or it could consist of half the population holding a 100%

share in Type 1 and another half with a 100% share in Type 2. These two possible type

compositions obviously have very different implications for the understanding of societal

polarization. A country with two separate sets of ‘pure’ homogeneous types is plausibly more

vulnerable to political conflict than a country where there is more ideological heterogeniety

at the individual-level.
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We therefore develop a measure of how strongly an individual is loading on one of the

four ideological types by constructing a Gini-style measure of within-person concentration or

‘slant’. We define the within-person concentration Gi of individual i as:

Gi =

∑4
t=1

∑
s 6=t |θti − θsi |

2(n− 1)
∑4

t=1 θ
t
i

(5)

where θti and θsi are the types shares of individual i. Intuitively, this approach is aggregating

the absolute pairwise difference in ideological shares that exist at the individual level. The

measure of within-person concentration Gi is monotonically increasing the more an individual

loads on one of the ideological types. If a person has a 100% share in one type then Gi will

be equal to 1, while Gi = 0 implies shares of 25% in all types.

In this way this our measure is able to capture how segregated type shares are on

a within-individual basis. Furthermore, it allows us to analyze which groups exhibit a

particularly high tendency towards within-person concentration. We plot the (Wave 5)

country means of the Gi measure in Figure 7 along with the changes between Wave 2 and 5.

This shows that Gi is relatively high across the sample with a mean of around 0.75. However,

between-country differences are not dramatic. There is only an 8% gap between the the

most and least concentrated countries and the ordering does not suggest that any particular

ideological types are driving concentration. That is, amongst the most concentrated or

‘slanted’ countries we see cases of both relatively Conservative and Liberal countries defined

in terms of the mean type shares seen earlier. The major, positive country level shifts in

slant over the waves occurred in Denmark, Finland and the US (Figure 6a) but the changes

were muted for most countries.

To study the importance of individual characteristics on within-person concentration

(as well as the development of Gi over time) we estimate the following regression equation:

ln (Gicw) = Xicwδ + τw + µc + εicw (6)

where Xicw is a vector of covariates, τw are wave dummies, µc are the country dummies and

ln (Gicw) is the natural logarithm of Gi. The log-specification makes it easier to analyze the

magnitude of the coefficients. The results are reported in Table 5 with controls for the type

shares and with the Liberal Centrist set as the baseline type. The purpose of the type share

controls is to allow us to study whether Gi concentration is increasing with shares of certain

types. The results indicate that the Left Anarchist is the least concentrated type followed by

the Right Anarchist. In turn, this means that the individuals with larger shares in either of

21



the two anarchist ideologies are more likely to mix different ideological types together than

the centrist types.

After controlling for the available individual characteristics we find an 2.7% increase in

G in wave 4 and an 1.6% increase in wave 515. The results for the analysis of the US are

similar overall except that the increases of G concentration in Waves 4 and 5 are far larger,

standing at around 4% (Column 3).

To further probe the increases in G over time we estimate eq. (6) separately for

individuals conditional on their main type and also broken down according to the US and

non-US samples.

The results in Table 6 show that the increases in G within the US are predominantly

driven by the two Anarchist types, both of which exhibit increases in concentration above

14%. To clarify, note that the message from the earlier table was that the Anarchist types are

less concentrated in the cross-section (hence the positive coefficients on these type variables

in the associated regressions). In contrast, the regressions in Table 6 track how concentration

developed over time on a per type basis. The simple story then is that, where they are held,

Anarchist views are becoming more concentrated and we are seeing ‘purer’ cases of Anarchist

views being held across the population.

In effect, this evidence implies that the Anarchist types have become an even more

dominant ideology for people who had already shown a lack of trust in social and political

institutions. While in earlier waves this section of the population might still have shown

large type shares in Centrist ideologies this potentially moderating centrist influence became

less potent in more recent years. The findings for the US also contrast fairly strongly with

the results for the non-US sample where the increase in concentration for the Anarchist types

is more muted (at around 2-4%) and in any case is matched by increases for the Liberal

Centrist type as well (see Table 6, panel (b), first column).

4.5 Societal Polarization

While the above measure of within-person concentration describes the strength of the

individual loadings on the four ideological types, it does not necessarily speak to the strength

of the division between citizens inside a society. A society in which there are sub-groups of

15We suppress the reporting of the individual attribute coefficients in eq. (6) to avoid clutter. The
basic result for these covariates is that only gender (female) and unemployment contribute significantly
to within-person concentration but with small magnitudes. They enter with positive and negative signs
respectively.
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individuals that heavily load on one ideological type may not necessarily be dramatically

polarized. The extent of polarization would hinge on how big these ‘purist’ sub-groups are

relative to the full set of ideological sub-groups across the population. As an example, the

country-level type share plots in Figure 4 indicate that some countries are characterised by

widely represented types with aggregate type shares around the 50% mark, such as Liberal

Centrists in Denmark and Conservative Centrists in Malta. At face value, these countries

could be plausibly classified as ‘unipolar’ and less vulnerable to group conflict no matter how

concentrated the different types are in terms of citizen slant.

We therefore study polarization by adapting the measures proposed by Esteban and

Ray (1994) and Duclos et al. (2004) to our setting with 4 ideological types. These measures

have the novel feature of accommodating two forces that define polarization as a general

concept. Firstly, there is identification which occurs amongst individuals with a common

characteristic and is an increasing function of the total number of common individuals (that

is, group size). Secondly, there is alienation which accounts for the social detachment that

individuals feel towards others who do not share some common characteristic. Again, the

strength of the alienation effect will depend on (relative) group size as well as the ‘distance’

between groups in the key characteristic of concern.

Using the example of income inequality, Esteban and Ray (1994) prove that any measure

of polarization P that accurately accounts for own-group identification as well as alienation

in relation to an out-group and fulfills 3 ‘reasonable’ axioms has to be of the form16:

P (π, y) = K
n∑
i=1

n∑
j=1

π1+α
i πj|yi − yj| (7)

where π are the number of people in the groups, y is amount of income of each group, K is a

normalizing constant and α is the polarization sensitivity, which measure how strongly the

polarization measure reacts to the group sizes.

This general polarization measure P was constructed for a one dimensional variable

y, for example, income. Polarization in our case obviously has to be measured over all 4

ideological types. Practically, we divide people into meaningful ideological groups based on

their dominant type share. That is, we allocate individuals to one of our 4 groups based

on their highest type share at the i-level. We then add up the θi type shares amongst the

defined group members to get the mean type share, defined as θ̃t. This differs from the mean

16The Axioms put forward in Esteban and Ray (1994) are explained in more detail in Appendix G.
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type shares θ̄t we have presented earlier on the basis that we are only taking the mean over

individuals with the same dominant type rather over the whole population.

Given this modification the polarization measure is defined as:

P (π, θ) = K
4∑
t=1

4∑
j=1

π1+α
t πj(|θ̃t1 − θ̃j1|+ |θ̃t2 − θ̃j2|+ |θ̃t3 − θ̃j3|+ |θ̃t4 − θ̃j4|) (8)

where πt and πj are the number of people who have the dominant type share t and j. The

means of the type shares in the each of the 4 dominant type groups are θ̃t for own type and

θ̃j for a generic other type. The second subscript on θ̃t and θ̃j represents the dominant type

group we are conditioning on when calculating absolute distance between groups.

As an example, consider setting type t as the Liberal Centrist and j is the Conservative

Centrist. We index the Liberal Centrist as the type 1 in the second conditioning subscript.

The calculation |θ̃t1− θ̃j1| then represents the (absolute) difference between the mean Liberal

Centrist type share for dominant Liberal Centrist individuals and the mean Conservative

Centrist type share for dominant Conservative Centrist individuals. This can be interpreted

as a measure of how close different ideological groups are despite their contrasting dominant

type shares. That is, a Liberal Centrist and a Conservative Centrist are more likely to ‘get

along’ if they have high minority type shares in each other’s ideology.

The other components of P (π, θ) are the polarization sensitivity parameter α, which we

fix at α = 0.5, and the constant K = (
∑4

t=1 πt)
−(2+α) that serves to normalize the polarization

measure by population size. We provide more detail and show how P varies with different

values of α in Appendix G.

Intuitively, the polarization measure will be largest for the case where there are two

major type share groups of identical size who exhibit completely different type shares. An

example of this would be a bipolar Liberal Centrist and Right Anarchist society where each

type group had very small minority shares in the other type. This provides a natural link

back to our earlier measure of citizen slant. Since an increase in citizen slant implies an

increase in the means for θ̃t and θ̃j, absolute differences in type shares between the groups

increase and polarization rises due to stronger alienation effects.

It is also useful to note how polarization also depends on the relative sizes of the groups

within an population, as measured by πt and πj . For example, given the same between group

differences in types, a country in which 2 groups each make up 50% of the population will be

more polarized than a country with 4 groups each making up 25% of the population.
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We calculate the polarization measure separately for each country and wave in our

sample. The ranking of the countries based on their polarization in each wave is shown in

Figure 8. The ranking of countries according to Wave 5 polarization levels is distinct from the

earlier ranking for citizen slant. Denmark, which has the lowest level of polarization, provides

an instructive example of how the P polarization measure combines information. The inputs

into the result for Denmark are its high Liberal Centrist type share (approximately 0.6 - see

Figure 4) and high level of within-person concentration or slant (which intensifies over time

- see Figure 7 ). Hence the low Danish P measure reflects a case of ideological consensus

where there is a major plural type (Liberal Centrist) that is strongly held by individuals (as

manifested in high slant).

The US, which sits at the top of the polarization ranking in Wave 5, provides a sharp

comparison that again illustrates the mechanics of the P measure. It has a relatively even

spread of type shares, with shares of around 30% for the Liberal Centrist, Conservative

Centrist and Right Anarchist types. Hence, the group size effect picked up by the πt and

πj terms is stronger in the US compared to unipolar cases such as Denmark. Overall, the

increase in polarization in the US is mainly driven by the rise in slant over time (Figure

4), which contributes by intensifying the alienation effect. The changes in dominant type

composition in the US only have a minor influence on the polarization measure.

However, it should be noted that, across countries, the changes in polarization over

time are not dramatic, with most of the shifts occurring in the 5-10% range relative to

baseline values in Wave 2. A key point to note is that the defining feature of some of the

polarization episodes seen in the data is the qualitative content of developments. The US

is the banner example here since the increase in polarization was driven by an increase in

the presence of Anarchist types. Hence the US experience with polarization has the extra

qualitative dimension of also reflecting the trend of a ‘disappearing center’ which is likely to

have additional consequences for social cohesion over and above the increase in P that we

measure statistically.

5 Conclusion

In this paper, we have proposed a new way to identify the latent ideologies of individuals

from survey data. Our approach does not presuppose any ideological structure for individuals.

Nonetheless, we are able to identify interpretable, consistent and stable ideological types in
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the data. The findings generally align with the left-right framing frequently used in the social

sciences but we also identify anti-establishment ‘anarchist’ ideologies that are characterized

by their distrust in important societal institutions.

The framework we develop allows us to put forward rich new measures of citizen

polarization based on multiple ideologies. The measurements we take from the data indicate

that changes in polarization across countries are muted, falling in the 5-10% range. A

comparison with earlier findings on elite polarization is useful here. Even in the US - which

experienced the largest increase in citizen polarization - the shifts that we pick up are not

as dramatic as those found in noted studies of elite polarization such as Gentzkow et al.

(2016) and Poole and Rosenthal (1985). That said, the central qualitative feature of the US

experience - a ‘disappearing center’ and a rise of anarchist, anti-establishment types plausibly

reflects a deeper threat to social cohesion. For example, polarization driven by the growth of

anarchist types is arguably a greater threat to political stability than a statistically equal

polarization underpinned by strong growth in the Liberal Centrist and Conservative Centrist

types.

Overall, our findings shed light on recent trends in polarization in the advanced

democracies. The framework we provide is rich enough to account for multiple developments

that have previously been hard to reconcile with each other. In particular, these developments

include the growing liberalism of advanced democracies on social issues which we can track

on the basis of of an intensive margin (ie: the within-type shifts in β weights that take place

across all types) as well as the extensive margin (the increase in θ type shares for liberal

types). A second development that we are able to track is the growth of both the left and right

wing Anarchist types who represent a natural constituency for populist or anti-establishment

movements. Our framework is able to capture the shared roots of these types in their low

confidence in institutions as well as measure the hardening of these attitudes via our index

of citizen slant. Hence, the enriched ideological spectrum we uncover formally takes into

account the anti-establishment leanings of citizens and has the potential to better explain

divides across political issues and the ‘interesting times’ we currently find ourselves in.
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Figure 2: Average Cohesion of Ideological Types for Different LDA Models
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Notes: This figure show the topic cohesion scores calculated for models with M ∈ {1− 10} types for the 5th
wave. The topic cohesion is calculated for different number of features B ∈ (5, 10, 15, 20). Afterwards the
average over the different values of B is taken.
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Figure 5: Changes of Types over Time

(a) Change in Left-Wing Types
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(b) Change in Anarchist Share
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Notes: This figure shows the change in θ type shares by country between Waves 2 (1989-1993) and 5
(2005-2009) in the WVS. In 4(a) we pool the type shares for the Liberal Centrist and Left Anarchist types.
In figure 4(b) we show the pooled change in the Left Anarchist and Right Anarchist types.

Figure 6: Type Shares - US vs non-US
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Notes: This figure compares the levels of θ type shares across waves for the Left Anarchist and Right Anarchist
types. We pool all 16 non-US countries (effectively all Western European countries apart from Iceland and
Canada) and contrast them to the US. The pooling for the non-US sample is based on WVS sample weights.
The timing of the waves is Wave 2 (1989-1993), Wave 4 (1999-2004) and Wave 5 (2005-2009).
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Figure 7: Citizen Slant by Country

(a) Change in Slant by Country
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(b) Ranking of Slant (Wave 5)
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Notes: Panel (a) shows the shows the change in our Gi Gini within-person ideological concentration measure
(‘citizen slant’) from Waves 2 (1989-1993) to 5 (2005-2009) by country. Panel (b) shows the level of the
within-person Gini measure by country in Wave 5. Country means calculated using WVS sample weights.

Figure 8: Polarization by Country

(a) Change in Polarization by Country

0 .1 .2
Change in Polarization

Denmark

Iceland

Malta

Belgium

North Ireland

France

Italy

Spain

Austria

Great Britain

Germany

Portugal

Finland

Canada

Netherlands

Ireland

United States

(b) Ranking of Polarization (Wave 5)

0 .1 .2 .3 .4 .5 .6
Polarization Measure

Denmark

Iceland

Malta

Finland

Portugal

Italy

Belgium

North Ireland

France

Germany

Great Britain

Spain

Ireland

Austria

Canada

Netherlands

United States

Notes: Panel (a) shows the change in country-level polarization measures from Waves 2 (1989-1993) to 5
(2005-2009) calculated following Esteban and Ray (1994). Panel (b) shows the level of the country-level
polarization measure in Wave 5.
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(b) 4-5 Type Model

4 Type Model 5 Type Model

Liberal Centrist Liberal Centrist

Confidence: Police Confidence: The Civil Services
No problem Neighbours: Homosexuals Confidence: Justice System/Courts
No problem Neighbours: People AIDS Confidence: Police

No problem Neighbours: People different race Confidence: Parliament
No problem Neighbours: Immigrants/foreign workers Proud of nationality

Not Justifiable: someone accepting a bribe Confidence: Armed Forces
Proud of nationality Confidence: Labour Unions

Not Justifiable: claiming government benefits No problem Neighbours: People different race
Justifiable: divorce Not Justifiable: someone accepting a bribe

Not Justifiable: cheating on taxes No problem Neighbours: Immigrants/foreign workers

Conservative Centrist Conservative Centrist

Confidence: Police Not Justifiable: abortion
Confidence: Churches Not Justifiable: prostitution

Not Justifiable: suicide Not Justifiable: suicide
Proud of nationality Not Justifiable: euthanasia

Confidence: Armed Forces No problem Neighbours: People different race
Not Justifiable: prostitution No problem Neighbours: Immigrants/foreign workers

Not Justifiable: abortion Not Justifiable: someone accepting a bribe
Not Justifiable: someone accepting a bribe Not Justifiable: avoiding a fare on public transport

Confidence: Justice System/Courts Not Justifiable: cheating on taxes
Confidence: The Civil Services Proud of nationality

Left Anarchist Left Anarchist

Justifiable: divorce No Confidence: Armed Forces
No Confidence: Churches No Confidence: Churches

Justifiable: euthanasia No Confidence: Police
No Confidence: Armed Forces No Confidence: Major Companies

No Confidence: Parliament No Confidence: Justice System/Courts
No Confidence: Civil Services No Confidence: Parliament

No problem Neighbours: Homosexuals No Confidence: Civil Services
Justifiable: homosexuality No problem Neighbours: Homosexuals

Justifiable: abortion No problem Neighbours: People different race
No problem Neighbours: People different race No problem Neighbours: People AIDS

Right Anarchist Right Anarchist

No Confidence: Parliament Against Neighbours: People AIDS
No Confidence: Civil Services Against Neighbours: Homosexuals

No Confidence: Labour Unions Against Neighbours: Immigrants/foreign workers
No Confidence: The Press If Jobs scarce: priority to (nation) people

No Confidence: Justice System/Courts Against Neighbours: Drug addicts
Not Justifiable: someone accepting a bribe Not Justifiable: homosexuality

Not Justifiable: avoiding a fare on public transport Not Justifiable: suicide
Not Justifiable: claiming government benefits Against Neighbours: People different race

Not Justifiable: suicide Not Justifiable: prostitution
Not Justifiable: cheating on taxes Proud of nationality

Market Liberal

No Confidence: Parliament
No problem Neighbours: People different race
Not Justifiable: claiming government benefits

No problem Neighbours: Homosexuals
Competition is good

No Confidence: The Press
Not Justifiable: someone accepting a bribe

Proud of nationality
No problem Neighbours: People AIDS

Not Justifiable: cheating on taxes

Notes: This table reports the 10 most important features for a n-type LDA model, where n ∈ {2, 3, 4, 5}.
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Table 3: Type Correlations

(a) Between-Wave Type Correlations

Centrist Liberal Centrist Conservative Left Anarchist Right Anarchist
Wave 2 Wave 2 Wave 2 Wave 2

Wave 4 0.973 0.985 0.963 0.981
Wave 5 0.935 0.963 0.943 0.939

Notes: This table shows the correlation of the β issue-position probability weights across types estimated in
separate waves. That is, we identify 4 types in the initial Wave 2 (1989-1993) and correlate their β weights
with the most similar types estimated separately on Waves 4 (1989-1993) and 5 (2004-2009).

(b) Within-Wave Type Correlations

Wave 2

Centrist Liberal Centrist Conservative Left Anarchist Right Anarchist
Centrist Liberal 1.000
Centrist Conservative 0.446 1.000
Left Anarchist 0.215 -0.599 1.000
Right Anarchist 0.231 0.256 0.161 1.000

Wave 4

Centrist Liberal Centrist Conservative Left Anarchist Right Anarchist
Centrist Liberal 1.000
Centrist Conservative 0.475 1.000
Left Anarchist 0.336 -0.502 1.000
Right Anarchist 0.291 0.345 0.178 1.000

Wave 5

Centrist Liberal Centrist Conservative Left Anarchist Right Anarchist
Centrist Liberal 1.000
Centrist Conservative 0.547 1.000
Left Anarchist 0.282 -0.341 1.000
Right Anarchist 0.201 0.319 0.317 1.000

Notes: This table shows the correlation of the β issue-position probability weights amongst types in the same
wave. That is, we estimate our 4 types using data on a single wave and then correlate the β weights across
pairs of types in the same wave.
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Table 4: Correlates of Individual-level Type Shares

(1) (2) (3) (4)
VARIABLES Liberal Centrist Conservative Centrist Left Anarchist Right Anarchist

Female 0.019*** 0.007*** -0.015*** -0.011***
(0.002) (0.002) (0.002) (0.002)

Age -0.003*** 0.004*** -0.003*** 0.002***
(0.000) (0.000) (0.000) (0.000)

Unemployed -0.072*** -0.002 0.049*** 0.025***
(0.005) (0.005) (0.004) (0.005)

Wave 4 0.070*** -0.063*** 0.020*** -0.027***
(0.003) (0.003) (0.002) (0.003)

Wave 5 0.057*** -0.077*** 0.059*** -0.039***
(0.003) (0.003) (0.002) (0.003)

Observations 81,141 81,141 81,141 81,141
R-squared 0.141 0.106 0.113 0.056
Country FE YES YES YES YES

Notes: Each column reports the regression results for individual level regression. The dependent variable are
the type shares for one of the 4 types created by LDA. Robust standard errors are used. Significance levels:
*** p<0.01, ** p<0.05, and * p<0.1. The data come from the World Value Survey and the European Value
Survey.

46



Table 5: Correlates of ‘Citizen Slant’ (Gini Concentration)

(1) (2) (3) (4)
VARIABLES log Gini log Gini log Gini US log Gini US

Cons. Centrist -0.003 -0.029***
(0.002) (0.010)

L. Anarchist -0.047*** -0.090***
(0.003) (0.017)

R. Anarchist -0.039*** -0.070***
(0.002) (0.010)

Wave 4 0.027*** 0.028*** 0.042*** 0.040***
(0.002) (0.002) (0.009) (0.009)

Wave 5 0.013*** 0.012*** 0.062*** 0.048***
(0.002) (0.002) (0.010) (0.010)

Baseline Gini 0.746 0.746 0.736 0.736
Observations 81,141 81,141 4,197 4,197
R-squared 0.017 0.009 0.031 0.012
Country FE YES YES YES YES

Notes: Each column reports the regression results for individual level regression. The dependent variable is
the Gini Coefficient of the individual type shares as a measure of polarization. Column (1) and (2) use all
data and column (3) and (4) restrict the sample to the USA. Robust standard errors are used. Significance
levels: *** p<0.01, ** p<0.05, and * p<0.1. The data come from the World Value Survey and the European
Value Survey.
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Table 6: ‘Citizen Slant’ - US vs non-US Comparison

Panel A: United States

(1) (2) (3) (4)
VARIABLES Cent. Liberal Cent. Conservative Left Anarchist Right Anarchist

Wave 4 0.033** 0.020 0.088** 0.093***
(0.013) (0.015) (0.041) (0.019)

Wave 5 -0.012 0.043** 0.151*** 0.142***
(0.019) (0.020) (0.039) (0.016)

Baseline Gini .769 .752 .662 .672
Observations 1,398 1,383 283 1,133
R-squared 0.017 0.016 0.086 0.089

Panel B: Non United States

(1) (2) (3) (4)
VARIABLES Cent. Liberal Cent. Conservative Left Anarchist Right Anarchist

Wave 4 0.051*** 0.005 0.023*** 0.040***
(0.004) (0.004) (0.006) (0.004)

Wave 5 0.038*** -0.007* 0.023*** 0.015***
(0.004) (0.004) (0.006) (0.004)

Baseline Gini .748 .770 .722 .733
Observations 24,595 20,725 11,399 20,225
R-squared 0.015 0.013 0.012 0.008
Country FE YES YES YES YES

Panel C: All Countries

(1) (2) (3) (4)
VARIABLES Cent. Liberal Cent. Conservative Left Anarchist Right Anarchist

Wave 4 0.049*** 0.007* 0.024*** 0.043***
(0.004) (0.004) (0.006) (0.004)

Wave 5 0.033*** -0.004 0.025*** 0.022***
(0.004) (0.004) (0.006) (0.004)

Baseline Gini .750 .768 .721 .730
Observations 25,993 22,108 11,682 21,358
R-squared 0.014 0.013 0.012 0.009
Country FE YES YES YES YES

Notes: Each column reports the regression results for individual level regression. The dependent variable is
the Gini Coefficient of the individual type shares as a measure of polarization. Column (1) use all US data
and column (2), (3) and (4) restrict the sample to the individuals based on their dominant type. Robust
standard errors are used. Significance levels: *** p<0.01, ** p<0.05, and * p<0.1. The data come from the
World Value Survey and the European Value Survey.
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A Additional Type Hierarchy Information

1



Table 7: Extended Hierarchy of Types (Top Ten Features)

6 Type Model 7 Type Model

LIBERAL CENTRIST LIBERAL CENTRIST

Confidence: The Civil Services Confidence: The Civil Services
Confidence: Parliament Confidence: Parliament

Confidence: Police Confidence: Police
Confidence: Justice System/Courts Confidence: Justice System/Courts

Proud of nationality Proud of nationality
No problem Neighbours: People different race No problem Neighbours: People different race

No problem Neighbours: Homosexuals No problem Neighbours: Homosexuals
No problem Neighbours: Immigrants/foreign workers No problem Neighbours: Immigrants/foreign workers

Not Justifiable: someone accepting a bribe Not Justifiable: someone accepting a bribe
No problem Neighbours: People AIDS Justifiable: divorce

‘SOFT’ SOCIAL CONSERVATIVE ‘SOFT’ SOCIAL CONSERVATIVE

Not Justifiable: abortion Confidence: Police
Confidence: Police Not Justifiable: abortion

Confidence: Churches Confidence: Churches
Not Justifiable: prostitution Not Justifiable: euthanasia
Confidence: Armed Forces Confidence: Armed Forces

Not Justifiable: suicide Not Justifiable: suicide
Not Justifiable: someone accepting a bribe Not Justifiable: prostitution

Not Justifiable: cheating on taxes No problem Neighbours: People different race
Not Justifiable: euthanasia Not Justifiable: someone accepting a bribe

Not Justifiable: avoiding a fare on public transport Not Justifiable: cheating on taxes

LEFT ANARCHIST LEFT ANARCHIST

No Confidence: Armed Forces No Confidence: Armed Forces
No Confidence: Churches No Confidence: Churches

Justifiable: divorce Justifiable: divorce
Justifiable: homosexuality No Confidence: Major Companies

No problem Neighbours: Homosexuals Justifiable: homosexuality
Justifiable: euthanasia No Confidence: Parliament

No Confidence: Major Companies No problem Neighbours: Homosexuals
No problem Neighbours: People AIDS No problem Neighbours: People AIDS

No problem Neighbours: People different race Justifiable: euthanasia
No problem Neighbours: Immigrants/foreign workers No problem Neighbours: People different race

RIGHT ANARCHIST ‘HARD’ SOCIAL CONSERVATIVE ‘HARD’ SOCIAL CONSERVATIVE

Against Neighbours: People AIDS Against Neighbours: People AIDS
Against Neighbours:Immigrants/foreign workers Against Neighbours:Homosexuals

Against Neighbours:Homosexuals Against Neighbours:Immigrants/foreign workers
Against Neighbours: People different race Against Neighbours: Drug addicts
If Jobs scarce: priority to (nation) people If Jobs scarce: priority to (nation) people

Against Neighbours: Drug addicts Against Neighbours: People different race
Not Justifiable: homosexuality Not Justifiable: homosexuality

Confidence: Armed Forces Proud of nationality
Proud of nationality Confidence: Armed Forces

Justifiable: accepting a bribe Not Justifiable: someone accepting a bribe

RIGHT ANARCHIST (GMU BLOGGER) RIGHT ANARCHIST (GMU BLOGGER)

No Confidence: Parliament No Confidence: Parliament
Not Justifiable: claiming government benefits Confidence: Police

Competition is good No problem Neighbours: People different race
Not Justifiable: someone accepting a bribe No problem Neighbours: Homosexuals

No Confidence: The Press No Confidence: The Press
Proud of nationality Competition is good
Confidence: Police Proud of nationality

No Confidence: Civil Services Confidence: Armed Forces
Confidence: Armed Forces No problem Neighbours: People AIDS

Not Justifiable: cheating on taxes Not Justifiable: someone accepting a bribe

EXTRA RIGHT WING TYPE EXTRA RIGHT WING TYPE

No Confidence: Armed Forces No Confidence: Parliament
No Confidence: Parliament No Confidence: Civil Services

No Confidence: Justice System/Courts No Confidence: Justice System/Courts
No Confidence: Civil Services No Confidence: Labour Unions

No Confidence: The Press No Confidence: Armed Forces
No Confidence: Labour Unions Not Justifiable: suicide

Not Justifiable: suicide No Confidence: Major Companies
No Confidence: Major Companies No Confidence: The Press

Not Justifiable: someone accepting a bribe No problem Neighbours: People different race
No Confidence: Police Not Justifiable: prostitution

SUPER ANARCHIST ’Rage Against the Machine’

Justifiable: avoiding a fare on public transport
Justifiable: cheating on taxes

Justifiable: claiming government benefits
Justifiable: accepting a bribe

Justifiable: euthanasia
If Jobs scarce: priority to (nation) people

Justifiable: prostitution
Proud of nationality
Justifiable: divorce

No problem Neighbours: People different race

Notes: This table reports the 10 most important features for a n-type LDA model, where n ∈ {6, 7}.2



Table 8: Issues of Increasing Importance between Wave 2 and Wave 5

Question Baseline Change

Liberal Centrist

State ownership better than private ownership 0.012 0.321
More responsibility for government 0.217 0.209
Competition is harmful 0.000 0.188
Confidence: Armed Forces 0.697 0.162
Against Neighbours: Drug addicts 0.673 0.151
Justifiable: homosexuality 0.710 0.141
Confidence: The Civil Services 0.688 0.130
Confidence: Labour Unions 0.591 0.129
No Confidence: Major Companies 0.495 0.110
Confidence: Churches 0.561 0.084

Conservative Centrist

No Confidence: Parliament 0.036 0.204
No problem Neighbours: Homosexuals 0.597 0.199
Justifiable: homosexuality 0.000 0.167
No problem Neighbours: Drug addicts 0.431 0.159
No problem Neighbours: People AIDS 0.653 0.151
No Confidence: Major Companies 0.269 0.141
If Jobs scarce: no priority to (nation) people 0.318 0.079
No Confidence: The Press 0.509 0.054
Not Justifiable: abortion 0.834 0.052
Not Justifiable: euthanasia 0.837 0.031

Left Anarchist

Confidence: Police 0.041 0.327
Not Justifiable: cheating on taxes 0.409 0.282
Confidence: Armed Forces 0.002 0.177
Proud of nationality 0.586 0.137
Not Justifiable: claiming government benefits 0.633 0.102
No Confidence: The Press 0.721 0.096
Not Justifiable: avoiding a fare on public transport 0.549 0.093
If Jobs scarce: no priority to (nation) people 0.591 0.078
Not Justifiable: prostitution 0.094 0.076
More responsibility for people 0.260 0.067

Right Anarchist

Confidence: Armed Forces 0.028 0.632
Confidence: Police 0.000 0.564
Against Neighbours: Immigrants/foreign workers 0.351 0.235
Justifiable: homosexuality 0.000 0.220
Justifiable: divorce 0.136 0.172
Justifiable: euthanasia 0.140 0.166
Against Neighbours: People different race 0.301 0.133
No problem Neighbours: Homosexuals 0.645 0.087
State ownership better than private ownership 0.297 0.080
Against Neighbours: Drug addicts 0.788 0.078

Notes: This table reports the 10 feature of each type which show the biggest increase in weight from wave 2 to wave 5. Column
2 reports the baseline value in wave 2 and column 3 reports the change from wave 2 to wave 5.
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B Additional Details on the Selection of Question from

the WVS

This section describes in more detail, the selection process that lead to the 29 questions

that are used in the paper. There are 6 waves of the World Value Survey (WVS) and 4

waves of the European Value Survey (EVS). The 4 Waves of the EVS correspond to the

1st, 2nd, 4th and 5th wave of the WVS. When constructing the Integrated Value Survey by

combining the WVS and EVS we excluded the 1st wave since, it contained a smaller set of

countries and questions. The Integrated Value Survey (WVS) in total contains 971 different

items grouped in 13 different categories (number of questions in brackets): Environment

(25), Family (64), National Identity (105), Perceptions of life (210), Politics and Society

(267), Religion and Morale (122), Science (2), Security (22), Socio-demographics (38), Special

Indexes (3), Structure of the file (25), Sylatech module (42) and Work (46). The categories

socio-demographics, special indexes, structure of the study, Sylatech module and work do

not contain any question concerning the values of people.

We limited the set of questions to those question which were consistently asked in the

2nd, 4th and 5th wave of WVS. This already reduced the set of possible questions down to 92.

From these 92 questions we chose our 29 based on which questions seems most important for

the evaluation of a persons ideological type.17 The excluded question are listed in Table 10

In Appendix D we show that the selection of these 29 questions is not crucial for our

findings and that the ideological types are very similar if we use all 92 questions. We further

show that also removing any of the 29 questions from our data has no bearing on our results.

A further point is that LDA does not allow for missing responses in the data. If we

simply excluded all observations with any missing responses and restricted ourselves to

observations with complete sets of answers, we would need to drop sizable fractions of the

WVS data. We instead impute a small set of missing responses with the sample mean of

the non-missing data in the same wave. This treatment of missing data allows LDA to use

the information from this observation. Moreover, the imputation has only a minimal effect

on the LDA classification, since the sample mean does not influence the classification of

each individual. Imputation with the mean is also preferable to an alternative approach

17The question concerning “Confidence: Justice System/Courts” did not get asked in the 4th wave of the
WVS. Since we have responses for this question from the EVS we still decided to include it in our baseline
question set. The question is not included in the set of 92 questions.
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where we would simply replace all missing responses with 0s, because the 0s would bias the

classification.
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C Appendix: Interpretation of the β Vectors

One difference between our application and the standard use of LDA is that in our case

features can only appear once for each observation, i.e. people can only answer each questions

once, while words can appear more than once in an document. As already discussed in the

main part of the paper this does not influence on the validity of LDA, since LDA exploits

how often features appear relative to each other.

However, this difference influences the interpretation of the β vectors. The β vectors

capture the probability that a response is drawn in each of the 58 draws (questions) asked

to an individual, e.g. how likely it is that an individual will answer that he is opposed to

abortion in each of the 58 draws. Therefore, the β vectors do not take into account that once

an person has answered a questions the same person cannot answer the same question again.

As a results, the β still capture which groups are more likely to exhibit an ideological

position, but the values do not have a natural interpretation within our setting. If necessary

one can scale up the β probabilities to give them a more natural interpretation within our

setting. To do this one has to calculate the probability that a feature shows up in any of the

58 draws of the LDA taking into account that a question can only be answered once. Given

this intuition Pf,t, the overall probability that a feature f appears if the chosen type is t, can

be expressed as Pf,t =
∑58

d=1(1− βf,t)d−1βf,t , where d is the number of the draw (question)

and βf,t is the value of the β vector for feature f and type t. In this expression (1− βf,t)d−1

is the probability that the response has not been given in any previous draw and βf,t is the

probability that the response will be given in the current draw.

As an example to illustrate this calculation consider the question of ”Confidence in the

Police”. In the 5th wave, the liberal centrist has a value of β14,1 = 0.0403 and the value for

the left anarchist is β14,3 = 0.0078. This difference in the β values translate into the following

overall differences in probability. While a liberal centrist will express confidence in the police

with a probability of 90.8%, the probability that a left anarchist will express similar views is

only 35.9%.

This scaling up does not take into account some features are mutually exclusive. Hence,

the scaled up probability of the features ”Confidence in the Police” and “No Confidence in

the Police” will not necessarily add up to 1.
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D Sensitivity to Removal and Addition of Features

In this section we analyze how sensitive our baseline 4 type model is to the removal and

addition of features. The exercises we run here can be interpreted as a leverage or influence

analysis on the statistical definition of our ideological clusters. We are unaware of formal

model robustness statistics of this nature in the literature on LDA. Hence, while we think

that the exercises below are promising in terms of the robustness of the basic clusters that

they reveal, they should be considered indicative.

D.1. ‘Leave One Out’ Clusters.

As a first exercise, we re-estimate the 4-topic model removing 1 of the 29 questions (2 of the

58 features) at a time. Afterwards, we compare the original model to the new ‘leave one out’

model based on the similarity of the β vectors, as measured by their correlation. Table 11

reports the results of this exercise.

Overall, independent of the particular removed question, we find high correlations

between the different β vectors. This is strongest for the Liberal Centrist type which has an

average correlation of 0.969 between the original and leave one out models across all dropped

questions. This indicates that the types generate by LDA are very closely comparable across

the different models. The highest degrees of sensitivity relate to the confidence in institutions

questions (where the β correlations are between 0.70-0.80 for three of the types). Another

point of sensitivity is questions relating to foreigners / immigration in the case of the Right

Anarchist. Given the centrality of the confidence and immigration questions to the character

of different types these sensitivities are within expectations. This leads to the next issue of

how the types might change when we add more information.

D.2. Widening the Feature Set.

In the next exercise we investigate how the structure of our clusters changes when we include

additional features in the topic model. As described in Appendix B, there are a total of

92 questions that are available across all 3 waves of the WVS used in this paper. As an

additional robustness check, we therefore include all these 92 questions in our topic model

and create a extended type hierarchy. We then correlate the weights on the β positions

between the original and extended models where they overlap.
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Practically, this exercise allows us to ask whether the relative ordering of the β issue-

position weights changes as we add more features to the model. Note that this is more of

an ‘add them all in’ rather than an iterative ‘add one in’ exercise. We adopt this approach

both for the sake of brevity as well to see how our original 4-type model is affected by a

large, lateral addition of information. The concern would be that the addition of many extra

features would fundamentally change the structure of the clusters and shift the ordering of

the initial set of features.

Table 12 reports the correlations between the β-vectors from the baseline type hierarchy

and those from the extended-feature type hierarchy. Obviously, the correlation coefficients

can only be calculated on the basis of the 29 original questions used in the baseline hierarchy.

The correlations are very high across all the hierarchy models. The only exception is the Type

3’ (nominated Left Anarchist) in the 4-type model. As we show, Type 3’ has comparable

correlations with the original model Liberal Centrist, Left Anarchist and Right Anarchist

types. Interestingly, the Left Anarchist type re-emerges as cleanly defined when we move to

the 5-type model.

Overall, we find these results to be encouraging. The same basic type structure is intact

even when adding in a large amount of information. This is compatible with the idea that

the extra questions/features fit in as new responses that tap into a stable set of underlying

latent types.

We stress though that both of the exercises we present here are indicative with limited

formal precedents in the LDA literature. One interesting pattern here is that the Centrist

types are less sensitive to changes in features relative to the Anarchist types. This fits

with the intuition that the Centrist types are well-established and better defined with the

Anarchist types still being more fluid. The tendency of the Anarchist types to split as we

consider higher-order models (eg: 5, 6, and 7-type models) is also consistent with assessment.
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Table 12: Sensitivity to Additional Features

2 Type Model

Type 1’ Type 2’
Left 0.9821
Right 0.9816

3 Type Model

Type 1’ Type 2’ Type 3’
Lib. Centrist 0.8222
Cons. Centrist 0.8005
Anarchist 0.8302

4 Type Model

Type 1’ Type 2’ Type 3’ Type 4’
Lib. Centrist 0.8748
Cons. Centrist 0.9693
Left Anarchist 0.687 0.6622
Right Anarchist 0.7835 0.9496

5 Type Model

Type 1’ Type 2’ Type 3’ Type 4’ Type 5’
Lib. Centrist 0.825
‘Hard’ Conservative 0.911
‘Soft’ Conservative 0.8914
GMU Blogger 0.8768
Left Anarchist 0.9168

Notes: This table reports the correlation of the β vectors of the type hierarchy from the main paper and the
type hierarchy of a topic model including all 92 consistent questions from the WVS. The prime’ notation
indicates the types estimated using the 92 feature topic model. We report the highest cross-model correlations
for the overlapping β weights, except for the 4-type Left Anarchist case where (in the interests of exposition)
we report the three highest correlations.
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E Comparison of LDA to PCA, Factor Analysis and

k-means

This section provides a comparison between Latent Dirichlet Allocation (LDA) and the

other alternative machine learning dimensionality reduction techniques, specifically Principal

Component Analysis (PCA), Factor Analysis (FA) and k-means clustering. At their core all

of these techniques aim to reduce high dimensional data to a set of more easily interpretable

topics, components, factors or clusters. Differences arises in the way these lower dimensional

representation of the data are constructed.

As we have outlined in detail in the main part of the paper LDA relies on a generative

model that makes assumptions about the data generating process and allow for an direct

interpretation of the latent objects as topics. Furthermore, the LDA model was specifically

designed for the analysis of sparse multinomial data.

PCA on the other hand relies on a truncated singular value decomposition to derive

components that explain the maximum possible amount of variance in the data while keeping

all components orthogonal to each other. Truncated singular value decomposition is based

on decomposing the original O × F data matrix D of rank R with O observation and F

features into three matrices such that D = UΣW T , where U is a O ×R orthogonal matrix,

W T is a R × F orthogonal matrix, and Σ is a R × R diagonal matrix. Afterwards, PCA

truncates the resulting matrices by removing the rows and columns associated with the

smallest eigenvalues in the matrix Σ. This truncation process reduces the dimensions of the

matrices to a user-chosen number of components C, such that U becomes UC of dimension

O × C, Σ becomes ΣC of dimension C × C, and W T becomes W T
C of dimension C × F .

Each of the resulting components are orthogonal to each other and represent a linear

combination of the original data weighted by eigenvectors. This highlights two important

limitations of PCA for our application. Neither is it obvious that the ideological types

(components) we want to find in the data should be orthogonal to each other nor are they

necessarily a linear combination of the data. As a result the ideological type hierarchy created

by PCA (see Table 13) is less coherent than the types created by LDA.

Similar problems arise when using FA. FA represents the original data as a linear

combination of factors such that D = C + β · F + ε , where D is the original data matrix,

C is a vector of constants F is the factor matrix, β are the factor loadings and ε a vector

of Gaussian noise. The advantage of FA in comparison to PCA is that it accounts for

13



random measurement error through the ε vector and hence allows for heteroscedastic noise.

Nevertheless, FA is still uses a linear model to decompose the data. Due to the linear model

the ideological type generate by FA (see Table 14) are less coherent than the LDA results.

Last, k-means is a clustering algorithm that minimizes the distance of the original data

to a user chosen number of centroids. As any other clustering algorithm, k-means assigns

each observation to a unique cluster. This seems counterintuitive in our case, since people

do not necessarily subscribe to a single political ideology. For example, people might be

liberal when it comes to social issues but conservative with regard to economic questions.

While LDA captures this its mixture of ideological types, k-means cannot account for this.18

Moreover, as discussed by Ding and He (2004) k-means clustering represents a discrete cluster

solution to the components derived by PCA. As such k-means suffers from similar short

comings as PCA and the derived ideological types (see Table 15) also are as less coherent in

comparison to LDA.

18PCA and FA are also allow for ‘mixed membership’ through different component and factor loadings.
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F Additional Details on Topic Cohesion

F.1. Automatic Evaluation of Topic Model Cohesion

The main theme of the literature on the cohesion of topic models is that humans judge

topics to be more consistent on the basis of word co-occurrence (Chang et al., 2009; David

Newman et al., 2010; Lau et al., 2014; Lau and Baldwin, 2016). Consider for example, a

topic containing words like ‘labor’, ‘wage’ and ‘firm’, which often appear together in a text,

will be judged as highly coherent by humans. An alternative topic that contains words like

‘inflation’, ‘agriculture’ and ‘hospital’ appears incoherent, since these words are not used

together as frequently.

Given this approach, it is possible to automatically calculate measures of topic cohesion

that are highly correlated with human judgment. These measures are usually based on

the most frequently occurring words in each topic. One standard approach is to calculate

how often words appear together using the Wikipedia corpus (David Newman et al., 2010).

The title and sub-sections of the Wikipedia article are used as ‘tags’ for discrete, human-

curated topics. The more frequently that words within an LDA-derived topic appear together

in a Wikipedia article (or within a sub-section of an article) then the more coherent the

automatically defined topic is judged to be.

In our specific case of using survey response data, there is no equivalent, human curated

outside corpus available to guide analysis. We therefore take the approach of using hold-out

samples from within our data to calculate the cohesion scores. Our method thereby exploits

the same intuition normally used in the literature on topic model cohesion. The key here

is the β issue-position weights can be used as predictions of feature co-occurrence in the

hold-out data. A political ideology is judged to be more coherent, if people frequently hold

issue-position’s together. We use Normalized Pointwise Mutual Information (NPMI) as our

score of topic cohesion since NPMI has been shown to outperform other information metrics

such as PMI or Pairwise Log Conditional Probability (LCP) and shows similar performance

to pairwise distributional similarity (Aletras and Stevenson, 2013; Lau et al., 2014).

F.2. Making Sense of the NPMI Values

The calculation of the NPMI is based on the independent and joint probabilities of given

features i and j. The probability p(i) for example could capture the share of the population

that believes abortion is not justifiable, while p(j) captures the probability that a person has
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confidence in the church. The joint probability p(i, j) then captures how many people believe

that abortion is unjustifiable and have confidence in the church at the same time. The larger

the joint p(i, j) is in relation to p(i) and p(j), the higher is NPMI score of the two features.

Re-capping the basic equation from the main paper NPMI is defined as:

NPMIi,j =
PMIi,j
− ln(p(i, j))

=
ln
(

p(i,j)
p(i)·p(j)

)
− ln(p(i, j))

(9)

As an illustration, Table 16 shows two examples of NPMI scores for different values of

p(i) and p(j), as well as different joint probabilities p(i, j). In the first example both features

appear with a probability of 0.2. In the situation where all people who are against abortion

also have confidence in the church the joint probability of the features is 0.2 and the NPMI

value will be 1. If the two features were independent of each other one would expect them

to appear together in the data with a frequency of (0.2 · 0.2) = 0.04. In this situation the

calculated NPMI will be 0. If the joint probability is larger than the probability in the case

of independence then NPMI will be positive, with the converse applying. The final two rows

of Example 1 in Table 16 illustrate this relationship.

A technical point to note here is that the exact value of the NPMI depends on the

individual as well as the joint probabilities. This is illustrated via the second example

reported in Table 16. Note that in both Example 1 and Example 2 the third row cases are

characterized by joint probability that is 50% larger than in the case of independence. The

PMI is identical across the two different ‘third row’ cases but the NPMI is different. Two

pairs of feature will only have the same NPMI if logp(i,j)(p(i), p(j)) = logp(x,y)(p(x), p(y)). In

other words, the NPMI is identical, if you have to raise the joint probability to same power

to get the product of the individual probabilities.
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Table 16: Example Calculation NPMI

Example 1

Case p(i) p(j) p(i, j) PMI NPMI

Perfect Co-Occurrence 0.2 0.2 0.2 1.609 1
Independence 0.2 0.2 0.04 0 0
p(i, j) > Independence 0.2 0.2 0.06 0.405 0.244
p(i, j) < Independence 0.2 0.2 0.02 -0.693 -0.177

Example 2

Perfect Co-Occurrence 0.6 0.6 0.6 0.511 1
Independence 0.6 0.6 0.36 0 0
p(i, j) > Independence 0.6 0.6 0.54 0.405 0.658
p(i, j) < Independence 0.6 0.6 0.18 -0.693 -0.404
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G Additional Details on the Polarization Measure

The Esteban and Ray (1994) measure of polarization is based on three axioms. These

three axioms aim to capture sensible assumptions about how own-group identification and

out-group alienation contribute to an overall index of polarization.

Figure 9 illustrates the three axioms of Esteban and Ray (1994) graphically. The first

axiom states that polarization increases if two small masses b and c that are close to each

other are joined at their midpoint (see panel (a) of Figure 9). The intuition behind this

axiom is that the joining of the masses increases the own-group identification of the now

joined smaller masses, while the average distance and out-group alienation with respect to

other major societal group a stays unchanged.

The second axiom states that polarization increases if a small mass of people b moves

closer to the side of the spectrum where fewer people are concentrated (see panel (b) of

Figure 9). Put simply, this change increases polarization because while the mass b has moved

closer to group c it has also moved further away from another group a. Since mass a is larger

than mass c, the overall alienation effect increases.

The third axiom states that polarization increases if mass is shifted equally from a

central mass b to two lateral masses a and c that are each equally far away from the central

mass (see panel (c) of Figure 9). This axiom captures the effect of the disappearing center. If

mass shifts equally from the center to the fringes of the spectrum the own-group identification

at the fringes increases while the overall out-group alienation increases as well.

Esteban and Ray (1994) prove that any measure of polarization that fulfills these three

axioms must be of the form:

P (π, y) = K

n∑
i=1

n∑
j=1

π1+α
i πj|yi − yj| (10)

The axioms hold for values of α ∈ [0, 1.6]. For α = 0 the polarization measure will be

identical to the Gini coefficient. The sensitivity parameter α also influences the maximal

possible value of the polarization measure. Esteban and Ray (1994) suggest a potential fourth

axiom that would make it possible to narrow the possible interval of α ∈ [1, 1.6].

This fourth axiom is illustrated in Figure 10. The axiom states that moving mass from

a small mass a to a larger mass c will increase polarization. Hence, the axiom makes an

assumption on the importance of small groups within a society. On the one hand moving

mass from a to c reduced the distance between the groups and therefore lowered polarization.
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Figure 9: Axioms of Esteban & Ray 1994

(a) Axiom 1

(a)

(c)(b)

(b) Axiom 2

(a)

(b)

(c)

(c) Axiom 3

(a) (c)

(b)

Notes: This figure illustrates the 3 main axioms use in Esteban and Ray (1994) to derive the polarization
measure.
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On the other hand the mass a is small in comparison to b and c and hence the effect of group

a for overall polarization might be negligible, while increasing the mass of c can increase

societal tension.

The polarization sensitivity parameter α here captures the relative sizes of a and c for

which polarization will increase. The larger is α the smaller is the importance of a for overall

polarization. It is a priori not clear whether this axiom is sensible in our context. Hence, we

do not restrict the range of polarization sensitivity to α > 1.

Figure 10: Additional Axiom of Esteban & Ray 1994

(a)

(b)
(c)

Notes: This figure illustrates the 4th axiom suggested in Esteban and Ray (1994). This axioms is not
necessary to derive the form of the polarization measure but it allows for restrictions to the possible range of
α.

G.1. Extending the Esteban and Ray (1994) Measure to Higher
Dimension

The Esteban and Ray (1994) measure was originally constructed for a one-dimensional

indicators (e.g. the income distribution). Our measure extends the measure to the four

dimensions of our ideological type space. We assume that an individual identifies with groups

based on his or her dominant type share, since in our model the four ideological types are

the most natural line for group delineations.

Theoretically, it would also be possible to define groups based on discrete intervals of

the type share distribution, such that a type would be defined by a specific interval in the

four-dimensional ideological type space (e.g. [0,0.1] Liberal Centrist, [0.2,0.3] Conservative

Centrist, [0.4,0.5] Left and Right Anarchist). This would obviously lead to a far greater

number of ideological groups. The problem with this approach is that it is not obvious to

decide on an interval length such that we can plausibly assume sufficient degrees of separation

between these groups.
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If the groups are defined by the dominant type share of each individual it is intuitive

that the alienation between these groups will be based on differences in type shares. The

only alteration to the original measure then is the fact that in our case the groups can differ

along four dimensions rather than a single variable y. We hence define the overall out-group

alienation as the sum of the type share differences between different groups.

G.2. Robustness Ray Measure

So far we have not addressed the question of the choice of α. As explained above any

α ∈ [0, 1.6] leads to a measure of polarization that fulfills the axioms of Esteban and Ray

(1994). As a robustness exercise we calculate the Esteban-Ray measure for several values

of α. Table 17 reports the ranking our countries by their polarization over the three waves

conditional on the choice of α. It is important to note that the values of the polarization

measure are not comparable across different α, since dependent on α the maximal possible

polarization level varies.

Our main finding for the rising level of polarization in the US holds for all except the

largest values of α. As long as α < 1 the US emerges as the most polarized country in our

sample. The results for α = 1.6 differ, since for high values of α the importance of small

groups in society is diminished. Hence, in this case the polarization P measure for the US -

where we observe four comparably sized ideological groups - is lower than for other values of

α. In contrast, measured polarization is higher in countries with one large ideological group,

e.g. the Conservative Centrist in Malta or Liberal Centrist in Denmark.

Overall, the results seem to point towards the fact that values of α < 1 lead to a more

balanced polarization ranking across countries. The fact that for α = 1.6 countries such as

Denmark, Iceland, Finland and Canada - all of which are usually considered harmonious

societies - end up at top of the ranking seems counterintuitive. Based on these findings we

set α = 0.5 as the baseline value for polarization sensitivity in our main P measure.
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Table 17: Ray Measure for different α

Panel A: Wave 2

α = 0 α = 0.5 α = 1 α = 1.6
Country Ray Measure Country Ray Measure Country Ray Measure Country Ray Measure

France 0.871 Austria 0.449 Malta 0.291 Malta 0.184
Spain 0.871 Spain 0.446 North Ireland 0.260 North Ireland 0.146

Belgium 0.867 France 0.445 Portugal 0.253 Portugal 0.146
Austria 0.838 Belgium 0.441 Austria 0.250 Ireland 0.139

Germany 0.835 North Ireland 0.439 Netherlands 0.246 Netherlands 0.138
Italy 0.834 Great Britain 0.436 United States 0.244 United States 0.128

Netherlands 0.830 Malta 0.434 Ireland 0.240 Austria 0.128
Great Britain 0.825 Netherlands 0.433 Canada 0.239 Iceland 0.127

Canada 0.806 Italy 0.431 Iceland 0.238 Denmark 0.127
North Ireland 0.795 Germany 0.429 Great Britain 0.236 Canada 0.125

Finland 0.778 Canada 0.428 Spain 0.234 Great Britain 0.116
Iceland 0.776 United States 0.426 France 0.233 Italy 0.112

United States 0.770 Iceland 0.418 Italy 0.230 Finland 0.112
Portugal 0.729 Portugal 0.415 Belgium 0.228 Spain 0.111
Ireland 0.719 Finland 0.404 Germany 0.226 France 0.110
Malta 0.690 Ireland 0.400 Finland 0.219 Germany 0.108

Denmark 0.652 Denmark 0.357 Denmark 0.214 Belgium 0.106

Panel B: Wave 4

α = 0 α = 0.5 α = 1 α = 1.6
Country Ray Measure Country Ray Measure Country Ray Measure Country Ray Measure

Spain 0.951 Spain 0.476 Malta 0.309 Malta 0.201
Austria 0.911 Austria 0.469 North Ireland 0.256 Iceland 0.161
France 0.896 Great Britain 0.466 United States 0.252 Denmark 0.158

Great Britain 0.894 United States 0.459 Ireland 0.251 Netherlands 0.142
Germany 0.889 France 0.456 Great Britain 0.250 Canada 0.135
Belgium 0.881 Germany 0.454 Canada 0.249 North Ireland 0.135

Italy 0.873 Italy 0.453 Austria 0.247 Ireland 0.133
United States 0.867 Malta 0.453 Finland 0.243 Finland 0.133
North Ireland 0.835 North Ireland 0.451 Italy 0.243 United States 0.126

Canada 0.826 Belgium 0.442 Iceland 0.243 Portugal 0.125
Ireland 0.813 Ireland 0.441 Netherlands 0.241 Great Britain 0.122
Finland 0.801 Canada 0.439 Spain 0.239 Italy 0.120
Portugal 0.799 Finland 0.427 France 0.238 Austria 0.117

Netherlands 0.765 Portugal 0.422 Portugal 0.236 France 0.113
Malta 0.699 Netherlands 0.409 Germany 0.236 Germany 0.109

Iceland 0.669 Iceland 0.377 Belgium 0.222 Spain 0.104
Denmark 0.578 Denmark 0.326 Denmark 0.220 Belgium 0.098

Panel C: Wave 5

α = 0 α = 0.5 α = 1 α = 1.6
Country Ray Measure Country Ray Measure Country Ray Measure Country Ray Measure

United States 0.911 United States 0.475 Malta 0.267 Malta 0.173
Netherlands 0.895 Netherlands 0.459 United States 0.255 Denmark 0.155

Austria 0.895 Canada 0.452 Canada 0.247 Iceland 0.142
Spain 0.880 Austria 0.450 Finland 0.244 Finland 0.141

Germany 0.873 Ireland 0.446 Netherlands 0.244 Canada 0.125
Canada 0.863 Spain 0.445 Ireland 0.243 North Ireland 0.125

Great Britain 0.862 Great Britain 0.442 North Ireland 0.240 United States 0.125
France 0.856 Germany 0.439 Portugal 0.236 Ireland 0.122
Ireland 0.853 France 0.438 Great Britain 0.234 Portugal 0.121
Belgium 0.836 North Ireland 0.430 France 0.231 Netherlands 0.119

Italy 0.822 Belgium 0.428 Spain 0.229 France 0.112
North Ireland 0.811 Italy 0.425 Italy 0.228 Great Britain 0.112

Portugal 0.800 Portugal 0.425 Austria 0.228 Italy 0.111
Finland 0.778 Finland 0.416 Belgium 0.225 Belgium 0.107
Iceland 0.660 Malta 0.399 Germany 0.221 Spain 0.104
Malta 0.643 Iceland 0.353 Iceland 0.219 Austria 0.102

Denmark 0.509 Denmark 0.289 Denmark 0.203 Germany 0.098

Notes: This table reports the polarization measure for different α. For more details see text.
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