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Understanding the purpose of sex is a fundamental unresolved problem in evolutionary biology. The
difficulty is not that there are too few theories of sex, the difficulty is that there are too many and
none stand out. To distinguish between theories, we ask: Why are there no triparental species with
offspring composed of the genetic material of three individuals? A successful theory should confer an
advantage to biparental sex over asexual reproduction without conferring an even greater advantage
to triparental sex. Of two leading theories (red queen and mutational), we show that only one is
successful in this sense.

The breadth and variety of methods by which different species reproduce through sex
is nothing short of remarkable. Nonetheless, sexual reproduction displays a stunning
regularity. We can state that:

Each sexually produced offspring of any known species is produced from the
genetic material of precisely two individuals. That is, sex is always biparental.

The obvious, but overlooked, question is, why? In particular, why are there no
triparental species in which an offspring is composed of the genetic material of three
individuals?

Answering this question – and similar questions regarding quadriparental sex etc. –
is bound to shed light on the purpose of sex itself, one of the most important
unresolved problems in evolutionary biology (see, e.g. Otto and Lenormand (2002) or
Rice (2002) on the importance of this question). Indeed, a complete theory of sex
must strike a delicate balance. On the one hand – as is well known – it must explain
why genetic mixing is sufficiently beneficial so that biparental sex overcomes the
twofold cost of males it suffers because an equally sized asexual population would grow
twice as fast (Maynard Smith, 1978). On the other hand – and this point is central here
– genetic mixing must not be so beneficial that a further increase in fitness would be
obtained from even more of it through triparental sex.

Little or no attention has been paid to the possibility that a theory of biparental sex
might inadvertently confer an advantage to triparental sex. Perhaps this is because one
is tempted to dismiss triparental sex on the grounds that the associated costs – be they
the cost of unproductive males or mating coordination costs – are prohibitive. But,
insofar as such arguments have been provided at all, they are unpersuasive. In
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particular, they fail to take into account the key point that any argument against the
transition from biparental sex to triparental sex may be even more persuasive for ruling
out the transition from asexual reproduction to biparental sex. Several such arguments
are considered below.

The present article considers whether either of the two leading theories for the
maintenance of biparental sex is consistent with the absence of triparental sex. The
first of these theories is the (deterministic) mutational hypothesis due to Kondrashov
(1982, 1988). The second is the ‘red queen’ hypothesis, of which several models have
been proposed (Jaenike, 1978; Hamilton, 1980; Hamilton et al., 1990). Both the
mutational and red queen hypotheses exploit the fact that sex generates genetic
mixing, although they are in sharp disagreement about precisely why genetic mixing
is advantageous. Roughly, the mutational hypothesis asserts that genetic mixing
reduces the rate at which harmful mutations accumulate, while the red queen
hypothesis asserts that it reduces the impact of parasitic attack by increasing genotypic
variability.

We observe that there is a particular triparental sexual system that involves no
additional cost of males relative to biparental sex. Under the mutational hypothesis,
this triparental system has a fitness advantage over biparental sex for all parameter
values considered because it generates more genetic mixing. Moreover, this advantage
can be substantial when the mutation rate is high enough so that biparental sex has a
fitness advantage over asexual reproduction (i.e. high enough so that biparental sex
overcomes its twofold cost of males). That is, if the mutational hypothesis is true, then
either asexual reproduction has a fitness advantage over biparental sex (because the
mutation rate is low) or triparental sex has a significant fitness advantage over
biparental sex (because the mutation rate is high). The mutational hypothesis is
therefore unable to simultaneously explain the presence of biparental sex and the
absence of triparental sex.

On the other hand, we present a simplified red queen model that confers an
overwhelming advantage to biparental sex over asexual reproduction but confers no
advantage at all to triparental sex (or to quadriparental sex etc.) over biparental sex.
The red queen hypothesis therefore is not at odds with the presence of biparental sex
and the absence of triparental sex.

1. Triparental Sex

Triparental sex will be said to occur when each cell of an offspring is composed of the
genetic material of three parents. We will focus upon a particularly significant
triparental system in which an offspring receives half of its genetic material from its
mother and one-quarter from each of its two fathers. We refer to this reproductive
system as 1

4 -
1
4 -

1
2 triparental sex, or simply 1

4 -
1
4 -

1
2 sex. Before proceeding any further, let

us address several possible arguments against any such triparental system.
First, there is the obstacle of developing the requisite genetic machinery for

combining the genetic material of more than two parents. Providing a plausible and
detailed microbiological mechanism through which triparental sex might operate is
well beyond the scope of this article. Nevertheless, it is noteworthy that, although
triparental sex has never been observed in nature, triparental recombination is well
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known to occur in viruses,1 where offspring DNA are routinely a combination of the
DNA of two, three or more parents (Bresch, 1959; Stent, 1963; Munz et al., 1983).2 The
presumption that nature could never adapt this viral triparental recombination
technology, or some other existing technology, into an advantageous triparental sexual
mechanism becomes less and less plausible as the advantage of triparental sex over
biparental sex grows. As we shall show, the mutational hypothesis implies that if
biparental sex is to have an advantage over asexual reproduction, then triparental sex
must have a significant advantage over both.3

Second, one might argue that the costs of coordinating the mating of three
individuals over just two outweigh the potential benefits.4 To be taken seriously, such
an argument must carefully consider the additional benefits and coordination costs
incurred not only in the transition from biparental to triparental sex, but also in the
transition from asexual reproduction to biparental sex. A serious difficulty for any such
argument is that while there are clearly significant additional coordination costs
involved in the transition from asexual to biparental sex – for example a technology for
locating mates must be developed and maintained – the ample empirical evidence for
sperm competition (Parker, 1970) implies that the additional coordination cost of
triparental sex over biparental sex is negligible for a large number of species. Indeed,
as the following quote from Birkhead (1998) highlights, the prevalence of sperm
competition implies that biparental mating behaviour routinely brings together, within
a single female, genetic material from multiple males.

A common assumption about reproduction is that the spermatozoa in the
vicinity of ova around the time of fertilisation are from a single male. However,
for a wide range of organisms, both internal and external fertilizers, this
assumption is almost certainly wrong. It is wrong because among internal
fertilizers, females typically copulate with more than one male during a single
reproductive cycle, and among externally fertilising animals, often several
males simultaneously release spermatozoa near a spawning female. When the
ejaculates from two or more males compete to fertilise the ova of a particular
female, the process is referred to as sperm competition. Sperm competition is
virtually ubiquitous and its biological consequences are considerable (p.123).

1 According to most biologists, viral recombination is not a form of sexual reproduction. There is even a
question as to whether viruses are ‘alive’.

2 According to Bresch (1959), ‘In a “triparental” cross, for instance, the [host] cells will be infected by the
[viral] phage types abþcþ, aþbcþ, and aþbþc. In this case, one finds triparental recombinants abc among the
progeny, i.e. particles with a marker from each of the three parental types’ (p.314).

3 One might conjecture that nature is incapable of developing any form of advantageous triparental sex
since any mutation in that direction is bound to create a zygote that is not viable. But such a pessimistic view
seems unwarranted, especially in light of the in vitro fertilisation technique for humans recently approved for
use in the UK. Under this technique, the future child’s mitochondrial DNA comes from a second woman so
that the child will be free of an otherwise serious mitochondrial disease. The result is a fitter triparental child
with 0.1% of its DNA from the second woman, a permanent change that will be passed down through the
generations. While this is not the full triparental sex we consider here, it shows that additional mixing of
human genetic material is by no means always fatal.

4 We have not found any detailed or thorough analyses of the additional coordination costs of triparental
over biparental sex, although an informal and very brief discussion on a related topic can be found in Power
(1976).
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Sperm competition occurs, for example, in birds (Goetz et al., 2003; Parrott et al.,
2005), ants and bees (H€olldobler and Wilson, 1994), shrimp (Bilodeau et al., 2004),
snails (Evanno et al., 2005), snakes (Garner et al., 2002), tortoises (Roques et al., 2004),
fruit flies (Bressac and Hauscheteck-Jungen, 1996) and in polyspermic species such as
the comb jelly where a female’s egg may be penetrated by multiple sperm, one of which
is ‘chosen’ to fertilise it (Carre and Sardet, 1984). In all these cases, which are by no
means exhaustive, triparental sex – for example, where the sperm of two distinct
males fertilise a single egg – would entail negligible additional coordination costs over
biparental sex.

Third, there is the ‘twofold cost of sex,’ namely, that a sexual population with a one
to one ratio of (unproductive) males to females produces half as many offspring as an
equally sized asexual population (Maynard Smith, 1978). The simple reason for this is
that every individual in the asexual population can reproduce whereas only half of the
individuals in the sexual population – the females – can do so. One might then
naturally expect 1

4 -
1
4 -

1
2 sex — involving two unproductive males and one female — to

display a threefold cost of males relative to asexual reproduction. But, remarkably,
1
4 -

1
4 -

1
2 sex results in only a twofold cost. Put differently, 14 -

1
4 -

1
2 triparental sex involves no

additional cost of males relative to biparental sex. We now explain why.
Because the cost of males is determined not by the ratio of males to females in each

mating instance but, rather, by the population ratio of males to females, determining
the population ratio is central. We therefore turn to Fisher’s (1930) celebrated
equilibrium argument. Applying Fisher’s logic to 1

4 -
1
4 -

1
2 sex, we note first that the total

reproductive value of all of the males in any generation is precisely equal to that of all
of the females in that generation. This is because, under 1

4 -
1
4 -

1
2 sex, all of the females

supply half of the genes of all future generations. But then the remaining half must be
supplied by all of the males. Consequently, if the equilibrium sex ratio were not one, it
would be evolutionarily advantageous to produce only offspring of the sex that is in
short supply, pushing the sex ratio toward one.5 We conclude that the equilibrium sex
ratio must be one, and that each male therefore mates with two females and vice versa.
But this means that the cost of males is twofold, precisely as in the case of biparental
sex. That is, 1

4 -
1
4 -

1
2 sex entails no additional cost of males relative to biparental sex.6

Since 1
4 -

1
4 -

1
2 sex is not observed in nature, it must not have a fitness advantage over

biparental sex. We now show that the mutational hypothesis is not consistent with this
requirement.

2. The Mutational Hypothesis

A well-known explanation for the maintenance of sex in large populations is
Kondrashov’s (1982, 1988) mutational hypothesis in which sex is advantageous because

5 We maintain the usual assumption that offspring of either sex are equally costly to raise to maturity.
6 In contrast, there is a threefold cost of males in a triparental population in which a mother and two

fathers all contribute equally to the offspring, i.e. 13 -
1
3 -

1
3 sex. In such a system, because all females supply only

one-third of the genes of all future generations, Fisher’s argument implies that there must be twice as many
males as females, and hence a threefold cost of males. So although in comparison to 1

4 -
1
4 -

1
2 sex, the additional

genetic mixing from 1
3 -

1
3 -

1
3 sex yields additional fitness benefits, once its additional 1.5-fold cost of males is

taken into account, it has a lower overall fitness than 1
4 -

1
4 -

1
2 sex under all parameter values considered here.
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it halts the otherwise steady accumulation of harmful mutations. The first theory of this
kind was due to M€uller (1932, 1964) but relied upon a finite population.

Kondrashov’s (1982) model is as follows. There is a population consisting of a
continuum of individuals. Each individual consists of a single strand of DNA (i.e.
individuals are haploid) that has infinitely many loci.7,8 Mutations at all loci are equally
harmful and an offspring’s survival probability is determined entirely by the number of
mutations in his genome. Specifically, an offspring with i < K mutations survives with
probability si ¼ 1 � ði=K Þa. Offspring with K or more mutations are not viable. As
individuals develop into adults, they independently receive additional mutations
according to a Poisson distribution with mutation rate l, where the probability that any
particular locus receives a mutation is zero. These additional mutations do not affect
survival but may be passed on to one’s offspring, affecting its survival.

Kondrashov compares the limiting fitnesses (survival probabilities) of two kinds of
populations, one that reproduces asexually and one that reproduces biparentally. For
an asexual population, Kondrashov shows that after many generations the limiting
fraction of offspring that survives in each generation is e�l, regardless of the values of K
and a. We refer the reader to Kondrashov (1982) for the details. As for a biparental
population, we review Kondrashov’s analysis here so that we may adapt it to a 1

4 -
1
4 -

1
2

triparental population.
A biparental population is divided equally into males and females with identical

distributions of mutations. Only pairs of individuals of opposite sex can produce an
offspring, which is equally likely to be male or female, and males are randomly
matched to females prior to mating.9

The life-cycle is mutations-recombination-selection-mutations. That is, adults accu-
mulate mutations, males and females are randomly matched and sexual reproduction
occurs (recombination), fit offspring survive and become adults, adults accumulate
mutations etc. It is assumed that when recombination occurs, there is no linkage
between loci. That is, the probability that an offspring receives a mutation from a
particular locus of a parent’s genome is independent of the locations and number of
other mutations on that parent’s genome.

Individuals live for a single generation. Let qi denote the common fraction of males
and females in a given generation with i mutations after selection. After mutations
arrive according to the Poisson process, the fraction of males and females with i
mutations is:

q 0i ¼ e�l
Xi

j¼0
qj

li�j

ði � jÞ! : (1)

7 A locus is a location on a strand of DNA. Each locus contains a gene. A typical strand of DNA, also called
a ploid, consists of many loci.

8 The assumption that individuals are haploid is for simplicity only. The results are identical when
individuals are diploid, i.e. consist of two strands of DNA.

9 Because the two sexes are completely symmetric, Kondrashov did not in fact divide his population into
males and females. Instead, he assumed that any two individuals can mate, leading to a simpler model with
identical results. But to provide a unified treatment of biparental and triparental sex, we introduce males and
females now because they will be needed when we consider 1

4 -
1
4 -

1
2 triparental sex, where the roles of the two

sexes are not symmetric.
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Now, because no two matched individuals have more than one mutation in total at
each locus, the frequency with which an offspring from parents having n and m
mutations has i mutations is:

n þ m
i

� �
1

2

� �nþm�i 1

2

� �i

;

because, at any locus the offspring is equally likely to inherit the content of the
mother’s or the father’s locus, independently of what occurs at any other locus.
Consequently, the fraction of offspring having i mutations after recombination is:

q 00i ¼
X

nþm� i
q 0nq

0
m

n þ m
i

� �
1

2

� �nþm

;

and half of these offspring are male and half are female. Finally, since offspring with
i < K mutations survive with probability si and offspring with K or more mutations do
not survive, the fraction of males and females with i < K mutations after selection is:

q 000i ¼ siq
00
i

s0q 000 þ � � � þ sK�1q 00K�1

; (2)

where s0q
00
0 þ � � � þ sK�1q

00
K�1 is the fitness of the population, or equivalently, the

fraction of surviving offspring, male or female. The equilibrium distribution of
mutations is characterised by the additional condition that qi ¼ q 000i for i = 0,1, . . . ,
K � 1, from which one can also obtain the population’s equilibrium fitness.

We now adapt Kondrashov’s biparental analysis to a triparental 1
4 -

1
4 -

1
2 sexual

population, again divided equally into males and females (by Fisher’s, 1930
equilibrium argument). As in the biparental case, the life cycle is mutations-
recombination-selection-mutations and we again let qi denote the common fraction
of males and females with i mutations after selection. As before, after mutations arrive,
the fraction of males and females with i mutations is q 0i given by (1).

Consider a triparental match in which themother hasmmutations and the two fathers
have n total mutations. The offspring can have imutations if for some m0 �m and some
n0 � n; it receives m0 from the mother and n0 from the fathers, where m0 þ n0 ¼ i.
Analogous to biparental recombination, at any locus, the offspring inherits the contents
of themother’s locus with probability one-half and inherits the content of a father’s locus
with probability one-quarter, independently of what occurs at any other locus. Therefore,
because the three parents have no more than one mutation in total at each locus, the
frequency, with which their offspring have i mutations is:

r im;n ¼
X m

m0

� �
n
n0

� �
1

2

� �m 1

4

� �n0
3

4

� �n�n0

;

where the sum is over m0 �m and n0 � n such that m0 þ n0 ¼ i.10 Since half the
offspring are male and half are female, the fraction of male and female offspring
having i mutations after recombination is:

10 Analogous to biparental recombination, at any locus, the offspring’s gene comes from the mother with
probability one-half and from each of the two fathers with probability one-quarter, independently of what
occurs at any other locus.
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q 00i ¼
X

nþm� i

q 0m
Xn
j¼0

q 0j q
0
n�j

 !
r im;n:

Finally, the fraction of males and females having i < K mutations after selection is q 000i ,
which as before, is related to q 00i through (2).

The equilibrium distribution of mutations is again characterised by the additional
condition that qi ¼ q 000i for i = 0,1, . . . , K � 1, from which one can also obtain the
population’s equilibrium fitness.

Let us now compare the equilibrium fitness of a 1
4 -

1
4 -

1
2 sexual population with that of

a biparental population. The values of a = 1, 2, ∞ and K = 5, 20, 60, 80 considered
here are taken from the literature (Kondrashov, 1982; Howard, 1994).

Table 1 shows the advantage of 1
4 -

1
4 -

1
2 sex over biparental sex. Each entry in the

Table is the percentage amount by which the equilibrium fitness of a 1
4 -

1
4 -

1
2 sexual

population exceeds that of a biparental population for a particular vector of
parameters, (l, K, a). Because the only cost to sex in Kondrashov’s model is the cost
of males, there is no cost to 1

4 -
1
4 -

1
2 sex over biparental sex. Consequently, each entry is

also the percentage amount by which the growth rate of the triparental population
exceeds that of the biparental population. An asterisk indicates that biparental sex fails
to overcome its twofold cost relative to asexual reproduction in that cell.

Every entry in Table 1 is positive, indicating that a 1
4 -

1
4 -

1
2 sexual population always

grows faster than a biparental population. Moreover, when biparental sex overcomes
its twofold cost — indicated by cells without asterisks — the advantage to triparental
sex can be substantial. For example, with intermediate selection (i.e. a = 2) and a
mutation rate of 2, a 1

4 -
1
4 -

1
2 population grows between 1.8% and 4.8% faster than a

Table 1

Percentage of Advantage of Triparental Sex

l K = 5 K = 20 K = 60 K = 80 a

1 2.1 1.0 0.4 0.3 ∞
2.3* 1.6* 0.7* 0.5* 2
2.0* 1.4* 0.6* 0.5* 1

2 4.8 3.0 1.4 1.1 ∞
4.8 4.2 2.3 1.8 2
4.4* 4.1 2.2 1.7 1

3 7.4 5.6 2.8 2.2 ∞
7.1 7.0 4.3 3.6 2
6.7 7.1 4.3 3.6 1

4 9.8 8.6 4.5 3.6 ∞
9.3 10.1 6.6 5.6 2
8.8 10.2 6.7 5.7 1

6 14.2 15.3 8.9 7.3 ∞
13.2 16.7 11.8 10.2 2
12.6 16.8 12.0 10.2 1

8 17.8 22.7 14.4 11.9 ∞
16.5 23.7 17.7 15.5 2
15.9 23.7 18.0 15.7 1
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biparental population, implying a relative doubling time of between 14 and 39
generations. The mutational hypothesis therefore does not provide an explanation for
both the presence of biparental sex and the absence of triparental sex.

Also, the higher is the mutation rate, the larger is the advantage to 1
4 -

1
4 -

1
2 sex. With

intermediate selection, for example, a mutation rate of 3 is already high enough to
imply that a 1

4 -
1
4 -

1
2 sexual population grows 3.6% to 7.1% faster than a biparental

population, implying a relative doubling time of between 10 and 20 generations. Thus,
in contrast to the literature (Kondrashov, 1988; Charlesworth, 1990; Howard, 1994),
not only do low mutation rates – for example, below 1 or 2 – constitute evidence
against the mutational hypothesis but high mutation rates too constitute evidence
against it. Indeed, genomic mutation rate estimates of between 3 and 6 have been
found, for example, in chimpanzees (Keightley and Eyre-Walker, 2000).

To permit a direct comparison with the literature, Table 1 provides relative
equilibrium fitnesses of triparental and biparental populations. However, to further
illustrate the inability of the mutational hypothesis to explain the absence of
triparental sex, we also establish that a small fraction of triparental females introduced
into an equilibrated biparental population will eventually take over.

An equilibrated biparental population is seeded with a small fraction of females,
each possessing one copy of a dominant triparental gene for 1

4 -
1
4 -

1
2 sexual reproduc-

tion. Their distribution of mutations is that of the biparental population. Males can
mate with biparental and triparental females. The triparental gene is expressed only in
females, although males can pass it on to male and female offspring, the latter then
reproducing triparentally through 1

4 -
1
4 -

1
2 sex.

In all runs, the fraction of triparental females – i.e. those with at least one copy of the
triparental gene – increases with each generation, and the biparental population is
driven to extinction. A particular example of one of our runs is shown in Figure 1,
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Fig. 1. f = 0.001, l = 3, K = 20, a = 2
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where f denotes the initial number of females, as a fraction of the population,
possessing a single copy of the triparental gene. In contrast, when a triparental sexual
population is in equilibrium, biparental sex fails to successfully invade.

3. A Red Queen Model

A second major class of theories for the maintenance of sex is the class of red queen
theories. These explain sex as a way for a host organism to maintain parity in the race
against parasites ( Jaenike, 1978; Hamilton, 1980; Hamilton et al., 1990)

Our purpose in this Section is to present a red queen model in which biparental sex
has an overwhelming advantage over asexual reproduction but in which triparental sex
has no advantage over biparental sex. In particular, biparental sex will strictly dominate
triparental sex if the latter entails even an arbitrarily small additional cost.

Red queen theories are idealisations of the following scenario in nature. A typical
parasite reproduces very frequently within a host, undergoing subtle random
mutations with each successive generation. Occasionally, these mutations create a
parasitic offspring that is capable of bypassing the host’s defence mechanisms. The
parasite is then able to multiply rapidly within the host, with the aim of exiting the host
and spreading throughout the host population. The rapid multiplication within the
host often results in the host’s death. The parasite will spread throughout the host
population, killing those that it infects. But it can only infect individuals whose defence
mechanisms are sufficiently similar to that which it ‘evolved’ to defeat. In particular, if
all members of the host population have identical DNA sequences (i.e. identical
‘genotypes’), as can be the case for an asexual species, the entire population may be
killed off since all its members rely on the same susceptible defence mechanism. In
contrast, if there is sufficient genetic variation within the host population, as is the case
for a sexual species, then only a fraction of individuals may be susceptible to the
parasite.

In a nutshell then, the essence of this class of red queen theories is this. The absence
of genetic variation can render an asexual species extremely susceptible to attack from
parasites, whereas the genetic variation created by a sexually reproducing species
provides protection, making it far less susceptible. It is less susceptible because the
distribution of genotypes created by sexual reproduction is sufficiently spread out that
a parasitic attack on any one genotype, or on any small range of genotypes, affects only
a small fraction of the population. Moreover, unlike in an asexual population,
genotypes that are killed off by the parasite can re-emerge as offspring in the next
generation of a sexual population via genetic recombination thereby maintaining the
overall genetic diversity of the population. The broad conclusion from this class of
models is that when a parasite is sufficiently virulent and its attacks are not too
infrequent, a sexually producing species can be more successful than an asexual
species, even after accounting for the twofold cost of males.

In the remainder of this Section we present a highly simplified red queen model that
captures the features described above and that gives an overwhelming advantage to
biparental sex over asexual reproduction. But, unlike the mutational hypothesis, it
gives no further advantage to triparental sex. The important general insight upon
which this conclusion is based is that the time-dynamics of population genetics implies

© 2016 Royal Economic Society.

WH Y S E X ? A N D WH Y ON L Y I N P A I R S ? 9



that, ‘whether a species is biparental or triparental (or beyond), the limit distribution
of its genotypes is the same’ (Perry et al., 2007). As a result, multi-parental sex with
three or more parents will not yield any fitness advantage over biparental sex.

Consider an infinite population of haploid individuals whose genomes have four
loci, A, B, C, D. Each locus can be occupied by one of two alleles, a or a0 in locus A; b or
b0 in locus B; c or c 0 in locus C; and d or d 0 in locus D.11 Thus, ða; b0; c 0; dÞ and ða0; b0; c; dÞ
are two of the 16 possible genotypes that might comprise an individual in this
population.12

At each date (generation) t = 1, 2, . . . all individuals in the population always
reproduce either asexually, biparentally, or triparentally. We will consider each
possibility in turn. But regardless of the sexual system that is in place, once every N
generations there is a probability ɛ > 0 that a parasitic attack will occur, killing all
individuals of a randomly chosen genotype in the current population.13 For simplicity,
we will suppose that each genotype in the current population is equally likely to be
killed conditional on the occurrence of an attack.14 Individuals live for a single
generation.

Let us first consider the fate of an asexual population. Because there are finitely
many (indeed, 16) possible genotypes, each one will, with probability one, be the target
of a parasitic attack at some date. Moreover, once all individuals of a particular
genotype are killed, that genotype will be extinct forever since, under asexual
reproduction, the offspring of the remaining distinct genotypes are identical to their
parents. Consequently, an asexual species will become extinct with probability one,
regardless of the initial distribution of genotypes in the population.

Consider next the fate of a biparental sexual population in which males and females
mate randomly and both parents contribute half of their genetic material to the
offspring. Specifically, suppose that in any mating instance the alleles in two of the
offspring’s loci come from its mother and the other two alleles come from its father,
with all six possibilities being equally likely, and that the offspring is equally likely to be
male or female.15

The dynamics of this sexual population are more interesting. Let us suppose, for a
moment, that there is no possibility of a parasitic attack, i.e. that N = ∞. Then the
population dynamics are deterministic because the population is infinite. Indeed, if
qtði;k;j ;lÞ is the date-t fraction of individuals in the population with genotype
ði; j ; k; lÞ 2 fa; a0g � fb; b0g � fc; c 0g � fd; d 0g, then we can compute the date-(t + 1)
fraction, qtþ1

ði;j ;k;lÞ, of such individuals as follows. Since the probability is one-sixth that in
any particular match the female will contribute her first pair of alleles to an offspring
and the male will contribute his second pair, the fraction of offspring who receive (i,j)

11 Recall that each locus on a strand of DNA marks the location of a particular gene. An allele is one of
several variations of a gene.

12 The extension to any number of alleles and loci is straightforward. One can also allow individuals to be
diploid, or triploid etc., rather than haploid without changing the results.

13 Our results would be unchanged if most of the time only a fraction of individuals with the chosen
genotype were killed, so long as there is at least a small positive probability that all of them are killed.

14 Our conclusion would not change, for example, if the conditional probabilities were instead
proportional to a genotype’s representation in the population.

15 Equiprobable recombination events are not necessary. It would suffice to assume merely that the
probability is less than one that the offspring receives any two alleles from the same parent.
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as their first pair of alleles from their mother and (k, l ) as their second pair from their
father is one-sixth the fraction of matches of females whose first pair of alleles is (i, j)
with males whose second pair is (k, l), that is

P
i0;j 0k 0;l 0 q

t
ði;j ;k 0;l 0Þq

t
ði0;j 0;k;lÞ=6: Repeating this

for all the possible combinations in which the two parents can contribute alleles i,j,k
and l, we obtain:

qtþ1
ði;k;j ;lÞ ¼

X
i0;j 0k0;l 0

½qtði;j ;k0;l 0Þqtði0;j 0;k;lÞ þ qtði;j 0;k;l 0Þq
t
ði0;j ;k0;lÞ þ qtði;j 0;k0;lÞq

t
ði0;j ;k;l 0Þ�

3
:

Thus, starting from any initial distribution of genotypes one can straightforwardly trace
out the dynamics of the population’s genotype distribution.

It is well-known that the distribution of genotypes in the above dynamical system
converges to linkage equilibrium regardless of the initial distribution (Christiansen,
1999). In linkage equilibrium, the fraction of individuals of any particular genotype is
the product of the within-locus population frequencies with which each allele occurs.
So, if we let pi denote the fraction of the population’s locus-A alleles that are equal to
i 2 fa; a0g and let pj denote the fraction of the population’s locus-B alleles that are
equal to j 2 fb; b0g and similarly for pk and pl for alleles at loci C and D, then the
limiting population frequency of genotype (i, j, k, l) is pipjpkpl . It is easy to verify that
this distribution is indeed an equilibrium of the above dynamical system and it is
unique by the global convergence result.

Importantly, the rate of convergence to linkage equilibrium is very fast, exponential
in fact. Consequently, returning now to the case in which N < ∞, if N is not too small,
the distribution of genotypes will be very close to linkage equilibrium prior to the first
attack. We can now describe the dynamics of the biparental population.

For N not too small, the distribution of genotypes will be approximately in linkage
equilibrium just prior to an attack, i.e. genotype (i, j, k, l ) will occur with frequency
close to pipjpkpl : When an attack occurs, all individuals of one genotype, say (a, b, c, d),
will be eliminated. But because the population was close to linkage equilibrium, all
alleles remain present, for example, allele a occurs in the still-present genotype
ða; b0; c; dÞ which made up a positive fraction, approximately papb0pcpd , of the pre-attack
population. The distribution of alleles, however, is no longer the same, for example,
the new relative frequency of allele a to allele a0 has fallen to approximately
ð1� pbpcpdÞpa=pa0 : Consequently, during the next N generations the population will
converge approximately to its new linkage equilibrium before the next attack.

The overall biparental dynamics are therefore as follows. Beginning approximately
from linkage equilibrium, all individuals of a random genotype are killed by a parasitic
attack. All alleles remain present, however. The population, with its new distribution of
alleles, converges after N generations to its new approximate linkage equilibrium. The
next attack occurs, killing all individuals of a random genotype and so on. Thus, a
biparental population survives forever.16

Clearly then, biparental sex has an overwhelming advantage over asexual reproduc-
tion. But what about triparental sex? The key observation, and this observation holds

16 It is possible that the population fraction of some particular allele tends to zero along the path. But the
fact remains that the species survives forever.
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very generally, is that the dynamics are unaffected by whether sexual reproduction is
biparental or 1

4 -
1
4 -

1
2 sexual. This is because of the convergence result:

(R1) For any given distribution of alleles, the distribution of genotypes in a 1
4 -

1
4 -

1
2

sexual population converges, at an exponential rate, to the same linkage
equilibrium distribution as in a biparental population.17

To get a sense of this convergence result, let us suppose that 1
4 -

1
4 -

1
2 sex works as

follows. There are equal populations of males and females and each female is
randomly matched with two males (each male mates twice). In each mating instance,
there are two males and one female, and the alleles in two of the offspring’s loci come
from its mother and the other two alleles come, one each, from the two fathers, with all
twelve possibilities being equally likely.

While analysis of the triparental dynamics would take us too far afield (Perry et al.,
2007), let us show that the biparental population’s linkage equilibrium distribution is
also a linkage equilibrium distribution of the triparental population. Suppose then that
the triparental population begins with the biparental population’s linkage equilibrium
distribution of genotypes. It suffices to show, by symmetry, that the fraction of
triparental offspring with genotype (a, b, c, d) is papbpcpd : One way that this offspring
can be produced is if the mother contributes ab and the first father contributes c and
the second father contributes d. The fraction of mothers whose AB loci contain ab is
papb ; the fraction of fathers whose C locus contains c is pc and the fraction of fathers
whose D locus contains d is pd : Hence, the fraction of triparental matches of this kind is
papbpcpd : There is a one-sixth probability that the mother in this triparental match
contributes ab and a one-half probability that the first father contributes c and the
second contributes d. Hence, this one way of producing the offspring (a, b, c, d) has
probability papbpcpd=12: Since there are twelve equiprobable ways of producing this
particular offspring, the resulting fraction of offspring with this genotype is papbpcpd ;
exactly as in the previous generation.

Hence, because the red queen dynamics depend only on the derived sequence of
linkage equilibria, and because by (R1) the linkage equilibria are the same whether sex
is biparental or 1

4 -
1
4 -

1
2 triparental, the population growth rate will be the same with

either sexual system. So, biparental sex can dominate asexual reproduction but 1
4 -

1
4 -

1
2

sex can never dominate biparental sex. Consequently, in contrast to the mutational
model, biparental sex dominates triparental sex here if the latter involves even an
arbitrarily small extra cost.

Finally, let us address two further issues. First, one might wonder what would happen
if the number of generations between attacks were random. As before, an asexual
population goes extinct with probability one. But the biparental and triparental
populations can never go extinct so long as their populations have at least four distinct
genotypes, because if the number of genotypes is ever reduced to three, sexual
recombination ensures that the next generation consists of at least four. Furthermore,

17 See Perry et al. (2007) who show that this convergence result holds for any number of alleles, any
number of loci, any number of ploids and any ploid-symmetric distribution over recombination events such
that the probability that an offspring receives any two alleles from the same parent is less than one (i.e. there
is imperfect linkage between loci).
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we expect that there remains no advantage of triparental sex over biparental sex given
their shared tendencies toward linkage equilibrium.

Second, one might wonder whether an asexual species can successfully invade a
biparental population. To ensure that it cannot, one may need to allow the interactions
between the host and parasite to be more frequent. Then, the biparental (or
triparental) population need not arrive approximately at linkage equilibrium between
successive parasitic attacks. Nevertheless, we would not expect triparental sex to have
any advantage over biparental sex but further study here would be welcome.

4. Discussion

There are rich returns to addressing the question: ‘Why is sex never triparental?’
Under the mutational hypothesis, triparental sex always dominates biparental sex

and high genomic mutation rates only serve to increase this advantage. With all three
options available, either asexuality would be best or triparental sex would be best.
Accordingly, biparental sex should not be observed.

In contrast, there is a ray of hope with the red queen hypothesis. Using a deliberately
simplified red queen model, we have shown that biparental sex can have even an
overwhelming advantage over asexuality, yet there is no further gain from more than
two parents.

These results demonstrate that those who ask ‘why sex?’ should also ask ‘and why
only in pairs?’ Answering the second question can distinguish between otherwise
equally plausible answers to the first.
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