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Abstract

We study a novel dynamic principal—agent setting with moral hazard
and adverse selection (persistent as well as repeated). In the model an
agent whose skills are his private information faces a finite sequence of
tasks, one after the other. Upon arrival of each task the agent learns its
level of difficulty and then chooses whether to accept or refuse each task
in turn, and how much effort to exert. Although his decision to accept
or refuse a task is publicly known, the agent’s effort level is his private
information.
We characterize optimal contracts and show that the per-period utility

of the agent approaches his per-period utility when his skills are publicly
known, as the discount factor and the time horizon increase.

1 Introduction

We study a novel, dynamic principal—agent setting with moral hazard and ad-
verse selection (persistent as well as repeated). In the model an agent whose
quality is his private information faces a finite sequence of tasks, one after the
other. Upon arrival of each task the agent discovers its level of difficulty, which
is an independent random variable, and decides whether to accept or refuse the
task. If he accepts, he decides how much effort to exert. Although his deci-
sion to accept or refuse a task is publicly known, his effort level is his private
information–and the source of the moral hazard in the model.

There are many economic interactions for which this model might be rele-
vant. For example, a venture capital manager receives funds from investors who
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desire to invest their money but lack the knowledge to do so personally. For
a money manager investment opportunities arrive sequentially; some are easy
to assess and manage, others, more difficult. The probability of success of a
given investment is a function of the manager’s quality, the complexity of the
investment, and the effort exerted in first analyzing and then following and di-
recting the investment once it is made. The investor’s problem then is how to
design an optimal compensation contract in light of the moral hazard and ad-
verse selection problems that arise from the fact that the manager’s quality and
effort as well as the complexity of the available investment opportunities, are
the manager’s private information. In particular, the investor’s goal is to create
an incentive schemes that distinguish between low-quality money managers who
cannot do well in complex investments from high-quality managers who can.
Another scenario for which our set up might be of some relevance is the case
of a health-care insurer or public official who employs surgeons, whose quality
he does not observe, to treat a flow of patients, the severity of whose ailments
is also the surgeon’s private information. Our principal’s problem, then, is to
design a system of contracts that guarantee that surgeries are performed, and
effort is exerted, if and only if the surgeon’s quality matches the severity of the
patient’s problem, and to do so at minimal costs.

In our model, in every period, an agent encounters one task and decides
whether to refuse or to accept it, and in the latter case, whether to exert a
costly, unobservable effort. The probability of successful accomplishment of a
task in every period is monotonic in the agent’s effort at that period, but it is
also a function of the agent’s quality and the complexity of the task in question.
While the agent’s quality is determined once and for all at the start of the
contract, the type of the task is drawn independently each period, and both the
agent’s quality and the type of the task are the agent’s private information.

For simplicity, we confine our attention to a special case where the princi-
pal’s preferences are lexicographic: he is concerned primarily with matching the
complexity of the task and the quality of the agent, and only secondarily with
payments. More precisely, depending on the agent’s quality and the complexity
of the task a different action of the agent is desired by the principal. If the task
is simple, all types of agents (low- or high-quality) should exert effort; but if the
task is complex, only high-quality agents should exert effort while low-quality
agents should refuse the task.

As is always the case in solving for adverse selection, the principal offers
the agent a menu of contracts, one for each quality level, that promise financial
rewards as a function of the observed history of whether tasks were accepted, and
if so, whether they were successfully accomplished. In this menu of contracts, the
optimal contract will be the one that provides the right incentives and minimizes
expected payments.

Thus, the interaction between the principal and the agent is a dynamic model
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of moral hazard and repeated (and persistent) adverse selection: moral hazard
arises from the fact that the principal cannot observe the agent’s effort, and
adverse selection, from the fact that the principal cannot observe the agent’s
quality or the task’s complexity.

We start with a model where agents are risk-neutral and they discount the
future at the same rate as the principal. With this rather stylized model we
characterize the optimal contracts that take advantage of the dynamic nature
of the interaction. It is shown that as the interaction time increases, the ex-
pected transfer per period decreases and in the limit approaches the optimal
payment when an agent’s quality is publicly known. We could obtain this result
because the dynamics enables us to make the contract of the high-quality agent
unattractive to the low-quality one–increasingly so as the interaction time in-
creases. The intuition beyond this result is rather simple. Exerting effort on a
task is a gamble whose probability of success is higher, the higher is the quality
of the agent. Successful accomplishment of a sequence of tasks is exponentially
less likely for a low-quality agent. An optimal contract for a high-quality agent
takes advantage of this fact by stipulating high rewards for a long history of
successes. To construct these types of sequences and at the same time preserve
incentives to exert effort, the optimal contract stipulates that in every period
t, a success is rewarded only if it is followed by an uninterrupted sequence of
successes until period T, the end of the interaction.

The optimal contract for the high-quality agent, in which he is compensated
for a success in period t only if he keeps succeeding in every period thereafter
till the end of game, looks rather extreme when T becomes large. Not only is
the contract very risky, but it also has the unpleasant feature that no payment is
guaranteed until the end at T . Of course, these features are irrelevant when the
agent and the principal are both risk-neutral and do not discount future pay-
ments, as is assumed in this basic model. Yet, we show that for T large enough,
the set of optimal contracts is not a singleton and there are other contracts in
the set in which these two features are relaxed dramatically.

We next turn to the case where the agent is less patient than the principal.
We show that the optimal contract for every type of agent is essentially unique.
Moreover, the property of using the dynamics to make the contract of the high-
quality agent more risky is preserved by postponing rewards for success in t until
some later period t0 > t and making them conditional on success in all periods in
between. But unlike the case with no discounting where this procedure incurred
no costs, the principal now faces a trade-off and as a result the optimal contract
takes a less extreme form even for short-term contracts. That is, conditional on
the agent being a high-quality one, postponing his payments for success in period
t to some period t0 > t is costly to the principal because he must then increase the
expected payment to compensate the agent for the delay. But conditional on the
agent being a low-quality agent, postponing the payments in the contract for the
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high-quality agent is beneficial because it makes this contract less attractive to
the low-quality agent and enables the principal to lower the expected payments
to this agent.

It follows that in contrast to the no-discounting case, in this case it may not
be optimal to postpone payments for success to later periods (let alone period T ).
On the one hand, it is better for the principal to start the procedure of postponing
payments only after histories that are more likely to occur in the event that
the low-quality agent accepted this contract. On the other hand, applying this
procedure at a later stage reduces its effectiveness. We illustrate this trade-off
by means of a simple example where it is shown that sometimes payments are
not postponed initially, but only after histories that are unlikely to occur when
the agent is a high-quality one. We then provide a partial characterization of
the unique optimal contract and a more complete characterization for a discount
factor close enough to one.

The paper is organized as follows. Section 2 is a brief survey of the literature.
We present the basic setup with no-discounting and risk neutrality in Section
3. In Section 4 we define the notion of an admissible contract. The optimal
contracts are characterized in Section 5. In Section 6 we study the case where
agents are less patient than the principal. Section 7 concludes. Most of the
proofs are relegated to the Appendix.

2 Related Literature

The existing models evolved gradually from models of moral hazard only to
models in which moral hazard as well as adverse selection problems are present,
and from models in which only short-term contracts are offered to those in which
the principal can commit to a long-term contract. The small sample of papers
discussed below attest to this evolution, and no attempt is made to provide an
exhaustive survey of a very productive field.

One of the first papers on dynamic agency is Rubinstein and Yaari (1983),
which considered an infinitely repeated moral hazard problem and demonstrated
the existence of a strategy for the principal that yields the first best in an en-
vironment in which the principal cannot commit to a strategy that governs the
relation. It is worth noting, however, that the infinitely repeated aspect of their
problem is crucial to the derivation of their result, which indeed falls within the
realm of the theory of repeated games. In a pioneering paper on career concern
and reputation, Holstrom (1982) studied the provision of incentives to exert effort
when the agent’s ability is unobserved in finitely repeated interactions without
output-contingent multi-period contracts.

Laffont and Tirole (1988) explored a dynamic two-period model of moral haz-
ard and adverse selection and identified the ratchet effect that occurs whenever
the principal is constrained to offer a short-term contract. That is, the equilib-
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rium is characterized by more pooling in the first period as agents internalize
the cost involved in revealing their type. Baron and Besanko’s (1984) model of
moral hazard and adverse selection is one in which the principal can commit to a
long-term strategy, but the moral hazard problem is not dynamic. In particular,
they studied the case of a regulated monopoly that first invests in R&D and in
subsequent periods observes privately its marginal cost, which depends stochas-
tically on the level of investment in R&D in period zero. Thus, their model is
a one-shot moral hazard problem followed by a multi-period incentive scheme
under adverse selection.

An important contribution is Holmstrom and Milgrom (1987), which studied
a finitely (as well as a continuous-time) repeated moral hazard problem, but,
unlike the Rubinstein—Yaari model, and along the lines we are pursuing in our
paper, the principal in their model can commit to a long-term strategy that
governs the relations in all periods. That is, the principal pays the agent at
the end of the last period based on the entire observable history. It is shown
that the optimal compensation scheme is a simple linear function of observable
events. Similarly, Malcomson and Spinnewyn (1988), Rey and Salanie (1990),
and Fudenberg, Holmstrom, and Milgrom (1990) studied the question of when
the long-term optimal contract can be replicated by a sequence of short-term
(spot) contracts.

DeMarzo and Fishman (2007) analyzed a dynamic moral-hazard problem
in which the principal uses multidimensional tools to provide incentives to the
agents. One is through instant cash payments, and another is by affecting the
continuation value of the agent. Because the agent in this model is less patient
than the principal, absent moral hazard, compensation for the agent’s effort at
a given period should be made immediately. However, postponing the payment
mitigates the agency problem presented by the moral hazard, since it increases
the share of the agent in future profits. Hence, the optimal contract balances this
trade-off and involves both instruments. In our model, in contrast, postponing
payment and conditioning it on the revealed performance in between alleviates
the screening problem and allows the principal to decrease the compensation of
the low-quality agent.

Biais, Mariotti , Plantin, and Rochet (2007) extended DeMarzo and Fish-
man’s (2007) analysis to an infinite-horizon model and showed that the agent
receives cash compensation only when the accumulated performance reaches a
prespecified threshold. Moreover, they illustrated how the optimal contract is
implemented with standard financial instruments and showed the convergence
of the discrete-time model to the continuous-time version of DeMarzo and San-
nikov’s (2006) model. Sannikov (2008) used a very elegant technique based on
the Martingale Representation Theorem to solve a continuous-time moral hazard
problem that allowed him to obtain a very clean characterization of the optimal
contract. The optimal balance between immediate compensation and the contin-
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uation value was shown also in Biais, Mariotti, Rochet, and Villeneuve (2010),
where the principal can affect the agent’s continuation value through a change
in the firm’s size. In a recent paper Edmans, Gabaix, Sadzik, and Sannikov
(2010) analyzed a dynamic moral hazard problem with a risk-averse agent and a
risk-neutral principal. In their paper, too, compensation for performance in any
given period is spread over future periods. The optimality of the spread follows
from the optimal risk-sharing perspective, while in our paper the spread is used
to reduce the cost of screening the types of the agent.

A significant difference between our model and the multi-periods models
described above is that the latter are concerned solely with a dynamic moral
hazard problem where it is possible to summarize the agent’s incentives using
his continuation value, i.e., the agent’s future expected payoff when he follows the
requested sequence of actions. This method is not applicable to the environment
in our model, where there is also an element of adverse selection, since the
incentives of different types of agents should be taken into account.

Fong (2009) combined the problem of moral hazard and adverse selection in
the dynamic environment of health care provision. As in our model, in Fong’s
model the principal seeks to induce the agent to follow some course of action
that may depend on the type of the agent. But Fong does not allow for the use of
money as an instrument in the contracts. It follows that the only available tool
for providing incentives is the flow rate of tasks and Fong’s first result is that
there is no need to consider complicated contracts because an optimal policy
takes the form of a stopping rule that specifies if and when an agent is to be
permanently fired. The main result is a characterization of the optimal contract-
pair that takes the form of scoring rules in which the agent’s past performance
is summarized by a single score and the agent is fired if his score falls below a
certain threshold, and he is tenured if his score rises above some other threshold.
Contracts for agents of different quality levels are different in their sensitivity to
success and failure. Another study of a continuous-time model of dynamic agency
with moral hazard and adverse selection is Sannikov (2007). In Sannikov’s model
a principal employs an agent of unknown skill, where the principal observes no
information during the contract period and needs to condition his compensation
only on the reports of the agent. In this environment, to prevent manipulation
by the agent, the optimal contract requires very specific conditioning of the
compensation for the reported information. More precisely, the agent gets a
credit line and he is compensated only if the balance of the line was above the
prespecified cutoff during the whole contract period.

Our model incorporates all the incentive problems mentioned above. On
the one hand, it is a dynamic moral hazard model, since the agent’s choice of
effort in any given period is unobservable. On the other hand, there are two
types of adverse selection problems to overcome: a persistent adverse selection
problem due to the unobservability of the agent’s competence as determined in
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period zero, and a dynamic adverse selection problem due to the fact that the
complexity of the task, which is different in every period, is observable only by
the agent.

3 The Model

Basic setup
Consider an agent who is employed by a principal for T periods. In every

period t ∈ {1, 2, ..., T}, the agent receives a task and has to decide whether
to accept or refuse it and in the former case whether to exert a costly effort
C ∈ {0, c}. The probability of successfully accomplishing the task in period t is
positive only if C = c, but it is also a function of the agent’s quality, denoted
by s, and the task’s level of difficulty at t, denoted by pt and referred to as the
task’s “type” at t.

An agent’s quality is either low or high and is denoted by s ∈ {h, l}, re-
spectively. Conditional on exerting effort c, an agent of type h has a higher
probability of succeeding at a given task. Similarly, the task arriving in period
t is either easy or difficult (pt ∈ {e, d}, respectively), and conditional on the
agent’s quality, the probability of success is higher when the task is easy. We
assume that for all t ∈ {1, 2, ..., T}, the task’s type pt ∈ {e, d} is independently
drawn and the probability that the task is of type d is q and type e is (1 − q).

Finally, the quality of the agent is his private information and the task’s type pt
is revealed only at t and only to the agent.

Technology
The probability Π : {0, c} × {l, h} × {e, d}→ [0, 1] of success at a given task

is

Π(C, s, pt) =

(
0 if C = 0

π(s , pt) otherwise

where for s ∈ {h, l} and pt ∈ {e, d} we have

(i) 0 < π(s, pt) < 1

(ii) π(h,e) > π(h,d) and π(l,e) > π(l,d)

(iii) π(h,e) > π(l,e) and π(h,d) > π(l,d).

Thus, conditional on exerting effort c, the agent’s probability of success is higher
if he is of high quality, for any type of task; and is higher when the task is
easy, for any type of agent. The analysis reveals that the nature of the optimal
contract depends on whether π(l,e) > π(h,d) or π(h,d) > π(l,e). The bulk of the
paper is devoted to the more interesting case where π(l,e) ≥ π(h,d), while the
treatment of the other case, being very similar, is provided in Appendix B.

Preferences
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We start by assuming that the agent and the principal do not discount future
payments.1 The case of the different time preferences is analyzed in Section 6.
The agent’s VNM utility is a function of efforts and payments only. In particular,
the utility of an agent who exerts effort in k periods and receives a total payment
of m is m− ck. Thus, the agent is assumed to be risk-neutral and to maximize
expected payment minus costs. The outside option generates a stream of utilities,
which, for simplicity, are normalized to zero per period. Consequently, due to
limited liability, negative payments are ruled out.

The principal
The agent here is employed by a principal. If the agent is a low-quality agent,

i.e., s = l, the principal would like him to refuse a difficult task and to exert effort
only if the task is an easy one, pt = e. If, however, the agent is a high-quality
one, s = h, then the principal would like him to exert effort on all types of tasks,
easy as well as difficult ones.

Conditional on the agent doing what is expected, the principal’s objective
is to minimize expected payment. Thus, the principal’s preferences are lexico-
graphic. First and foremost, he is interested in providing incentives to the agent
to accept tasks and to exert effort only when desirable. As there are many mech-
anisms that lead to these incentives, the principal is interested in the one that
minimizes expected payment.

The principal can fully commit at time t = 0 to any observable history-
dependent contract governing the agent’s payments. Because the effort C, the
agent’s quality s, and the types of task pt, for t ∈ {1, ..., T}, are not observable by
the principal, the only information available to the principal at t is a specification,
for every t0 ≤ t, as to whether the task was accepted by the agent, and if so
whether it was accomplished successfully or not.

4 Contracts

Recall that in our setup the principal, in every period t, observes one of three
possible outcomes: (i) the task was accomplished successfully, (ii) the task was
not performed, and (iii) the task was not successfully accomplished, which we de-
note by {1, 0,−1}, respectively. A contract thus specifies for every t ∈ {1, ..., T}
the payment to the agent as a function of the observable history up to (and in-
cluding) t which is a sequence of t elements from Ψ = {1, 0,−1} and is denoted
by ωt where Ωt denotes the set of all possible histories from time zero to t.2

Without loss of generality we can assume that all payments are postponed to

1The results are essentially the same if we assume that they discount future payments at
the same rate.

2Following convention, we let ∅ denote the history in period zero.
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Figure 1: Two-period contract for the agent of type s, which specifies for any
possible two-period history ω2 the payment to this agent, τ s2 (ω2).

the last period, T , and define a contract as follows.3

Definition 1 A T -period contract is a mapping τT : ΩT → R+ specifying the
payment to the agent as a function of the observed history ωT ∈ ΩT .

As is typically the case in solving problems of adverse selection, the principal
offers a menu of contracts, from which the agent chooses the contract that is best
for him given his quality. Without loss of generality, we can restrict our attention
to a mechanism in which only two contracts are offered by the principal: τhT to
the high-quality agent and τ lT to the low-quality one.

A two-period contract for an agent of type s ∈ {h, l} is depicted above. Note
that for every history ωt ∈ Ωt we associate a subgame subωt that contains all
possible observable histories following ωt4.

Definition 2 Admissible Contract-pair: A pair of contracts (τhT , τ
l
T ) is called

admissible if it satisfies incentive compatibility (IC), individual rationality (IR),
and efficiency (EF) where:

IC — an agent of quality h prefers the contract τhT to τ lT , while the opposite
holds for an agent of quality l.

3This definition will be modified in Section (6) when we relax the assumption that the agents
do not discount future payments.

4The notion of subgame here, although obvious, is not exactly the one used in game theory.
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IR — the contract τ sT yields a non-negative expected payoff to an agent of
quality s ∈ {h, l} starting after every history ωt ∈ Ωt and for all t ∈ {1, 2, ..., T}.

EF — for all t ∈ {1, 2, ..., T}, an agent of quality h prefers to exert effort on
all types of tasks, while an agent of quality l prefers to exert effort at t if and
only if the task is of type e.

Remark 1 If (τhT , τ
l
T ) is admissible, then τhT must entail taking the task in

every period along the equilibrium path. It follows that if τhT (ω
0
T ) > 0 for some

ω0T containing an outcome of zero (refuse), then there exists another contract
τ̃hT in which τ̃hT (ω

0
T ) = 0 and τ̃hT (ωT ) = τhT (ωT ) for all ωT 6= ω0T such that

the new pair
¡
τ̃hT , τ

l
T

¢
is admissible and yields, in equilibrium, the same expected

payment to the principal. Thus, without loss of generality, we hereafter restrict
our attention to contracts for the high-quality agent that pay zero whenever the
history contains an outcome of zero. That is, if (τhT , τ

l
T ) is admissible, then

τhT (ω
0
T ) = 0 whenever {0} ∈ ω0T .

Remark 2 Note that if at some t and ωt the contract provides the agent with
incentives to exert effort on a given task’s type, then the agent will exert effort
whenever the arriving task has a higher probability of success. This implies that
a contract-pair (τhT , τ

l
T ) satisfies EF if τ

h
T provides the high-quality agent with

incentives to exert effort whenever a difficult task arrives (i.e., pt = d), while τ lT
provides the low-quality agent with incentives to exert effort only if the task is
easy.

Remark 3 Since the agent can always choose to refuse, and since all payments
are non-negative, all contracts satisfy IR.

Of all admissible contract-pairs, we are interested in the one that minimizes
expected payment. Denote by ms0(τ sT , subωt) the ex-ante (before observing the
task’s type in period t + 1) expected payment of contract τ sT to an agent of
quality s0 conditional on history ωt being reached and conditional on playing
optimally thereafter and let us

0
(τ sT , subωt) denote the ex-ante expected utility

provided by contract τ sT to an agent of type s
0 conditional on reaching history

ωt and conditional on playing optimally thereafter. Note that ms(τ sT , sub∅) and
us(τ sT , sub∅) are monotonically related in all contracts τ

s
T satisfying EF. This is

so because expected costs to an agent of quality s are the same in all contracts
satisfying EF. In particular, given a T -period admissible contract-pair (τhT , τ

l
T ),

it is straightforward to verify that

uh(τhT , subωt) = mh(τhT , subωt)− c(T − t)

and
ul(τ lT , subωt) = ml(τ lT , subωt)− c(1− q)(T − t)
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where, as defined above, (1 − q) is the probability that the task is easy, i.e.,
pt = e.

We are now in a position to define an optimal contract-pair.

Definition 3 An Optimal Contract-pair. A pair of contracts (τ̂hT , τ̂
l
T ) is

called optimal if it is admissible, and if for every admissible contract-pair (τhT , τ
l
T )

we have

mh(τhT , sub∅) ≥ mh(τ̂hT , sub∅) and ml(τ lT , sub∅) ≥ ml(τ̂ lT , sub∅).

Finally, denote by ps the ex-ante probability of a successful task by a quality
s agent when effort is exerted. That is,

ph = qπ(h,d) + (1− q)π(h,e)

and
pl = qπ(l,d) + (1− q)π(l,e).

5 The Optimal Contract-pair

In this section we maintain the assumption that π(l,e) > π(h,d) and show that the
optimal contract-pair is a separating pair, in the sense that agents of different
quality sign different contracts. When this assumption does not hold (i.e., π(l,e) ≤
π(h,d)) the unique optimal contract-pair is pooling. Since the analysis of the
pooling case is very similar to that of the separating case, it is postponed to
Appendix B.

We start by characterizing the set of optimal contracts when the agent is
known to be a high-quality agent, and denote this set by ΓhT . We then show that
when the agent’s quality is unobservable, the contract offered to the high-quality
agent belongs to ΓhT . Thus, when quality is unobservable, the contract assigned
to the high-quality agent is the second-best contract as it does not generate
information rents that correspond to the unobserved type of the agent and the
binding constraint is the incentive constraint on the low-quality agent, whose
purpose is to ensure that he prefers the contract assigned to him to the one
assigned to the high-quality agent.

While the high-quality agent is indifferent between all contracts in ΓhT (see
point 2 below), this is not the case for the low-quality agent. The main theorem
of this section establishes that the optimal contract for the high-quality agent
is the contract in ΓhT that would minimize the payoff of the low-quality agent
if he pretended to be a high-quality one and accepted it. In this contract a
success in period t is rewarded only if it is followed by a success in every period
following t. This contract, in a way, is the riskiest contract in ΓhT ; however, and
this is crucial, it is exponentially more risky for the low-quality agent than it is
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for the high-quality one. In contrast, the optimal contract for the low-quality
agent is the contract that pays a fixed amount per successful task and makes
the low-quality agent indifferent between the two contracts. It is shown that
as T gets larger, the per-success expected payment in the optimal contract-pair
approaches the expected amount paid when quality is observable.

5.1 Agent’s Quality is Known to be High

We now characterize the set of optimal contracts for an agent whose quality is
known to be high. A contract τ̂hT belongs to Γ

h
T if it satisfies IR and EF and if

there is no other contract τhT that also satisfies IR and EF and for which expected
payment is lower, i.e., mh(τhT , sub∅) < mh(τ̂hT , sub∅). Before we proceed and
study the properties of ΓhT , a few points are worth mentioning.

1. Note that although the agent’s quality is observable, there are still prob-
lems of moral hazard and adverse selection to solve because the agent’s
effort and the task’s type are not observable by the principal. Indeed, note
that if the task’s type is also observable, then a first-best solution can be
achieved through a simple contract that promises a payment of c/π(h,d) per
success at a difficult task (pt = d), and a payment of c/π(h,e) per success at
an easy task (pt = e). Such a contract satisfies EF and at the same time
brings the agent to his IR utility. However, when the type of the task is
not observable to the principal and he relies on the agent’s report of the
task’s type, the contract is not incentive-compatible since the agent will
always report that the task is difficult. As a result, when the task’s type is
not observable, the optimal contract does leave the agent some information
rent.

Indeed, if τ̂hT ∈ ΓhT , then for every history ωT−1 ∈ ΩT−1, τ̂hT provides
incentives for the agent to exert effort whenever the task is difficult. Con-
sider the following feasible strategy for the agent: do not exert effort in
all periods t ∈ {1, .., T − 1} and exert effort in T only if the task is easy.
Note that this strategy guarantees a strictly positive expected payoff since
the payment after a sequence of failures is non-negative and the payment
in the last period provides incentives even if pT = d. We conclude that if
τ̂hT ∈ ΓhT , then uh(τhT , sub∅) > 0.

2. The definition of ΓhT implies that expected payment is the same in all
contracts in ΓhT . Since expected costs are the same in all contracts satisfying
EF and in particular in all contracts in ΓhT , the agent is indifferent between
all contracts in ΓhT .

A three-period contract for a high-quality agent, where histories containing
zeroes are ignored, is described below.
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Figure 2: Three-period contract for a high-quality agent, which specifies for any
possible three-period history ω3 the payment to this agent, τh3 (ω3).

The following lemma, proved in Appendix A, lists a few properties that are
satisfied by all contracts belonging to ΓhT . These properties are then used to
characterize the set ΓhT of optimal contracts.

Lemma 1 Properties of ΓhT

1. If τhK ∈ ΓhK , then ∃ τhK−1 ∈ ΓhK−1 s.t. ∀ωK−1 ∈ ΩK−1, τhK (−1, ωK−1) =
τhK−1 (ωK−1).

2. If τhK ∈ ΓhK , then uh
¡
τhK , sub1

¢
− uh

¡
τhK , sub−1

¢
= c

π(h,d)
.

3. If τhK ∈ ΓhK , then mh
K

¡
τhK , sub∅

¢
= Kph c

π(h,d)
.

4. Assume that τ̃hT satisfies IR and EF, but τ̃hT /∈ ΓhT . Then, there exists
τhT ∈ ΓhT such that for any history ωT ∈ ΩT , τ̃hT (ωT ) ≥ τhT (ωT ) with strict
inequality for at least one history ω0T ∈ ΩT .

The first property of the lemma refers to the payments restricted to sub−1.
In the context of Figure 2 above, it says that if a three-period contract belongs
to Γh3 , then the induced two-period contract in sub−1 belongs to Γh2 . In other
words, a failure in period one is not rewarded, and, as a result, from period two
on, the agent faces a K − 1-period contract.

Property 2 follows from the fact that effort is not observable and will not be
exerted unless incentives are provided. In particular, if the first task to arrive
turns out to be difficult, the agent will not exert effort unless the difference in
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expected payoff between a success and a failure is enough to justify the risk of
failure, an event that occurs with probability (1− π(h,d)) if effort is exerted. In
a K-period contract, the reward for success in the first period (which occurs
with probability π(h,d) if the task is difficult and effort is exerted) is given by
uh
¡
τhK , sub1

¢
− uh

¡
τhK , sub−1

¢
. Thus, exerting effort on a difficult task is ben-

eficial only if the expected gain is greater than the cost of exerting effort, that
is, only if π(h,d)[uh

¡
τhK , sub1

¢
− uh

¡
τhK , sub−1

¢
] ≥ c. The content of the second

property is that an optimal contract generates, in the first period, the minimal
spread between the two subgames, that is needed to provide these incentives.

Property 3 follows from the one-to-one relations between expected utility
and expected payment when EF is satisfied, and in particular it implies that
Property 2 can be rewritten as

mh
³
τhK , sub1

´
−mh

³
τhK , sub−1

´
=

c

π(h,d)
.

Of course, the exact same argument holds in every period. That is, in every
period incentives to exert effort on a difficult task must be provided. Thus, for
all t ≤ T and for every history ωt the expected reward for success must be at
least c

π(h,d)
, and it holds with equality in the first period. Finally, recall that

ex-ante success occurs with probability ph = qπ(h,d) + (1− q)π(h,e), and you get
the expected payment in a K-period contract specified in Property 3.

The first three properties are employed in the proof of the fourth property,
which establishes an important characteristic property of the set ΓhK . That is,
if a contract is not optimal, then there exists an optimal contract that pays
less in every possible history. The proof of the following lemma, which is rele-
gated to Appendix A, makes use of the four properties in Lemma 1 to provide a
characterization of ΓhT and in particular to show that for all T, Γ

h
T 6= ∅.

Lemma 2 Characterization of ΓhT .

i. τh1 ∈ Γh1 if and only if τh1(1) = c/π(h,d) ,τh1(−1) = 0, and τh1(0) = 0.

ii. τhK+1 ∈ ΓhK+1 if and only if τK+1 can be constructed from contracts in
ΓhK according to the following procedure:

ii.1 The τK+1 payments restricted to sub−1 are a contract in ΓhK .

ii.2 The τK+1 payments restricted to sub1 are a contract in ΓhK inflated
by an expected payment of c/π(h,d), which is allocated to the different
histories of sub1 in any way, provided that incentives to exert efforts
are not distorted.

Recall that by definition the expected payment is the same in all optimal
contracts. This fact together with Lemma 2 yields the following simple corollary
and also establishes that the set ΓhT is not empty.
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Corollary 1 The set ΓhT 6= ∅ and in particular the contract τ̂hT ∈ ΓhT , where
τ̂hT (ωT ) =

c
π(h,d)

n (ωT ) , and n (ωT ) is the number of successful tasks in ωT . Thus,

a contract is optimal only if it pays in expectation c/π(h,d) for every successful
task.

5.2 Agent’s Quality is Unobservable

Having characterized the set ΓhT we are now ready to study the case where the
agent’s quality is unobservable. Note that now the IC constraint must be taken
into account since the agent will choose the contract that maximizes his expected
utility, and not necessarily the one designed for him by the principal. We start
by showing that if a contract-pair (τhT , τ

l
T ) is optimal, then τhT ∈ ΓhT .

Lemma 3 If (τhT , τ
l
T ) is an optimal contract-pair, then τhT ∈ ΓhT .

Proof. Assume by way of contradiction that (τ̂hT , τ̂
l
T ) is optimal but τ̂

h
T /∈ ΓhT .

Since (τ̂hT , τ̂
l
T ) is an optimal contract-pair, it is admissible, and, in particular,

both contracts satisfy IR and EF. Hence, Property 4 in Lemma 1 implies that
there exists a contract τ̃hT ∈ ΓhT such that for all history ωT ∈ ΩT , τ̂hT (ωT ) ≥
τ̃hT (ωT ) with strict inequality for at least one history. Hence, replacing τ̂

h
T with

τ̃hT will decrease the expected utility of the low-quality agent in the event that
he pretends to be a high-quality agent by adopting the high-quality agent’s
contract. Consider a contract τ̃ lT that pays r ≥ c/π(l,e) per success and makes
the low-quality agent indifferent to the contract τ̃hT . To see that such a contract
τ̃ lT always exists, it is enough to note that (i) a low-quality agent can always
adopt the contract τ̃hT and then exert no effort to obtain a non-negative utility,
and (ii) a contract that pays c/π(l,e) per success satisfies EF and yields zero
expected utility to the low-quality agent.

We next argue that (τ̃hT , τ̃
l
T ) is admissible. That is, (i) r ≤ c/π(l,d), and

(ii) the high-quality agent prefers the contract τ̃hT to τ̃ lT . Note, however, that
r ≤ c/π(h,d) is sufficient for (i) and (ii). This is because (i) follows from c/π(h,d) <

c/π(l,d) and (ii) from the fact that a contract that pays c/π(h,d) per success
belongs to ΓhT and the high-quality agent is indifferent between all contracts
in Γ̂hT . Therefore, if r ≤ c/π(h,d), the contract-pair (τ̃

h
T , τ̃

l
T ) is admissible and

generates a lower expected payment to both agents than the pair (τ̂hT , τ̂
l
T ), which

is a contradiction.
Let us therefore assume that r > c/π(h,d) and observe that a contract-pair

that pays c/π(h,d) per success to both types of agents is admissible and provides
both types of agents with an expected utility lower than (τ̂hT , τ̂

l
T ), which is again

in contradiction to the assumed optimality of the original pair. We conclude
that if a contract-pair (τ̂hT , τ̂

l
T ) is optimal, then τ̂hT ∈ ΓhT .

Note that while different contracts in ΓhT generate the same expected utility
for the high-quality agent, they generate different expected utilities for the low-

15



quality one, if he chooses to adopt them. It thus follows from Lemma 3 that
a contract-pair (τ̂hT , τ̂

l
T ) is optimal if the contract τ̂

h
T is the one that minimizes

the expected utility of the low-quality agent among all contracts in ΓhT . In other
words, from the high-quality agent’s point of view, the set ΓhT consists of different
lotteries between which he is indifferent. However, from the point of view of the
low-quality agent, these are different lotteries and τ̂hT , to be defined below, is the
riskiest among them. That is, although the set ΓhT for T > 1 is not a singleton
and contains many contracts, asymmetric information about the agent’s type
narrows down the contracts that the designer offers to the high-quality agent.
The theorem also establishes that as T →∞, the optimal contract-pair converges
to the second-best pair, that is, the contract-pair that is offered when the agent’s
quality is observable.

Prior to presenting the formal statement of the theorem, we describe its
content when T = 2. In this case the theorem postulates that if the high-quality
agent accepts the task in period one and succeeds, he is compensated for this
only if he also succeeds in period two. The compensation in the event that there
are two successes in a row must be high enough to cover the extra risk involved
in exerting effort in period one. Specifically;

τ̂h2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c

π(h,d)

1+ph

ph
if ω2 = (1, 1)

c
π(h,d)

if ω2 = (−1, 1)
0 if ω2 = (1,−1)
0 if ω2 = (−1,−1)

Note that while the high-quality agent (being risk-neutral) is indifferent between
this contract and the one that pays c

π(h,d)
per success, the low-quality agent

strictly prefers the latter.
The following theorem characterizes the optimal contract-pair for T periods,

while making use of the following definitions:
(i) Define A(k) recursively by letting A(0) = 0 and A (k) = A (k − 1) +
1

(ph)
k−1 .

(ii) Let k̃(ωT ) be the length of the longest uninterrupted sequence of successes
in ωT , starting from period T and proceeding backward.

Theorem 1 An optimal contract-pair
¡
τ̂hT , τ̂

l
T

¢
has the following properties:

1. If ωT contains an outcome of 0, then τ̂hT (ωT ) = 0. Otherwise, if k̃(ωT ) =
k, then τ̂hT (ωT ) =

c
π(h,d)

A(k).

2. There exists a constant r, such that τ̂ lT (ωT ) = rn (ωT ), where n (ωT ) is
the number of successes in ωT . Moreover, limT→∞ r = c

π(l,e)
.
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In words, the optimal contract for the high-quality agent pays zero after an
history in which a task was refused at least once, and otherwise the agent is
compensated only for those successes that were followed by an uninterrupted
sequence of successes all the way to the end of the contract.(part (1) of the theo-
rem). The optimal contract for the low-quality agent gives him a fixed constant
payment per success (part (2) of the theorem). Theorem 1 provides the exact
compensation scheme that depends on the number of uninterrupted successes
starting from the end of the contract and proceeding backward. To provide
incentives to the high-quality agent, the expected payment should increase by

c
π(h,d)

per success. In order to decrease the expected utility of the low-quality
agent from this contract, the payment for success in every period t should be
postponed until the end of the game and provided only if it is followed by an
uninterrupted sequence of successes. Paying τ̂hT (ωT ) =

c
π(h,d)

A(k) after history
ωt satisfies both requirements.
Proof. We start the proof by showing that the contract τ̂hT described in the the-
orem minimizes the expected utility of the low-quality agent in all the contracts
that belong to ΓhT . The formal argument follows from Claim 1, setting ũ = 0;
the proof of the claim is relegated to Appendix A. First, note that if {0} ∈ ωT
and τ̂hT (ωT ) > 0, then decreasing this payment will not affect the expected util-
ity of the high-quality agent and will decrease (or will not affect) the expected
utility of the low-quality agent from this contract. Therefore, without loss of
generality we can restrict our attention to contracts in ΓhT , where the payments
after histories containing {0} are zero.

Claim 1 Let ūhT denote the expected utility of the high-quality agent from any
contract in ΓhT . For any ũ ≥ 0 let ΓhT (ũ) be the set of T -period contracts such
that each of them (i) provides the high-quality agent with incentives to exert
effort in all T periods and (ii) generates an expected utility of ūhT + ũ for the
high-quality agent. The contract τ ∈ ΓhT (ũ) that minimizes the expected utility
of the low-quality agent in all contracts in ΓhT (ũ) is achieved by amending the

contract τ̂hT described in Theorem 1-1 by adding a payment of ũ/
¡
ph
¢T
after a

sequence of T successful tasks.

Proof. (continued) We proceed by constructing the contract τ̂ lT described in
Theorem 1. The constant r in τ̂ lT is chosen so that the low-quality agent is
indifferent between choosing τ̂ lT and τ̂hT . Since the expected utility of the low-
quality agent from τ̂hT is positive (one possible strategy for him is to invest only
in period T and only if the task is easy), we have r > c/π(l,e). Moreover, since a
contract that pays c/π(h,d) per success belongs to ΓhT , Claim 1 implies that the
utility of the low-quality agent from this contract is higher than in τ̂hT , which
in turn implies that r ≤ c/π(h,d). Therefore, since c/π(l,e) < r ≤ c/π(h,d), the
contract τ̂ lT generates the right incentives for the low-quality agent.
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We complete the proof by showing the limit result. Note that to establish
this result it is sufficient to show that the expected utility of the low-quality
agent from the contract τ̂hT stays bounded as T →∞. To see this, it is enough
to show that as T →∞, the low-quality agent who adopts τ̂hT exerts effort in a
finite number of (last) periods. Denote by K the first period at which the agent
begins exerting effort conditional on the task being easy. It is sufficient to show
that as T → ∞, the optimal strategy for the low-quality agent who adopts τ̂hT
is to start exerting effort only if t ≥ T − K, where K remains bounded even
if T → ∞. Assume by way of contradiction that this is not the case and that,
instead, K → ∞ as T → ∞. Observe however that whenever the agent exerts
effort, it affects his utility only if it is followed by an uninterrupted sequence of
successes. That is, if the agent succeeds in all remaining K periods (starting
from period (T −K) up to the end of the contracting period) he will, according
to τ̂hT , receive a payment of

c

π(h,d)
A(K) =

c

π(h,d)

³
1
ph

´K
− 1

1
ph
− 1

and zero otherwise. Recall that for any strategy of the low-quality agent, the
probability of success in K tasks is less than or equal to

¡
pl
¢K
. Since pl < ph,

the expected utility of the low-quality agent from any strategy in which he starts
exerting effort in period T −K is bounded by

−c+ c

π(h,d)

π(l,e)
ph

³
pl

ph

´K−1
−
¡
pl
¢K−1

1
ph
− 1

Since

lim
K→∞

c

π(h,d)

π(l,e)
ph

³
pl

ph

´K−1
−
¡
pl
¢K−1

1
ph
− 1

= 0,

we are done.
Observe that when T = 1 (the static problem) the optimal contract-pair is

actually pooling. That is,

τ̂h1 (ω) = τ̂ l1 (ω) =

(
c

π(h,d)
if ω = {1}

0 otherwise
.

When T > 1 the contract-pair in which this pooling payment scheme is repeated
satisfies IC and EF . Theorem 1, however, shows that the dynamic structure
alleviates the screening problem of the principal and allows us to decrease the
low-quality agent’s information rents. The optimal contract uses the fact that
some histories are more likely to occur when the contract is chosen by the high-
quality agent, rather than the low-quality one, for any choice of effort. Increasing

18



the payments assigned to these histories at the expense of the payments assigned
to the other histories makes this contract much less attractive to the low-quality
agent.

Remark 4 The assumption has been that the principal can commit to long-term
contracts. If the principal can only commit to short-term one-period contracts,
then the optimal contract described in Theorem 1 in which the high-quality agent
is compensated only in the last period cannot be implemented simply because in
period T the principal has no incentive to pay more than what is necessary to
provide incentives to exert effort in T . The high-quality agent, knowing this, will
not exert effort in all periods t < T . Therefore, when the principal cannot make
a long-term commitment, he must pay the high-quality agent c

π(h,d)
per success

every period.

Non-uniqueness
The optimal contract for the high-quality agent described in Theorem 1,

where he is compensated for success in period t only if he succeeds in all subse-
quent periods, looks rather extreme, especially when T is large. Not only does
this contract become very risky, but it also has the unpleasant feature that no
payment is guaranteed until T is reached. Of course, these features are irrele-
vant when the agent and the principal are both risk-neutral and do not discount
the future. In the next section discounting is introduced, yet it is comforting to
note that for T large enough, the contract described in Theorem 1 is not the
unique optimal contract and there are others in which these two features are
relaxed dramatically. The following corollary presents such an optimal contract
when the extreme form described above is used only during the last stages of
the contract. In particular, we construct a contract for the high-quality agent
in which during the first T/2 periods he is compensated for a success in period
t if his subsequent success rate is at least α ∈ (0.5, 1], while during the last T/2
periods the contract is described as in Theorem 15. We start with a definition.

Definition 4 A proportional contract τhT (α) is a contract that pays τ
h
T (α, ωT )

after a history ωT , where τhT (α, ωT ) consists of two parts. The first part defines
the part of the payment that is due to successes in the first half of the contract,
i.e., up to period T/2, while the second part defines the part of the payment that
is due to successes in periods T/2 onward. In particular,

τhT (α, ωT ) =

dT/2eX
m=1

1{o(m)=1,n(T )−n(m)≥α(T−m−1)}B(m) +
c

π(h,d)
A( eK(ωT ))

where the 1{D} in the first part is just an index function, o(m) is the outcome
of period m, n(t) is the number of successes from the beginning of the contract

5Of course, the choice of T/2 is arbitrary and as T gets larger; the part in which the original
contract is used can be reduced further.
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until period t, and

B(m) =
c

π(h,d)

1
T−m−1P

j=dα(T−m−1)e

¡T−m−1
j

¢
(ph)

j
(1− ph)

T−m−1−j
.

where
T−m−1X

j=dα(T−m−1)e

µ
T −m− 1

j

¶³
ph
´j ³

1− ph
´T−m−1−j

is the ex-ante probability that a high-quality agent obtains a success rate of at
least α in all future periods, conditional on exerting effort in all T − m − 1
remaining periods. Finally, note that the second part of τhT (α, ωT ) is just the
optimal contract defined in Theorem 1 restricted to periods T/2 onward, whereeK(ωT ) = min {K(ωT ), T/2} and K(ωT ) is the longest uninterrupted sequence of
successes in ωT starting from T and proceeding backward.

Note that this contract mimics the one defined in Theorem 1 for α = 1, while
for α = 0 this contract pays c

π(h,d)
per success in every period during the first

T/2 periods, regardless of the outcomes in other periods.

Corollary 2 For all α ∈ (0.5, 1) for which³
pl
´α

< (1− α)1−α ααph (1)

there exists T̂ (α) and a constant r > c/π(l,e) such that, for all T > T̂ (α), the
contract-pair (τhT (α) , τ

l
T ), where τ

h
T (α) is the proportional contract described in

Definition 4 and τ lT (ωT ) = rn (ωT ) , is an optimal contract-pair.

The proof is provided at the end of Appendix A. Notice that since (1− α)1−α αα

is a monotone increasing function with limα→1 (1− α)1−α αα = 1 for any pl and
ph such that ph > pl there exists α∗ ∈ (1/2, 1) such that for any α ∈ (α∗, 1) the
inequality (1) holds.

In Corollary 2 it is shown that as long as T is large enough, there are other
optimal contracts that are not as extreme as the contract presented in Theorem
1. In this class of contracts payments are not postponed all the way to the
last period and the contracts are less risky than the one described in Theorem
1. The next section shows that introducing discounting pins down uniquely
the equilibrium payments. Moreover, since in the case of discounting delay of
payments is costly, this contract does not possess the described extreme features.
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Figure 3: Two-period contract for an impatient agent of type s, which specifies
for any possible histories ω1 and ω2 the payment to this agent, τ s2 (ωk).

6 Discounting Future Payments

Up until now the assumption has been that the agents and the principal do
not discount the future (or alternatively, have the same discount factor). We
shall now relax this assumption to cover the case where the agents are more
impatient than the principal. Unlike in the case of no discounting, where timing
of payments is irrelevant and it can be assumed without loss of generality that
all payments are postponed until the end of the contract, in the case here the
exact timing of payments is relevant and is part of the contract, as depicted in
the figure above for a two-period contract. With some abuse of notation, we
denote by τ sT (ωk) the payment in the contract τ

s
T of length T after history ωk

of length k.

For ease of notation, we assume that the principal does not discount the
future and hence he has the same preferences as were assumed in the previous
sections, while the expected utility of the agent is

TX
t=1

δt (mt − Ct)

where δ ∈ (0, 1) is the agent’s discount factor and mt and Ct are his payment
and effort level in period t.
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Recall that the main insight from the no-discounting case was that the ex-
pected payment to the low-quality agent is reduced by employing the “mecha-
nism of postponing payments” according to which the contract of the high-quality
agent rewards successes only after a delay and only conditional on successes in
all periods in between. While this insight is carried over to the case here, now it
is costly because of the need to compensate the high-quality agent for the delay
in payments. As a result the mechanism of postponing payments is now used
selectively, i.e., not necessarily after every history, and not necessarily all the way
to the end. In other words, when the agent is impatient the principal faces a
trade-off; conditional on the agent being a low-quality one, postponing payment
is beneficial, while conditional on him being high-quality one, it is costly.

When the agent is known to be a high-quality agent, the unique optimal
contract is the one that pays for success with no delay. More precisely, the
unique optimal contract pays c/π(h,d) in period t if (and only if) the task at t
was successful. We refer to this contract as the base-line contract.

Definition 5 A T -period contract τT is called the base-line contract if

τT (ωk) =

(
c/π(h,d) if o(k) = 1
0 otherwise

where o(k) is the outcome in period k.

Note that the expected utility of the high-quality agent from the base-line
contract of length T is

TX
t=1

δt
µ
ph

c

π(h,d)
− c

¶
= c

µ
ph

π(h,d)
− 1
¶¡
1− δT

¢ δ

1− δ
.

We denote by Cs
t

¡
τ̂hT , ωt−1, pt

¢
the action taken according to the optimal strategy

of an agent of type s in period t when the contract is τ̂hT , the history is ωt−1,

and at t the task’s type is pt. Indeed, it is easy to verify that a contract-pair in
which the base-line contract is offered to both types of agents is admissible. Note,
however, that this contract-pair is not optimal (provided that the discount factor
is not too small), because it pays, in expectation, too much to the low-quality
agent. The following proposition is an extension of the arguments developed
in the no-discounting case and its proof is provided in Appendix C. It asserts
that the high-quality agent should be indifferent between the optimal contract
τ̂hT and the base-line contract. Indeed, the optimal contract for the high-quality
type τ̂hT is constructed from the base-line contract by employing the mechanism
of postponing payments selectively (not after every history, and not necessarily
until the end of the contract). The exact manner in which this is done is discussed
in the partial characterization that follows. The low-quality agent should be
indifferent between his contract τ̂ lT and the contract for the high-quality agent,
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τ̂hT . However, discounting implies that all the expected utility of the low-quality
agent is moved up-front and paid at the moment of signing the contract. Recall
that ul(τ̂ , sub∅) is the expected (discounted) utility of the low-quality agent from
the contract τ̂ .

Proposition 1 When the agent is impatient, then the optimal contract-pair
(τ̂hT , τ̂

l
T ) is such that: (i) the high-quality agent is indifferent between his contract

τ̂hT and the base-line contract, and (ii) the contract τ̂
l
T pays an up-front amount

M
¡
τ̂hT
¢
= ul(τ̂hT , sub∅) and then c/π(l,e) at t if the task at t is successful.

When the agent does not discount future payments the set of optimal con-
tracts may not be unique. In particular, if it is enough to eliminate incentives
for the low-quality agent to exert effort in period t when the payments in period
t are postponed to period t0 > t (and paid conditional on successes in between),
then postponing payments even further to t” > t0 is also optimal. Yet, this is
not the case when the agent is impatient. The longer a payment is postponed,
the more costly it is. It follows that when a payment is postponed, it may not
be postponed all the way to period T . Indeed, it is never optimal to postpone
a payment longer than is needed to eliminate the incentives of the low-quality
agent to exert effort in t if he accepts the contract. Postponing payments further
is of no benefit on the one hand, and is costly on the other.

Indeed, we shall now show that introducing impatience narrows down the set
of equilibrium payments to a unique one. More precisely, the following propo-
sition establishes the uniqueness of the optimal contract under the assumption
that the payments to the high-quality agent are zero after all histories that in-
clude a refusal to accept a task at least once. Since any optimal contract-pair is
admissible, a high-quality agent will never refuse a task in equilibrium. Hence,
the proposition implies uniqueness of payments along the equilibrium path. In
particular, there exist other optimal contract-pairs in which off-equilibrium pay-
ments, i.e., payments after histories containing refusals, are different.

Proposition 2 When the agent discounts the future at some δ ∈ (0, 1), then
the optimal contract-pair

³bτhT ,bτ lT´ is generically unique among all contracts in
which a refusal to accept a task by the high-quality agent in period t ∈ {1, ..., T}
leads to a payment of zero in all periods t0 ≥ t.

Proof. To prove this, we need to recall first from Proposition 1 that if the
pair

¡
τ̂hT , τ̂

l
T

¢
is optimal, then the high-quality agent is indifferent between his

contract τ̂hT and the base-line contract. Recall, too, that the contract for the
low-quality agent pays an up-front lump sum M and subsequently for all t ∈
{1, ..., T}, pays c/π(l,e) at t if and only if the task at t is accomplished successfully.
WhenM = Ul(τ̂

h
T ), the expected discounted utility of the low-quality agent from
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the contract is τ̂hT . Also recall that m
s
¡
τ iT , sub∅

¢
denotes the expected payment

to an agent of quality s in contract τ iT .
The principal is indifferent between the two contract-pairs

¡
τhT , τ

l
T

¢
and³bτhT ,bτ lT´ if and only if both pairs are admissible and, moreover,

μml
³
τ lT , sub∅

´
+(1− μ)mh

³
τhT , sub∅

´
= μml

³bτ lT , sub∅´+(1− μ)mh
³bτhT , sub∅´ .

Recall from Proposition 1 that the expected payment to the low-quality agent
in the pairs

¡
τ̂hT , τ̂

l
T

¢
and

¡
τhT , τ

l
T

¢
is

T (1− q)π(l,e)
c

π(l,e)
+ ul(τ̂hT , sub∅) and T (1− q)π(l,e)

c

π(l,e)
+ ul(τ̄hT , sub∅).

We conclude that the principal is indifferent between the two contract-pairs¡
τhT , τ

l
T

¢
and

³bτhT ,bτ lT´ if and only if both pairs are admissible and, moreover,
μul(τ̄hT , sub∅)+(1− μ)mh

³
τhT , sub∅

´
= μul(τ̂hT , sub∅)+(1− μ)mh

³bτhT , sub∅´ .
To establish generic uniqueness of the optimal contract-pair, we now show

that if two admissible contract-pairs
¡
τhT , τ

l
T

¢
and

³bτhT ,bτ lT´ are optimal, then
there is only a measure zero of prior beliefs μ on which the principal is indifferent
between the two contract-pairs.

From Proposition 1 it follows that the optimal contract to the high-quality
agent generates an expected utility ofµ

−c+ ph
c

π(h,d)

¶ TX
t=1

δt.

Given all this, it is not difficult to show that there is a finite number of contracts
that can be considered optimal. Recall that if the principal postpones some of
the payments in the contract of the high-quality agent, he pays them condi-
tional on observing an uninterrupted sequence of successes until the payment
periods. Therefore the payment to the high-quality agent consists of two parts:
the expected payment (ignoring delay) Tph c

π(h,d)
, and the additional payment for

compensation for delays. The additional expected payment to the high-quality
agent if, following a history of l successes and m failures, a payment of ε is post-
poned for k periods and the amount of ε/

¡
phδ
¢k
is paid for k successes, is given

by ³
ph
´l ³

1− ph
´m

ε

µ
1

δk
− 1
¶
.

For a given strategy of the low-quality agent the decrease in his payment, if he
adopts the contract for the high-quality agent, is given by

Pr (l,m)
¡
π(l,e)

¢l
δm+l+1

"
(1− q)

¡
π(l,e)

¢
ε− (1− q)k+1

¡
π(l,e)

¢k+1 ε

(ph)
k

#
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where Pr (l,m) is the probability that the low-quality agent will reach this his-
tory. If the low-quality agent stops exerting effort even if an easy agent arrives,
the decrease in his utility is

Pr (l,m)
¡
π(l,e)

¢l
δm+l+1 (1− q)

¡
π(l,e)

¢
ε.

Thus, for a given strategy of the low-quality agent, the change in the expected
payment to the high-quality agent and the change in the expected utility of the
low-quality agent are linear in the postponed amount. Therefore, if the principal
finds it optimal to postpone some amount of money after some history, he will
postpone either the maximal amount or the amount that changes the strategy
of the low-quality agent. Since the low-quality agent has a finite number of
strategies, and there is a finite number of potential postponements available for
the principal, there is a finite number of priors μ that satisfy the indifference of
the principal.

Having proved uniqueness, we next provide an example as well as character-
ization results of the optimal contract-pair that illustrate the type of trade-off
faced by the principal when the agent discounts the future. The mechanism of
postponing payments is more effective (and less costly) if employed after histo-
ries that are more likely to occur if the agent is of low quality. These histories
are more likely to be found later in the life of the contract than earlier. However,
because the agent is impatient, the mechanism is more effective the earlier it is
employed. The optimal τ̂hT balances between these two forces that are, to some
extent, in conflict.

Below we develop a three-period example in which the mechanism of post-
poning payments is employed only after histories that are more likely to occur
when the agent is of low quality. We then show that if the discount factor is
smaller than the probability of failure of the high-quality agent then it pays to
employ the mechanism sooner rather than later. The intuition for this result
is that the lower a high-quality agent’s ex-ante probability of success is, i.e.,
ph = qπ(h,d) + (1− q)π(h,l), the more difficult it becomes to use failure as a cri-
terion for identifying which histories are more likely to occur when the agent is
of low-quality.

The final result of this section is a limiting result that corresponds to the
case as δ → 1. It is shown that as the cost of postponing payments is decreasing,
payments for success in period t are postponed as long as the incentives of
the low-quality agent to exert effort in t remain positive. For simplicity, we
shall assume in the sequel that π(l,d) is small enough so that it is never optimal
for a low-quality agent to exert effort when the task is difficult.6 Relaxing this

6More precisely, we assume that

−c+ π(l,d)
c

π(h,d)
A(T ) < 0
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assumption would add no qualitative insight and would complicate the discussion
considerably.

6.1 Three-period Example

In this section we construct an example of a three-period optimal contract in
which, according to τ̂hT , if in period one the task is successful, then c/π(h,d) is
paid in every subsequent period in which the respective task is successful. If,
however, the first task ended in failure, then the payment for success in period
two is postponed and paid only in period three and only if the third task is also
successful. The contract τ̂ l3, on the other hand, pays an amount M up-front
and then c/π(l,e) at t if (and only if) the task at t was successful. The lump
sum M is the minimal amount required to satisfy the IC constraint and it is
the expected utility of the low-quality agent should he accept contract τ̂hT . The
intuition behind this equilibrium is that postponing payments in τ̂hT is costly
to the principal because the high-quality agent must be compensated for the
delay in payments; indeed, the sole purpose of postponement of payment is to
make the contract less attractive to the low-quality agent. A failure in the
first period is more likely to occur when the agent is of low-quality, and as the
example demonstrates, there are parameters under which it pays to wait for such
histories and to postpone payments, even though waiting renders this mechanism
less effective due to the discounting of future utilities.

Specifically, we shall identify a set of parameters for which the contract for
the high-quality agent, depicted in the figure below (where histories containing
zeroes are ignored), is optimal.

To establish the optimality of τ̂h3 , note first that regardless of the history
a success in period three is rewarded by c/π(h,d), which is the minimal amount
required to provide the needed incentives to exert effort when the task is difficult.
Proceeding backward to period two, consider first the optimal policy after a
failure in the first period. For the high-quality agent to exert effort when the
task is difficult he must be compensated for success with the equivalent of the
c/π(h,d) paid in this period. Note that postponing a payment of ε for one period
requires increasing the next period payment by ε/δ. Therefore, following a failure
in period one and a success in period two, the expected cost of postponing a
payment of ε to period three and paying conditional on success in that period is

(1− μ)
³
1− ph

´
ε
1− δ

δ

where (1 − μ) is the prior that the agent is of high-quality, and (1 − ph) is the

which is equivalent to

π(l,d) < π(h,d)

1
ph
− 1

1
ph

T

− 1
.
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Figure 4: Three-period contract for a high-quality agent, which specifies for any
possible t history ωt the payment to this agent, τh3 (ωt).

probability of him failing in the first period (i.e., the probability of reaching
this history when the agent’s quality is high). The benefit of this delay is the
reduction in the utility of the low-quality agent (probability μ). The utility
reduction of the low-quality agent due to this change given that he failed in the
first period is

δ2(1− q)π(l,e)ε− δ3(1− q)2
¡
π(l,e)

¢2 ε

δph

where ε/
¡
δph
¢
is the increased payment due to delayed payment of ε. Since the

low-quality agent reaches this history with probability q+(1− q)(1−π(l,e)), the
expected utility reduction of the low-quality agent due to this change is

μδ2
¡
q + (1− q)(1− π(l,e)

¢
)(1− q)π(l,e)

µ
ε− δ

(1− q)π(l,e)

phδ
ε

¶
.

Therefore, after a failure in period one, postponing a payment for success from
period two to period three and paying conditional on success in period three is
beneficial if

μδ2
¡
q + (1− q)(1− π(l,e)

¢
)(1−q)π(l,e)

µ
1−

(1− q)π(l,e)

ph

¶
> (1− μ)

³
1− ph

´ 1− δ

δ
.

(2)
Similarly, the cost of postponing a payment of ε from the first period to the

second is

(1− μ) ε
1− δ

δ
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and the benefit is

μδ(1− q)π(l,e)

µ
ε− δ

(1− q)π(l,e)

phδ
ε

¶
.

Therefore, it is profitable to postpone payments from the first period to the
second if

μδ(1− q)π(l,e)

µ
1−

(1− q)π(l,e)

ph

¶
> (1− μ)

1− δ

δ
. (3)

We conclude from (2) and (3) that if

μδ2
¡
q + (1− q)(1− π(l,e)

¢
)(1−q)π(l,e)

µ
1−

(1− q)π(l,e)

ph

¶
−(1− μ)

³
1− ph

´ 1− δ

δ
> 0

and

μδ(1− q)π(l,e)

µ
1−

(1− q)π(l,e)

ph

¶
− (1− μ)

1− δ

δ
≤ 0

then success in the first period results in no postponement of payment for success
in subsequent periods, but failure in the first period results in the delaying of
payment in the second period.

In Appendix C we show that these two inequalities can coexist in the sense
that there exists a range of parameters in which both inequalities hold.

Remark 5 In general, the profitability of postponing payments is decreasing with
the length of the delay because the benefits are decreasing and the costs are in-
creasing with the length of delay. In particular, in the example above, if it is
not profitable to postpone payments from the first period to the second, then it is
not profitable to postpone payments from the first period to the third. Moreover,
postponing payment at some period affects incentives in that period as well as in
previous periods.

Remark 6 It is apparent from the calculation in this example that the benefits
and the costs of postponing payments from period t to period t0 > t are linear in
the amount being postponed as long as it has no effect on the incentives of the
low-quality agent to exert effort in period t00 ≤ t. In the example above, it implies
that if it is profitable to transfer, say, some amount ε from period one to period
two, then it is optimal to transfer min{c/π(h,d), k} where k is the transfer that
makes the low-quality agent indifferent between exerting and not exerting effort
on an easy task in period one, given that success is compensated by c/π(h,d) − k

in this period, and conditional on success in period two an additional payment
of k/δph is paid.

6.2 Intermediate Discount Factor

As we explained earlier, in postponing payments the principal faces a trade-off.
Later in the life of the contract it is easier to identify histories that are more
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likely to occur when the agent is of low-quality, and hence these histories are
good times to postpone payments. But because agent discounts future payments,
postponing payments later in the life of the contract is less effective. So whether
payments are postponed early or late in the contract depends on how easy it
is to identify “good” histories and on how impatient the agent is. Indeed, the
following proposition, whose proof is provided in Appendix C, establishes that
if the discount factor is small relative to the ex-ante probability of the failure
of the high-quality agent, then payments are postponed starting from period
one. The intuition for this result is that the lower a high-quality agent’s ex-ante
probability of success is, i.e., ph = qπ(h,d) + (1 − q)π(h,l), the more difficult it
becomes to use failure as a criterion for identifying which histories are more likely
to occur when the agent is of low-quality.

Proposition 3 If δ < 1 − ph, then it is optimal to postpone payments in the
initial periods of the contract. That is, for any history ωt there exists kωt such
that for all t < kωt we have τ̂

h
T (ωt) = 0 while τ̂

h
T (ωt) > 0 whenever t ≥ kωt and

o(t) = 1.

6.3 High Discount Factor and Limit Result

When, as was assumed in previous sections, agents do not discount future pay-
ments, postponing payments is costless and hence a contract for the high-quality
agent in which all payments are postponed to the end is optimal. Yet, as was
shown above, even in the case of no discounting, this may not be the unique
optimal contract. In particular, when payment is postponed until after every
history but only as long as the low-quality agent finds it optimal to exert effort
when the task is easy, the resulting contract-pair is also optimal. We now show
that when the agents are impatient but the discount factor is close enough to
one, this contract is still optimal.

We start with a simple lemma that asserts that for a discount factor high
enough, if the optimal contract τ̂hT , is such that the low-quality agent, if he is to
adopt this contract, exerts effort in period t ∈ {1, ..., T} when the task is easy,
then all payments for successes at t are postponed to future periods.

Lemma 4 There exists δ∗ < 1 such that for all δ ∈ [δ∗, 1] and for all histories
ωt−1 that can be reached with positive probability when the low-quality agent signs
into τ̂hT and C

l
t

¡
τ̂hT , ωt−1, e

¢
= c, we have τ̂hT (ωt−1, 1) = 0.

Proof. To establish the lemma it is enough to show that for all histories ωt−1
that can be reached in positive probability by the low-quality agent when he sign
into τ̂hT and Cl

t

¡
τ̂hT , ωt−1, e

¢
= c, if τ̂hT (ωt−1, 1) > 0 then, for δ high enough it is

beneficial for the principal to postpone the payment τ̂hT (ωt−1, 1). Observe first
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that in a history that contains l successes and m failures, the cost of postponing
the amount ε for one period and paying conditional on success is

(1− μ)
³
ph
´l ³

1− ph
´m

ε
1− δ

δ
→
δ→1

0.

Next recall that since the amount ε is paid only after an additional success, the
benefit of postponing payment of it is the reduction in the expected utility of
the low-quality agent if he accepts the contract τ̂hT .

If the low-quality agent exerts effort after history ωt−1 and exerts effort also
in the next period if an easy task arrives, then the benefit of the change for the
principal is

μ
¡
q + (1− q)

¡
1− π(l,e)

¢¢r
(1− q)l

¡
π(l,e)

¢l
δm+l+1×

×
∙
(1− q)

¡
π(l,e)

¢
ε− (1− q)2

¡
π(l,e)

¢2 ε

(ph)

¸
→
δ→1

a > 0

where m − r is the number of periods along the history ωt−1 where the low-
quality agent does not exert effort even if an easy task arrives. If the low-quality
agent does not exert effort in period t+1 following the history ωt−1 and success
at t even when an easy task arrives, then the benefit of the the change for the
principal is

μ
¡
q + (1− q)

¡
1− π(l,e)

¢¢r
(1− q)l

¡
π(l,e)

¢l
δm+l+1 (1− q)

¡
π(l,e)

¢
ε →
δ→1

b > 0.

It follows that if τ̂hT is such that if the low-quality agent adopts it, then he exerts
effort at t whenever the task at t is easy, then the payment for success in t

according to τ̂hT must be zero.
Since payment in t is positive only when the task in period t is accomplished

successfully, the previous lemma implies that if the low-quality agent exerts effort
in period t (when the task is easy) and succeeds, then he must also exert effort
in period t+ 1 when the task is easy.

The following proposition establishes that for a discount factor close enough
to one, the optimal contract-pair

¡
τ̂hT , τ̂

l
T

¢
is such that if the low-quality agent

deviates, adopts the contract τ̂hT , and then chooses a best response, then there
exists some k ≤ T such that for all t < k the agent does not exert effort, but
thereafter, for t ≥ k, he exerts effort whenever the task is easy. It follows from
the lemma that the contract τ̂hT can be split into two time intervals. In the first
k− 1 periods, a success in t is compensated at some t0 ≤ T , while compensation
for success in period t ≥ k is paid at the end of the contract, i.e., in period T .

Proposition 4 There exists δ∗ < 1 such that for any δ ∈ [δ∗, 1] there exists a
period k such that, in the optimal contract-pair

¡
τ̂hT , τ̂

l
T

¢
, Cl

t

¡
τ̂hT , ωt−1, e

¢
= 0 if

t < k and o(m) = −1 for any m < t and Cl
t

¡
τ̂hT , ωt−1, e

¢
= c if t ≥ k.
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Proof. To establish the proposition it is enough to show that if the low-quality
agent exerts effort in some period t when an easy task arrives, then he also exerts
effort in period t+1 when an easy task arrives regardless of the outcome in period
t. Denote by k the first period where the low-quality agent, if he accepts τ̂hT ,
exerts effort when an easy task arrives. It follows that until period k the agent
experiences a sequence of failures.

Assume, by way of contradiction, that there exists some period l ≥ k such
that the agent exerts effort in l if an easy task arrives, but does not exert effort in
period l+1 even if an easy task arrives. Observe first that if the agent succeeds
in period l, the previous lemma implies that the payment for this success is
postponed. Thus, compensation for exerting effort in l is paid only if the task
in l + 1 is successful, which implies that the agent must exert effort in period
l + 1 after success in l, when the task in l + 1 is an easy task, or otherwise
he shouldn’t exert effort in l. In fact, it implies that after an uninterrupted
sequence of successes starting from period l he should exert effort whenver the
task is easy. Hence, it remains to show that it is optimal for the low-quality
agent, if he adopts τ̂hT , to exert effort in period l+1 even after he fails in period
l. Assume next that after failure in period l the low-quality agent does not exert
effort in period l+1 when the task is easy. Note, however, that there must exist
a period m > l such that the low-quality agent exerts effort in m whenever the
task is easy (and continues doing so as long as he succeeds), but he does not
exert effort on an easy task in period m− 1. To see this, note that it is always
optimal for the low-quality agent to exert effort on an easy task in period T.

Recall that our agent exerts effort in period k and, if successful, is compen-
sated by c

δT−kπ(h,d)(ph)
T−k in period T with probability (1− q)T−k

¡
π(l,e)

¢T−k. It
follows that

π(l,e)
c

π(h,d) (ph)
T−k (1− q)T−k

¡
π(l,e)

¢T−k − c ≥ 0.

However, since k < m− 1 and ph > (1− q)π(l,e), we have that

−c+ c

π(h,d) (ph)
T−m+1π(l,e) (1− q)T−m+1

¡
π(l,e)

¢T−m+1
>

−c+ c

π(h,d) (ph)
T−kπ(l,e) (1− q)T−k

¡
π(l,e)

¢T−k ≥ 0.

We conclude that if the low-quality agent exerted effort in period k when an easy
task arrived, he should exert effort in period m− 1 as well, a contradiction.

An immediate consequence of the proposition above is that when δ > δ∗, the
optimal contract τ̂hT possesses similar features as in the case of no discounting
characterized in previous sections. That is, payments are postponed as long as
the incentives for the low-quality agent to exert effort are positive. Moreover, in
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the history that contains k − 1 failures, all the payments are postponed to the
last period, where k is defined as the minimal K for which

π(l,e)
c

π(h,d) (ph)
T−K (1− q)T−K

¡
π(l,e)

¢T−K − c ≥ 0. (4)

Since (1− q)T−K
¡
π(l,e)

¢
/ph < 1, (4) implies that there exists P <∞ such that

limT→∞M
¡
τ̂hT
¢
= ul(τ̂hT , sub∅) < P.

7 Conclusion and Extensions

Risk Aversion
Throughout this paper, we have assumed that the principal and the agent

are both risk-neutral. The assumption of risk neutrality simplifies the analysis
considerably, but it is also important to note that the analysis of the case where
the agent is more risk-averse than the principal is qualitatively similar to the
one conducted above for the discounting case. In particular, the same important
trade-off identified for the case where the agents are impatient is present here.
Postponing payments in the contract designed for the high-quality agent is the
way to reduce expected payments to the low-quality agent. However, conditional
on the agent being of high-quality, postponing payment is costly because the
agent, being risk averse, must be compensated for the extra risk. It follows that
adding risk aversion to the model with discounting has largely the same effect
as reducing the discount factor.

Pooling
Throughout this paper, we have assumed that π(l,e) > π(h,d) and relegated to

Appendix B the rather similar analysis of the case where π(l,e) ≤ π(h,d) (hereafter
cases (i) and (ii) respectively). It is, however, worth describing the main result of
case (ii) and providing some intuition for the sharp differences between the two
cases and in particular for the fact that in case (ii) the optimal contract-pair is
pooling, in the sense that regardless of the agent’s type, he is paid a fixed amount
c/π(h,d) per success, as is shown in Theorem 2 in Appendix B. Recall that in case
(i) the contract that is offered to the high-quality agent is the one that is offered
to him when his quality is observable, and it is the low-quality agent who enjoys
some information rent. As we establish in Appendix B, case (ii) is different. The
first difference is that in this case the high-quality agent enjoys the information
rent from his privately known type (in addition he has information rents from
privately observed types of tasks), and the second difference is that now the
repeated nature of the relation is not helpful.

To gain some insight into the differences between the two cases, assume first
that in every t ∈ {1, ..., T} the principal is constrained to propose a short-term
one-period contract only. It is easy to see that in both cases the only contract-
pair that satisfies EF and IC is a pooling one in which regardless of the agent’s
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quality he is paid a fixed amount per success: c/π(h,d) in case (i), and c/π(l,e)
in case (ii). Adopting the terminology developed above for long-term contracts,
and letting n (ωT ) denote the number of successes in ωT , these contracts can be
written as

Case (i): τ̄hT (ωT ) = τ̄ lT (ωT ) =
c · n (ωT )
π(h,d)

and

Case (ii): τ̃hT (ωT ) = τ̃ lT (ωT ) =
c · n (ωT )
π(l,e)

.

Note that τ̄hT (ωT ) ∈ ΓhT and τ̃ lT (ωT ) ∈ ΓlT , which implies that in case (i) the
expected utility of the high-quality agent is at its lower bound (at its level when
his quality is observable), while the expected utility of the low-quality agent
is above its lower bound. The reverse, however, is true in case (ii), where the
expected utility of the low-quality agent is at its lower bound.

As we show in the analysis of case (i) above, the important effect of long-
term contracts is the availability of other contracts in ΓhT which, from the low-
quality agent’s point of view, are worse than τ̄hT (ωT ). The optimal contract-pair
exploits this by assigning the high-quality agent the contract in ΓhT that is the
least attractive to the low-quality agent. This enables the principal to assign to
the low-quality agent a contract that yields a lower expected payment than the
repeated short-term contract τ̄ lT (ωT ) . In case (ii) it is the high-quality agent
who receives a level of expected utility above his lower bound. But unlike in
case (i) where the short-term contract τ̄hT (ωT ) was, for the low-quality agent,
the best in ΓhT , now the short-term contract τ̃ lT (ωT ) is the worst in Γ

l
T for the

high-quality agent. It follows that in case (ii) the short-term contract is the best
the principal can achieve when the low-quality agent is already at his IR, because
any other contract τTl that satisfies EF would yield the high-quality agent an
even higher expected utility.

8 Appendix A: Proofs for the Separating Contract
Case

Proof of Lemma 1:
Property 1: Assume that this property is false. τhK ∈ ΓhK , so τhK provides

sufficient incentives in all subgames, and in particular in sub−1 (the subgame
following a failure in period one). Consider replacing τhK with τ̃hK , where τ̃

h
K is

obtained by amending the contract τhK and replacing the payments in all histories
that belong to sub−1 by payments in one of the optimal K − 1-period contracts
in ΓhK−1. That is, τ̃

h
K (−1, ωK−1) = τ̃hK−1 (ωK−1). Clearly, the proposed change

does not affect incentives in sub1. Also, because an optimalK−1-period contract
provides incentives in theK−1-period problem, incentives are provided in sub−1.
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Since the new payment scheme in sub−1 is a contract in ΓhK−1, it minimizes
expected payments in all schemes that provide incentives. That is,

mh(τ̃hK , sub−1) < mh(τhK , sub−1) (5)

because otherwise the τK payments restricted to sub−1 is a contract from ΓhK−1.
Since incentives are provided by τhK to exert effort in period one on a task with
a major problem, it must be the case that

uh(τhK , sub1)− uh(τhK , sub−1) ≥
c

π(h,d)

and in particular

mh(τhK , sub1)−mh(τhK , sub−1) ≥
c

π(h,d)
. (6)

This together with (5) implies that

uh(τhK , sub1)− uh(τ̃hK , sub−1) >
c

π(h,d)

which guarantees that incentives to exert effort in period one are preserved and
in general incentives are provided in the revised K-period contract. Finally, note
that since this revision decreases the expected utility of the agent after failure
in the first period and keeps the expected utility after success in the first period,
it decreases the expected payment, which is in contradiction to the claimed
optimality of the original contract.¥

Property 2: Assume by way of contradiction that τhK ∈ ΓhK , but that

uh(τhK , sub1)− uh(τhK , sub−1) 6=
c

π(h,d)

and recall that since an optimal contract provides incentives to exert effort, it
must be the case that

uh(τhK , sub1)− uh(τhK , sub−1) >
c

π(h,d)
.

Therefore, we revise τhK to τ̃
h
K so that τ̃

h
K (1, ωK−1) = τhK (−1, ωK−1)+ c

π(h,d)
.

Note that incentives to exert effort in τ̃hK are kept and that uh(τhK , sub1) is now
decreased to uh(τhK , sub−1)+

c
π(h,d)

so that expected payment is decreased, which

is in contradiction to τhK being optimal.¥

Property 3: The proof is done by induction. Observe first that for T = 1
we have τh1 (1) =

c
π(h,d)

and τh1 (−1) = 0, which implies that mh
¡
τh1 , sub∅

¢
=

ph c
π(h,d)

. Next assume that if τhK−1 ∈ ΓhK−1, thenmh
¡
τhK−1, sub∅

¢
= (K − 1) ph c

π(h,d)
.

From Properties 1 and 2 it follows that

mh
³
τhK , sub∅

´
= (1− ph)(K − 1)ph c

π(h,d)
+ ph[(K − 1)ph c

π(h,d)
+

c

π(h,d)
] =

= Kph
c

π(h,d)
,
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which is the desired final step of the proof.¥
Note that taken together, Properties 1, 2, and 3 imply that in any optimal

contract we have

mh
³
τhK , sub1

´
= (K − 1) phc/π(h,d) + c/π(h,d).

Denote by ūhT the expected utility of the high-quality agent from any contract
in ΓhT . That is,

ūhT = Tph
c

π(h,d)
− Tc.

Property 4: This property is an immediate consequence of the following
claim:

Claim 2 If a T -period contract τhT satisfies EF and IR and generates expected
utility u > ūhT , then for any ũ ∈ [ūhT , u) there exists another T -period contracteτhT that satisfies EF and IR and generates an expected utility of eu. Moreover,
for all ωT ∈ ΩT , τ̃hT (ωT ) ≤ τhT (ωT ) with at least one strict inequality.

Proof. The proof is done by inducting on the contract’s length, T . Assume
that T = 1 and observe that since τh1 satisfies efficiency, we have

τh1 (1)− τh1 (−1) ≥
c

π(h,d)
.

Moreover,
phτh1 (1) +

³
1− ph

´
τh1 (−1)− c = u.

Consider two cases.
Case 1. τh1 (−1) ≥ u− eu. In this case, we set eτh1 (ω1) = τh1 (ω1)− (u− eu) for

ω1 ∈ {1,−1}. It can be easily verified that the new contract satisfies EF and
IR and generates an expected utility of eu, and for any ω1 ∈ {1,−1} we haveeτh1 (ω1) < τh1 (ω1).

Case 2. τh1 (−1) < u − eu. In this case set eτh1 (−1) = 0 and eτh1 (1) = u+c
ph

<

u+c−(1−ph)τh1 (−1)
ph

= τh1 (1) , where the inequality follows from the fact that in this

case u − eu > τh1 (−1). Since eu ≥ ūh1 , incentives are preserved. Moreover, the
contract eτh1 generates an expected utility of eu and for any ω1 ∈ {1,−1} we haveeτh1 (ω1) ≤ τh1 (ω1). This complete the proof for T = 1.

Having established the claim for T = 1, we proceed by assuming that the
statement holds for T = K−1 periods and we show that it holds for T = K peri-
ods. Assume that there exists aK-period contract τhK for which u

h
¡
τhK , sub∅

¢
>

ūhK . As in the case of T = 1, we consider two cases.
Case 1. uh

¡
τhK , sub−1

¢
− ūhK−1 ≥ u − eu. In this case consider two K − 1-

period contracts τhK−1,−1 and τhK−1,1 that satisfies EF and IR such that
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1. uh
³
τhK−1,−1, sub∅

´
= uh

¡
τhK , sub−1

¢
− (u− eu) and uh

³
τhK−1,1, sub∅

´
=

uh
¡
τhK , sub1

¢
− (u− eu)

2. τhK (−1, ωK−1) ≥ τhK−1,−1 (ωK−1) and τhK (1, ωK−1) ≥ τhK−1,1 (ωK−1)

Since uh
¡
τhK , sub−1

¢
− (u− eu) ≥ ūhK−1 and uh

¡
τhK , sub1

¢
− (u− eu) ≥ ūhK−1,

the induction argument guarantees the existence of such contracts. Construct a
contract eτhK , such that eτhK (1, ωK−1) = τhK−1,1 (ωK−1) and eτhK (−1, ωK−1) =
τhK−1,−1 (ωK−1) for any ωK−1 ∈ ΩK−1. First, notice that by construction,
the incentives in any subgame after the first period are guaranteed. Second,
since uh

¡
τhK , sub1

¢
−uh

¡
τhK , sub−1

¢
= uh

³eτhK , sub1´−uh ³eτhK , sub−1´, the first-
period incentives are preserved. The expected utility of the high-quality agent
is given by phuh

³eτhK , sub1´+ ¡1− ph
¢
uh
³eτhK , sub−1´− c = eu. Finally, by con-

struction, for all ωK ∈ ΩK we have τ̃hK(ωK) ≤ τhK(ωK), where the inequality is
strict for at least one ωK ∈ ΩK .

Case 2. uh
¡
τhK , sub−1

¢
−ūhK−1 < u−eu. Consider twoK−1-period contracts

that satisfy EF and IR τhK−1,−1 and τhK−1,1 such that u
h
³
τhK−1,−1, sub∅

´
=

ūhK−1 and uh
³
τhK−1,1, sub∅

´
=

u+c−(1−ph)ūhK−1
ph

<
u+c−(1−ph)uh(τhK ,sub−1)

ph
=

uh
¡
τhK , sub1

¢
, where the inequality follows from the fact that in this case uh

¡
τhK , sub−1

¢
−

ūhK−1 < u− eu. Since
phuh

³
τhK−1,1, sub∅

´
+
³
1− ph

´
uh
³
τhK−1,−1, sub∅

´
= eu+c > ūhK+c > ūhK−1+c

and uh
³
τhK−1,−1, sub∅

´
= ūhK−1 we get that u

h
³
τhK−1,1, sub∅

´
> ūhK−1. The

induction argument guarantees the existence of the contracts with the required
properties. As in the previous case we construct a contract eτhK from two K − 1-
period contracts, τhK−1,−1 and τhK−1,1, such that eτhK (1, ωK−1) = τhK−1,1 (ωK−1)

and eτhK (−1, ωK−1) = τhK−1,−1 (ωK−1) for any ωK−1 ∈ ΩK−1. The rest of the
proof is similar to the proof of Case 1.

Proof of Lemma 2:
Consider first the set Γh1 of one-period optimal contracts. Because effort is

not verifiable, incentives must be provided to induce effort even when p1 = d,

where the probability of success is low. It follows that incentives to exert effort
on all tasks are provided if and only if τh1(1)− τh1(−1) ≥ c/π(h,d). We conclude
that Γh1 is a singleton and τ

h
1 ∈ Γh1 if and only if τh1(1) = c/π(h,d) and τh1(−1) = 0,

which establishes (i) in the statement of the lemma. To complete the proof, note
that Property 1 in Lemma 1 shows (ii.1) and to establish (ii.2) it is enough to
show that for every τhK ∈ ΓhK there exists a contract τ̃hK−1 ∈ ΓhK−1 such that for
any history ωK−1 we have τ̃hK−1 (ωK−1) ≤ τhK (1, ωK−1). This, however, follows
from Property 4 in Lemma 1.
Proof of Claim 1. The proof is done by induction on T, the length of the
contract. For T = 1, the statement holds trivially. We assume then that the
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statement holds for T = K and next prove it for T = K + 1. Denote by τ̃hK+1
the contract that

1. yields a utility of ūhK+1 + ũ to the high-quality agent

2. induces sub contracts on sub1 and sub−1 that are the contracts described
in point 1 of Theorem 1 amended by some non-negative extra payments ψ1
in sub1 and ψ−1 in sub−1, that are paid after a history of K uninterrupted
successes.

First note that it is always possible to find ψ1 and ψ−1 such that: (i)
uh(τ̃hK+1, sub∅) = ūhK+1 + ũ, (ii) the incentives for the high-quality agent are
preserved (for example by choosing ψ−1 = 0), and (iii) by the induction argu-
ment, τ̃hK+1 minimizes the expected utility of the low-quality agent in each of
these subgames in all contracts that generate an expected utility of ūhK+(p

h)Kψ1
and ūhK + (p

h)Kψ−1, respectively.
It is left for us to show that ψ−1 = 0. Assume by way of contradiction that

ψ−1 > 0 and consider decreasing ψ−1 (the payment after a failure following
a sequence of K successes) by ε > 0 and increasing ψ1 (the payment after a
sequence of K + 1 successes) by ε ph

1−ph . Note that this change does not affect
the expected utility of the high-quality agent, preserves his incentives and for
anydecrease the utilioty of the low-quality agent by ε.
Proof of Corollary 2. We first show that the contract described in Definition 4
is an optimal contract for the high-quality agent. To see this, observe that in this
contract the expected compensation for success in each period is c

π(h,d)
. It follows

that this contract provides the high-quality agent with the same expected utility
as did the original contract described in Theorem 1 and it generates efficient
incentives. We next show that there exists a threshold T̂ (α) so that if T > T̂ (α),
the contract yields the same expected utility for the low-quality agent as the one
for the high-quality agent described in Theorem 1. It is enough to establish that
if the low-quality agent adopts this contract then his best strategy is to exert
no effort during the first T/2 periods. We now show now that for any period
m ∈ {1, ...T/2} , if the low-quality agent does not succeed in all t < m periods,
his expected utility is higher if he does not exert effort in period m. Since his
probability of success in any period is bounded by pl, the change in his expected
utility if he exerts effort at period m ∈ {1, ...T/2} is bounded by

−c+ π(l,e)
c

π(h,d)

T−m−1P
j=dα(T−m−1)e

¡T−m−1
j

¢ ¡
pl
¢j ¡
1− pl

¢T−m−1−j
T−m−1P

j=dα(T−m−1)e

¡T−m−1
j

¢
(ph)

j
(1− ph)

T−m−1−j
.

To show that this expression is negative for T big enough, it is enough to show
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that

lim
T→∞

T−m−1P
j=dα(T−m−1)e

¡T−m−1
j

¢ ¡
pl
¢j ¡
1− pl

¢T−m−1−j
T−m−1P

j=dα(T−m−1)e

¡T−m−1
j

¢
(ph)

j
(1− ph)

T−m−1−j
= 0.

Note that

T−m−1P
j=dα(T−m−1)e

¡T−m−1
j

¢ ¡
pl
¢j ¡
1− pl

¢T−m−1−j
T−m−1P

j=dα(T−m−1)e

¡T−m−1
j

¢
(ph)

j
(1− ph)

T−m−1−j

≤

T−m−1P
j=dα(T−m−1)e

¡T−m−1
j

¢ ¡
pl
¢j ¡
1− pl

¢T−m−1−j
(ph)

T−m−1

≤
¡ T−m−1
dα(T−m−1)e

¢ ¡
pl
¢dα(T−m−1)e

(1− α) (T −m− 1)

(ph)
T−m−1

where the first inequality follows from the fact that
¡
ph
¢T−m−1

is just one of
the elements in summation. The second inequality follows from (i) pl ∈ (0, 1)
and (ii). For α ≥ 1/2 the monotonicity of the binomial coefficient implies that¡

T−m−1
dα(T−m−1)e

¢
≥
¡
T−m−1

j

¢
for any j ∈ {dα (T −m− 1)e , ..., T −m− 1}.

By Stanica (2001; Corollary 2.3), it follows that for α ≥ 1/2, the binomial
coefficient is bounded byµ

T −m− 1
dα (T −m− 1)e

¶
≤ 1p

2πα (1− α) (T −m− 1)

¡
1
α

¢T−m−1¡
1
α − 1

¢(T−m−1)(1−α) .
Plugging this bound into the previous expression yields¡ T−m−1

dα(T−m−1)e
¢ ¡
pl
¢dα(T−m−1)e

(1− α) (T −m− 1)

(ph)
T−m−1

≤
p
(1− α) (T −m− 1)√

2πα

Ã
1
α

¡
pl
¢α¡

1
α − 1

¢(1−α)
ph

!T−m−1

=

p
(1− α) (T −m− 1)√

2πα

Ã¡
pl
¢α ¡ 1

α − 1
¢α

(1− α) ph

!T−m−1

Therefore, for
¡
pl
¢α ¡ 1

α − 1
¢α

< (1− α) ph we have

lim
T→∞

p
(1− α) (T −m− 1)√

2πα

Ã¡
pl
¢α ¡ 1

α − 1
¢α

(1− α) ph

!T−m−1

= 0

which completes the proof.
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Figure 5: Two-period contract for a low-quality agent.

9 Appendix B: The Pooling Contract-pair

In this appendix we turn our attention to the second case, where π(l,e) ≤ π(h,d).

We solve for the optimal contract in this case similarly to how we solved for
the optimal contract in the first case, where π(l,e) > π(h,d). That is, we start
by assuming that the agent is known to be of low-quality, and define the set of
optimal contracts ΓlT . After characterizing Γ

l
T , we drop the assumption that the

agent is known to be of low-quality and show that when the agent’s quality is
unobservable the contract-pair (τhT , τ

l
T ) is optimal only if τ

l
T ∈ ΓlT . Equipped

with this result, it is rather easy to characterize the optimal contract pair (τ̄hT , τ̄
l
T )

and show that τ̄hT ≡ τ̄ lT .

9.1 Agent’s Quality is Known to be Low

First note that unlike the contract for the high-quality agent who is expected
to operate on all types of tasks, the contract for a low-quality agent imposes no
such requirement. It is thus necessary to consider also payments after histories
along which at some t the agent’s choice is not to operate. A two-period contract
for a low-quality agent is depicted above.

One of the differences between the present case and the previous one is that
the optimal mechanism provides no information rents to the agent. In particular,
a contract that pays a constant sum of c

π(l,e)
per success provides efficient incen-

tives and generates an expected utility of zero to the agent, which, in particular,
implies that it is optimal. The next lemma provides a characterization of the set
ΓlT of T -period optimal contracts when the agent is known to be of low-quality.
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Lemma 5 Properties of ΓlT

1. If a contract τ lT ∈ ΓlT , then ul
¡
τ lT , sub1

¢
− ul

¡
τ lT , sub−1

¢
= c

π(l,e)
and

ul
¡
τ lT , sub0

¢
= ul

¡
τ lT , sub−1

¢
.

2. If a contract τ lT ∈ ΓlT , then ∃ τ lT−1 ∈ ΓlT−1 s.t. ∀ωT−1 ∈ ΩT−1, τ lT (−1, ωT−1) =
τ lT−1 (ωT−1). Also ∃ τ lT−1 ∈ ΓlT−1 s.t. ∀ωT−1 ∈ ΩT−1, τ lT (0, ωT−1) =
τ lT−1 (ωT−1).

3. If a contract τ lT ∈ ΓlT , then ml
¡
τ lT , sub∅

¢
= T · c · pl 1−qπ(l,e)

.

4. Assume that a T -period contract τ lT satisfies EF and IR and for which
ul
¡
τ lT , sub∅

¢
= u > 0. Then for any ũ ∈ [0, u) there exists another T -

period contract τ̃ lT that also satisfies EF and IR and for which u
l
¡
τ̃ lT , sub∅

¢
=

ũ. Moreover, for any history ωT ∈ ΩT we have τ (ωT ) ≥ τ̃ (ωT ) with at
least one strict inequality.

Proof: Property 1. First, observe that if ul
¡
τ lT , sub1

¢
− ul

¡
τ lT , sub−1

¢
<

c
π(l,e)

,then the low-quality agent will not exert effort even if an easy task arrives in

the first period. Also note that ul
¡
τ lT , sub0

¢
≥ ul

¡
τ lT , sub−1

¢
since otherwise the

agent will accept the task and not exert effort when a difficult task arrives in the
first period. Assume then that τ lT ∈ ΓlT but ul

¡
τ lT , sub1

¢
−ul

¡
τ lT , sub−1

¢
> c

π(l,e)
.

Consider then the following changes: in sub0 adopt the same payment as in sub−1
and in sub1 add a payment of c

π(l,e)
to every history of sub−1. Note that these

changes preserve incentives and decrease the expected payment, in contradiction
to the fact that τ lT ∈ ΓlT .

Property 2. Assume that this property is false. τ lT ∈ ΓlT , so τ lT provides
sufficient incentives in all subgames, and in particular in sub−1. Consider revising
the contract τ lT to τ̃

l
T as follows

1. replace the payments in all histories that belong to sub−1 by payments in
one of the optimal T−1-period contracts τ̃ lT−1 ∈ ΓlT−1 (that is, τ̃ lT (−1, ωT−1) =
τ̃ lT−1 (ωT−1))

2. adjust the contracts in other subgames correspondingly (that is, adopt in
sub0 the same payments as in sub−1, and adopt in sub1 the same payments
as in sub−1 and add c

π(l,e)
to every history).

The proposed change preserves incentives to invest in all subgames after the
first period and generates efficient incentives in the first period.

Since the new payment scheme in sub−1 is a contract in ΓlT−1, it minimizes
expected payment in all schemes that provide incentives. It follows that the pro-
posed change strictly decreases ul

¡
τ lT , sub−1

¢
because otherwise the τ lT payment

restricted to sub−1 is a contract from ΓlT−1. Property 1 of the lemma implies
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that this change also decreases ul
¡
τ lT , sub0

¢
and ul

¡
τ lT , sub1

¢
, in contradiction

to τ lT ∈ ΓlT . The same argument also establishes that the payment in sub0 is a
contract in ΓlT−1.

Property 3. Consider the contract that pays c/π(l,e) per success (i.e., pays
nc

π(l,e)
after a history of n successes). Note that this is an optimal contract even

when the principal observes the type of the arriving task and the effort exerted
by the agent. Therefore, it is an optimal contract when the task’s type and
the agent’s effort are not observable. Since in this contract ml

¡
τ lT , sub∅

¢
=

Tcpl 1−qπ(l,e)
, any optimal contract should pay the same expected payment as the

one described above.
Property 4. The proof is done by induction on the contract’s length T.

Start with T = 1 and observe that since τ l1 satisfies EF we have that

τ l1 (0) ≥ π(l,d)τ
l
1 (1) +

¡
1− π(l,d)

¢
τ l1 (−1)− c (7)

τ l1 (0) ≥ τ l1 (−1)
τ l1 (0) ≤ π(l,e)τ

l
1 (1) +

¡
1− π(l,e)

¢
τ l1 (−1)− c

τ l1 (−1) ≤ π(l,e)τ
l
1 (1) +

¡
1− π(l,e)

¢
τ l1 (−1)− c

There are two cases to consider.
Case 1 τ l1 (0) ≥ ũ. From (7) we get that

π(l,e)τ
l
1 (1) +

¡
1− π(l,e)

¢
τ l1 (−1)− c ≥ τ l1 (0) ≥ ũ. (8)

Set τ̃ l1 (0) = ũ . If τ l1 (−1) ≥ ũ, then set τ̃ l1 (0) = τ̃ l1 (−1) = ũ and τ̃ l1 (1) =

ũ+ c
π(l,e)

≤ τ l1 (1) , where the last inequality follows from the fact that the original

payment satisfied EF, which in particular implies that τ l1 (1) ≥ τ l1 (−1) + c
π(l,e)

.

Now note that since the expected payments are strictly lower in τ̃ l1 and both
contracts satisfy EF, there exists at least one history where the payment in
τ̃ l1 is strictly lower than in τ l1. If τ l1 (−1) < ũ, then (8) and the fact that

expected utility in τ l1 is u implies that τ
l
1 (1) >

c+ũ−(1−π(l,e))τ l1(−1)
π(l,e)

. Set τ̃ l1 (1) =
c+ũ−(1−π(l,e))τ l1(−1)

π(l,e)
and τ̃ l1 (−1) = τ l1 (−1) . Recall that τ̃ l1 (0) = ũ and observe

that τ̃ l1 generates an expected utility of ũ and satisfies EF.
Case 2 τ l1 (0) < ũ. We start by setting τ̃ l1 (0) = τ l1 (0) and proceed by

decreasing the utility from exerting effort by u−ũ
1−q , which will generate for τ̃

l
1 an

expected utility of ũ. If τ l1 (−1) ≥ u−ũ
1−q , then set τ̃

l
1 (ω1) = τ l1 (ω1) − u−ũ

1−q for

ω1 ∈ {1,−1}. If, however, τ l1 (−1) < u−ũ
1−q , then set τ̃

l
1 (−1) = 0 and τ̃ l1 (1) =

ũ+c−qτ̃ l1(0)
(1−q)π(l,e) < τ l1 (1) , where the last inequality follows from the fact that when

τ l1 (−1) < u−ũ
1−q , decreasing the utility of the agent from exerting effort by u−ũ

1−q
implies that the payment conditional on success should be decreased by more
than the amount decreased in the case where τ l1 (−1) ≥ u−ũ

1−q . However, since

ũ− qτ̃ l1 (0) > 0, the payments in τ̃ l1 satisfy EF and all payments are lower.
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Having established the claim for T = 1, we next assume that the statement
holds for T = K − 1 periods and show that it holds for T = K periods. Assume
that there exists τ lK for which ul(τ lK , sub∅) = u > 0. Similarly to the proof for
T = 1, there are two cases to consider.

Case 1 ul
¡
τ lK , sub0

¢
≥ eu. We start by replacing the payment in sub0 with

a K − 1-period contract τ̃ l(K−1)0 that generates an expected payment of ũ and
for which τ̃ l(K−1)0 (ωK−1) ≤ τ lK (0, ωK−1) ∀ωK−1 ∈ ΩK−1. Such a contract

exists by the induction argument. If ul
¡
τ lK , sub−1

¢
≥ ũ, then we replace the

payments in sub−1 by aK−1-period contract τ̃ l(K−1)−1 (ωK−1) that generates an
expected payment of eu and for which we have τ̃ l(K−1)−1 (ωK−1) ≤ τ lK (−1, ωK−1)
∀ωK−1 ∈ ΩK−1(again, such a contract exists by the induction argument). We
complete this part of the argument by replacing the payments in sub1 by a
K − 1-period contracts τ̃ l(K−1)1 (ωK−1) that generates an expected payment of
ũ + c

π(l,e)
and for which τ̃ l(K−1)1 (ωK−1) ≤ τ lK (1, ωK−1) ∀ωK−1 ∈ ΩK−1 (again,

such a contract exists by the induction argument). We still have to show that
there exists a history ωK for which the inequality is strict. However, since the
new contract τ̃ lK generated from the three contracts τ̃ l(K−1)z for z = −1, 0, 1
generates a strictly lower expected payment and all contracts satisfy efficiency,
there must exist at least one history for which the inequality is strict.

The proof of the case where ul
¡
τ lK , sub0

¢
< ũ is similar. ¥

Remark 7 An immediate consequence of the lemma and in particular of Prop-
erty 3 is that for all τ lT ∈ ΓlT , we have ul

¡
τ lT , sub∅

¢
= 0.

9.2 Agent’s Quality is Unobservable

We are now ready to characterize the optimal contract-pair when π(l,e) ≤ π(h,d),

which is shown to have a very simple structure. Namely, the two contracts are
the same and they pay a fixed compensation per success. Moreover, this contract
belongs to the set of optimal contracts when the agent is known to be a low-
quality agent. We start by establishing the latter.

Lemma 6 When π(l,e) ≤ π(h,d), (τ
h
T , τ

l
T ) is an optimal contract-pair, only if

τ lT ∈ ΓlT .

Proof. Assume by way of contradiction that (τhT , τ
l
T ) is an optimal contract-

pair, but τ lT /∈ ΓlT . Since (τhT , τ lT ) is optimal the contract-pair is admissible
and in particular satisfies IR and EF. Since τ lT /∈ ΓlT , Remark 7 implies that
ul(τ lT , sub∅) > 0. Hence, Property 4 of Lemma 5 implies that there exists a
contract τ̂ lT ∈ ΓlT such that for every history ωT ∈ ΩT , τ lT (ωT ) ≥ τ̂ lT (ωT ) with
strict inequality for at least one ωT ∈ ΩT . Consider replacing (τhT , τ lT ) by the
pair (τ̂ lT , τ̂

l
T ). To verify that this contract-pair satisfies EF, note first that since

π(h,d) ≥ π(l,e) EF is satisfied for the high-quality agent whenever it is satisfied
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for the low-quality one, and the latter holds since τ̂ lT ∈ ΓlT . Obviously, IC holds
as well for this new contract-pair (τ̂ lT , τ̂

l
T ). By definition, the expected payments

to the low-quality agent are now lower, and the same (with weak inequality) also
holds for the high-quality agent. That is,

(i) ml
³
τ̂ lT , sub∅

´
< ml(τ lT , sub∅) and (ii) m

h
³
τ̂ lT , sub∅

´
≤ mh(τhT , sub∅).

To verify (ii), recall that the original contract-pair (τhT , τ
l
T ) was incentive-compatible,

which in particular implies that the high-quality agent prefers the contract τhT
to τ lT . By Property 4 of Lemma 5 the new contract τ̂

l
T generates for the high-

quality agent an even lower expected utility than τ lT . Since this contract satisfies
EF, the monotonicity relation between expected payment and expected utility
implies (ii). This establishes the contradiction to the statement that the original
contract-pair (τhT , τ

l
T ) was optimal.

Theorem 2 When π(l,e) ≤ π(h,d), the optimal contract-pair (τ̂
h
T , τ̂

l
T ) is

τ̂hT (ωT ) = τ̂ lT (ωT ) =
c · n (ωT )
π(l,e)

where n (ωT ) is the number of successes in ωT .

The proof of the theorem is a simple result of the following claim and hence
will be provided after the proof of the claim.

Claim 3 Assume that the principal is asked to provide the low-quality agent with
an expected utility of u ≥ 0 such that

1. incentives to exert efficient effort are preserved

2. the expected utility of the high-quality agent is minimized among all con-
tracts that provide efficient incentives to the low-quality agent and gener-
ates the expected utility of u ≥ 0 to the low-quality agent.

This is achieved by amending the contract τ̂ lT described in Theorem 2 and
adding a payment of u after every history. That is,

τ̃ lT (ωT ) =
cn (ωT )

π(l,e)
+ u for all ωT ∈ ΩT .

Proof. We prove the claim by induction on the length of the contract T . Start
with one period. Recall that in this case the only optimal contract for the
low-quality agent is τ l1(1) = c/π(l,e), τ l1(−1) = 0, and τ l1(0) = 0. Denote by
u(ω1) the additional payment above τ l1(ω1) for ω1 ∈ {−1, 0, 1}. First, note
that u(1) ≥ u(−1), because otherwise the agent would not exert effort when an
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easy task arrives. In addition, observe that u(1) ≥ u(0), because otherwise the
low-quality agent would pass the task even if an easy task arrives. Also note
that u(0) ≥ u(−1), because otherwise the agent would accept the task (maybe
without exerting effort) even when the arriving task is difficult, pt = d. Recall
that since π(l,e) ≤ π(h,d), if incentives are provided for the low-quality agent
to exert effort on pt = e, then the high-quality agent will operate on all types
of tasks, if he faces the same contract. Moreover, π(h,d) ≥ π(l,e) implies that
specifying u(1) = u(0) = u(−1) = u necessarily minimizes the utility of the
high-quality agent from all contracts that generate efficient incentives for the
low-quality agent and provides him with the additional utility of u.

We assume that the statement holds for T = K − 1 periods and proceed
to the proof of the statement for T = K periods. Consider a contract τ lK that
yields a utility of u to the low-quality agent and minimizes the expected utility of
the high-quality agent. We first show that the induced contracts on sub1, sub0,
and sub−1 by τ lK are as described in the statement of the claim. The reason
for that is as follows: assume by way of contradiction that the above statement
is false and note that: (i) it is always possible to construct a contract τ̃ lK such
that the induced contracts on sub1, sub0, and sub−1 by τ̃ lK are as described in
the statement of the claim and for which there are u1, u−1, and u0 such that the
low-quality agent is indifferent between τ̃ lK and τ lK ; (ii) the incentives for the
low-quality agent are preserved in τ̃ lK ; and (iii) by the induction argument, in
each of the subgames, the amended contract τ̃ lK decreases the expected utility of
the high-quality agent. We still need to show that u1 = u−1 = u0 = u. However,
this proof is identical to the proof of the one-period case.
Proof of Theorem 2. First observe that τ̂ lT ∈ ΓlT and that (τ̂hT , τ̂ lT ) satisfies
EF and IR. It follows that if we prove that (τ̂hT , τ̂

l
T ) is optimal we are done.

As in Theorem 1, we need to show that the contract τ̂ lT described in the theo-
rem minimizes the expected utility of the high-quality agent from all contracts
belonging to ΓlT , but the rest of the proof follows from the previous claim for
u = 0.

10 Appendix C: The Discounting Case

10.1 Proof of Proposition 1.

The line of proof is similar to the case without discounting. In particular, we
first characterize the properties of the set containing all the contracts between
which and the base-line contract the high-quality agent is indifferent. When the
agent type is unobservable, we show that τhT belongs to this set if (τ

h
T , τ

l
T ) is the

optimal contract-pair. Denote by bΓhT the set of contracts that satisfy IR and
EF for the high-quality agent, and between which and the base-line contract,
denoted by τhT , the high-quality agent is indifferent. Note that the expected
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utility of the high-quality agent from τhT is

uh
³
τhT , sub∅

´
= c

µ
ph

π(h,d)
− 1
¶¡
1− δT

¢ δ

1− δ

Lemma 7 If contract τhT satisfies EF for the high-quality agent, then u
h
¡
τhT , sub∅

¢
≥

uh
¡
τhT , sub∅

¢
.

Proof. The proof is done by induction on T . For T = 1, the statement trivially
holds. Assume it holds for T = κ and we now show that it holds for T = κ+ 1.
Note that after a failure in the first period, the resulting contract is a κ-period
contract. Since it satisfies EF , the induction argument implies that

uh
³
τhκ+1, sub−1

´
≥ c

µ
ph

π(h,d)
− 1
¶
(1− δκ)

δ

1− δ
.

Since τhk satisfies EF for the high-quality agent, we have

τhk (1) + uh
³
τhk , sub+1

´
− uh

³
τhκ+1, sub−1

´
≥ c

1

π(h,d)
.

Since uh
¡
τhκ+1, sub∅

¢
= δ

¡
−c+ ph

¡
τhk (1) + uh

¡
τhk , sub+1

¢¢
+
¡
1− ph

¢
uh
¡
τhκ+1, sub−1

¢¢
we have

uh
³
τhκ+1, sub∅

´
≥ c

µ
ph

π(h,d)
− 1
¶
(1− δκ)

δ2

1− δ
+ δ

µ
−c+ c

ph

π(h,d)

¶
= c

µ
ph

π(h,d)
− 1
¶¡

δ2 + δ3 + ...+ δκ+1 + δ
¢

= c

µ
ph

π(h,d)
− 1
¶¡
1− δκ+1

¢ δ

1− δ

Lemma 8 Assume that τhT satisfies EF for the high-quality agent and u
h
¡
τhT , sub∅

¢
>

uh
¡
τhT , sub∅

¢
; then there exists another contract eτhT that also satisfies EF and

that for any t ≤ T and ωt holds eτhT (ωt) ≤ τhT (ωt) with at least one strict in-
equality.

Proof. Proof is an immediate consequence of the following claim.

Claim 4 Assume that τhT satisfies EF and uh
¡
τhT , sub∅

¢
> uh

¡
τhT , sub∅

¢
;then

for any u ∈ [uh
¡
τhT , sub∅

¢
, uh

¡
τhT , sub∅

¢
) there exists another contract eτhT that

satisfies EF such that uh
³eτhT , sub∅´ = u, and for any t ≤ T and ωt we haveeτhT (ωt) ≤ τhT (ωt) with at least one strict inequality.
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Proof. The proof is done by induction on the number of the periods. For T = 1,
the proof is identical to the proof of Claim 2 Assume that the statement of the
claim holds for T = k− 1 and we will show it for T = k. There are two cases to
consider.

Case 1. δ
¡
τhk (−1) + uh

¡
τhk, sub−1

¢
− uh

¡
τhk−1, sub∅

¢¢
≥ uh

¡
τhk, sub∅

¢
−u.

In this case

(i) set eτhk (−1) = max½τhk (−1)− uh(τhk ,sub∅ )−u
δ , 0

¾
and eτhk (1) = max½τhk (1)− uh(τhk ,sub∅ )−u

δ , c/π(h,d)

¾
(ii) At sub−1 set a k−1 period contract that is efficient and generates an expected
utility of

uh
³
τhk, sub−1

´
−
uh
¡
τhk , sub∅

¢
− u−max

½
τhk (−1)−

uh(τhk ,sub∅ )−u
δ , 0

¾
δ

≥ uh
³
τhk−1, sub∅

´
where payments dominated by τhk are followed by failure in the first period (such
a contract exists by induction argument).
(iii) At sub1 set a k−1 period contract that is efficient and generates an expected
utility of

uh
³
τhk , sub1

´
−

uh
¡
τhT , sub∅

¢
− u−max

½
τhk (1)−

uh(τhk ,sub∅ )−u
δ , c/π(h,d)

¾
δ

where payments dominated by contract τhk are followed by success in the first
period (again, such a contract exists by the induction argument).

The contract eτhk that we have constructed satisfies all the required properties.
Case 2. δ

¡
τhk (−1) + uh

¡
τhk , sub−1

¢
− uh

¡
τhk−1, sub∅

¢¢
≥ uh

¡
τhk , sub∅

¢
−u.

In this case we set the new contract eτhk in the following way.
(i) Set eτhk (−1) = 0 and at sub−1 set a k − 1 period contract that is efficient
and generates an expected utility of uh

¡
τhk−1, sub∅

¢
. The induction argument

implies that there exists a k − 1 period contract that (a) satisfies EF for the
high-quality agent, (b) generates an expected utility of uh

¡
τhk−1, sub∅

¢
, and (c)

payments are dominated by a k− 1 period contract τhk followed by failure in the
first period.

Note that this change satisfies EF for the high-quality agent and decreases
his utility by³

1− ph
´
δ
³
τhk (−1) + uh

³
τhk , sub−1

´
− uh

³
τhk−1, sub∅

´´
.

(ii) Set eτhk (1) = max½τhk (1)− uh(τhk ,sub∅ )−u−(1−ph)δ(τhk(−1)+uh(τhk ,sub−1)−uh(τhk−1,sub∅ ))
δph

, c/π(h,d)

¾
and at sub1 set a k − 1 period contract that satisfies EF for the high-quality
agent and generates an expected utility of

uh
³eτhk , sub1´ = uh

³
τhk, sub1

´
−

1

δ

uh
¡
τhk , sub∅

¢
− u−

¡
1− ph

¢
δ
¡
τhk (−1) + uh

¡
τhk, sub−1

¢
− uh

¡
τhk−1, sub∅

¢¢
ph

−
³
τhk (1)− eτhk (1)´ .
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It is easy to verify that δuh
³eτhk , sub1´ + eτhk (1) ≥ c/π(h,d) + δuh

¡
τhk−1, sub∅

¢
.

Therefore, the induction argument implies that that there exists a k − 1 period
contract that (a) satisfies EF for the high-quality agent, (b) generates a utility

of uh
³eτhk, sub1´ , and (c) payments are dominated by contract τhk followed by

succes in the first period.
The contract eτhk tha we have constructed satisfies all the required properties.

Lemma 9 If (τhT , τ
l
T ) is an optimal contract-pair, then τhT ∈ bΓhT .

Proof. Assume by way of contradiction that (τ̂hT , τ̂
l
T ) is optimal but τ̂

h
T /∈ bΓhT .

Since (τ̂hT , τ̂
l
T ) is an optimal contract-pair, it is admissible, and, in particular,

both contracts satisfy IR and EF. Hence, the previous lemma implies that there
exists a contract τ̃hT ∈ bΓhT such that for any k ≤ T and ωk ∈ Ωk, τ̂hT (ωk) ≥
τ̃hT (ωk) with strict inequality for at least one history. Hence, replacing τ̂

h
T with

τ̃hT will decrease the expected utility of the low-quality agent in the event that he
pretends to be a high-quality agent and adopts the high-quality agent’s contract.
So, consider a contract τ̃ lT that pays M

¡
τ̃hT
¢
> 0 in the first period followed by

c/π(l,e) per success, where M
¡
τ̃hT
¢
is chosen such that the low-quality agent is

indifferent between this contract and the contract τ̃hT . To see that such a payment
M always exists, it is enough to note that for M = 0, the expected utility of the
low quality agent in τ̃ lT is zero, while u

l
¡
τ̃hT , sub∅

¢
≥ 0.

We next argue that (τ̃hT , τ̃
l
T ) is admissible. Note that to show admissibility, it

is sufficient to show that the high quality agent prefers to stick to his contract τ̃hT
rather than switching to τ̃ lT . Recall that the expected utility of the high-quality
agent from τ̃hT is

c

µ
ph

π(h,d)
− 1
¶¡
1− δT

¢ δ

1− δ
= c

π(h,e) − π(h,d)
π(h,d)

(1− q)
¡
1− δT

¢ δ

1− δ

and his expected utility from the τ̃ lT is

M
³
τ̃hT

´
+ c

π(h,e) − π(l,e)

π(l,e)
(1− q)

¡
1− δT

¢ δ

1− δ
.

If

M
³
τ̃hT

´
≤ c

µ
π(h,e) − π(h,d)

π(h,d)
−

π(h,e) − π(l,e)

π(l,e)

¶
(1− q)

¡
1− δT

¢ δ

1− δ

then the contract-pair (τ̃hT , τ̃
l
T ) is admissible and we are done since the expected

payments to both agents were reduced. Let us therefore, assume that the op-
posite inequality holds and consider switching τ̃hT to the base-line contract τ

h
T .

Note that in this case

M
³
τhT

´
= c

π(l,e) − π(h,d)

π(h,d)
(1− q)

¡
1− δT

¢ δ

1− δ
.
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Since for π(h,d) < π(l,e) we have

π(l,e) − π(h,d)

π(h,d)
<

π(h,e) − π(h,d)

π(h,d)
−

π(h,e) − π(l,e)

π(l,e)
,

this implies that M
¡
τhT
¢
< M

¡
τ̃hT
¢
.

Therefore, the contract-pair where the high-quality agent gets the base-line
contract, while the low-quality agent gets the paymentM

¡
τhT
¢
in the first period

followed by c/π(l,e) per success, is admissible and generates for both types of
agents an expected payment lower than (τ̂hT , τ̂

l
T ). Again, this is in contradiction

to the assumed optimality of the original pair. We conclude that if a contract-
pair (τ̂hT , τ̂

l
T ) is optimal, then τ̂hT ∈ bΓhT .

Lemma 10 If (τhT , τ
l
T ) is an optimal contract-pair, then the contract τ

l
T pays

an up-front amount M
¡
τhT
¢
= ul(τhT , sub∅) followed by c/π(l,e) at t if the task

at t is successful.

Proof. Assume, by way of contradiction, that (τhT , τ
l
T ) is an optimal contract-

pair, but in the contract τ lT is not the onde described in the statement of the
Lemma For a given contract τhT ∈ bΓhT , denote by τ̂ lT the contract that pays an
up-front amount M

¡
τhT
¢
= ul(τhT , sub∅) and then c/π(l,e) at t if the task at

t is successful. Note that this contract is the least costly contract to the low
quality agent that generates him utility of ul(τhT , sub∅) and satisfies EF . To
see this observe that posteponing any payment after the first period will require
additional compensation due to the difference in the discount factors between
the principal and the agent. Therefore, since τ̂ lT is is not part of the optimal
contract-pair, it must be the case that the utility of the high-quality agent with
contract τ̂ lT is higher then with contract τ

h
T . Since the expected utility of the

high quality agent in contract τ̂ lT is

M
³
τhT

´
+ c

π(h,e) − π(l,e)

π(l,e)
(1− q)

¡
1− δT

¢ δ

1− δ
,

it must be the case that

M
³
τhT

´
> c

µ
π(h,e) − π(h,d)

π(h,d)
−

π(h,e) − π(l,e)

π(l,e)

¶
(1− q)

¡
1− δT

¢ δ

1− δ
.

Consider then changing both contracts in the following way: τhT = τhT is the
base-line contract, while the contract to the low-quality agent is

M
³
τhT

´
= ul(τhT , sub∅) = c

π(l,e) − π(h,d)

π(h,d)
(1− q)

¡
1− δT

¢ δ

1− δ

and c/π(l,e) at t if the task at t is successful. Since (as was shown in the proof
of the previous Lemma)

M
³
τhT

´
= c

π(l,e) − π(h,d)

π(h,d)
(1− q)

¡
1− δT

¢ δ

1− δ
< c

µ
π(h,e) − π(h,d)

π(h,d)
−

π(h,e) − π(l,e)

π(l,e)

¶
(1− q)

¡
1− δT

¢
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this contract-pair is admissible. Moreover, the expected payment to both types
of agents is lower because the up-front payment to the low-quality agent is lower,
while the per-succes payment remained the same and the expected payment to
the high-quality agent is the minimal one that respects the efficient incentive
provision. This is a contradiction.

10.2 Three-period example

We now show that there exist parameters for which the two following inequalities

μδ2
¡
q + (1− q)(1− π(l,e)

¢
)(1−q)π(l,e)

µ
1−

(1− q)π(l,e)

ph

¶
−(1− μ)

³
1− ph

´ 1− δ

δ
> 0

and

μδ(1− q)π(l,e)

µ
1−

(1− q)π(l,e)

ph

¶
− (1− μ)

1− δ

δ
≤ 0

hold. Note first that the second inequality holds with equality when

μ =
1−δ
δ

1−δ
δ + δ (1− q)π(l,e)

³
1− (1−q)π(l,e)

ph

´ = μ∗,

and holds as a strict inequality for μ ≤ μ∗. We next verify that there exist
parameters for which, when μ ≤ μ∗, the first inequality holds as well. Plugging
the expression of μ∗ into the first inequality and rearranging gives us

(1− δ) (1− q)π(l,e)

³
1− (1−q)π(l,e)

ph

´ £
δ
¡
q + (1− q)(1− π(l,e)

¢
)− 1 + ph

¤
1−δ
δ + δ (1− q)π(l,e)

³
1− (1−q)π(l,e)

ph

´ > 0;

that is, when μ = μ∗, the first inequality is satisfied if δ
¡
q + (1− q)(1− π(l,e)

¢
)+

ph > 1. That is,

qπ(h,d) + (1− q)π(h,e) > 1− δ
¡
q + (1− q)(1− π(l,e)

¢
).

For δ = 1, this inequality requires that when the high-quality agent accepts
both types of tasks, and the low-quality one accepts only easy tasks, the prior
probability to see a success in a given period is always higher for the high-quality
agent. Since π(h,e) > π(l,e), this inequality holds for δ high enough.

10.3 Proof of Proposition 3

Assume, by way of contradiction, that there exists t such that after some history
the payment for success in t is not postponed, while after t0 > t that follows the
same history the payment is postponed for d > 0 periods. (Recall that whenever
a payment is postponed for some k periods, it is paid conditional on successes in
all periods in between.) Assume that the history is such that until time t there
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were k failures and l successes, while between t and t0 there were m failures and
n successes (in addition to success in period t). The cost of postponing ε for d
periods after t0 is

(1− μ)
³
1− ph

´k+m ³
ph
´l+n+1Ã1− δd

δd

!
ε

while the benefit is

μ
£
q + (1− q)

¡
1− π(l,e)

¢¤t”
(1− q)l+n+1

¡
π(l,e)

¢l+n+1
δk+l+m+n+2 ×"

(1− q)π(l,e)ε− (1− q)d+1
¡
π(l,e)

¢d+1 ε

(ph)
d

#
where t” ≤ k+m is the number of periods in which the low-quality agent failed
while using the strategy of exerting effort if and only if an easy task arrives.

Next consider the effect of postponing the payment for success in period t

for d periods. The cost of postponement of an amount ε is

(1− μ)
³
1− ph

´k ³
ph
´lÃ1− δd

δd

!
ε

while the benefit of the postponement is

μ
£
q + (1− q)

¡
1− π(l,e)

¢¤t0”
(1− q)l

¡
π(l,e)

¢l
δk+l+1

"
(1− q)π(l,e)ε− (1− q)d+1

¡
π(l,e)

¢d+1 ε

(ph)
d

#
where t0” ≤ k is the number of periods in which the low-quality agent failed
while using the strategy of exerting effort if and only if an easy task arrives.
Note that t0” ≤ t”.

Recall that in the original mechanism a payment is postponed for d periods
after period t0. Consider then decreasing the postponed amount after period t0

by ε and instead postponing the amount ε0 for d periods after period t where ε0

is chosen such that the expected benefits are the same. That is,

0 = μ
£
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¡
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¡
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¡
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which can be written as

0 = μ
£
q + (1− q)

¡
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¡
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¡
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or

0 = ε0[1−
Ã¡

π(l,e)
¢
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(ph)
d
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Ã¡
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¢
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¡
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¡
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That is,

ε0 =
£
q + (1− q)

¡
1− π(l,e)

¢¤t”−t0”
(1− q)n+1

¡
π(l,e)

¢n+1
δm+n+1ε.

Note that while this change does not affect the utility of the agent, the change
in the expected costs are

(1− μ)
³
1− ph

´k ³
ph
´lÃ1− δd

δd

!
ε0 − (1− μ)

³
1− ph

´k+m ³
ph
´l+n+1Ã1− δd

δd

!
ε

= (1− μ)
³
1− ph

´k ³
ph
´lÃ1− δd

δd

!
ε×∙£

q + (1− q)
¡
1− π(l,e)

¢¤t”−t0”
(1− q)n+1

¡
π(l,e)

¢n+1
δm+n+1 −

³
1− ph

´m ³
ph
´n+1¸

< 0

where the first inequality follows from plugging the expression of ε0 and the
last inequality follows from the inequalities ph > (1− q)π(l,e), 1 − ph ≥ δ, and
t0” ≤ t”. Therefore, the assumed change decreases the cost of the principal while
preserving the utilities of the low-quality agent. Contradiction to the assumed
optimality of the mechanism.
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