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Abstract
This paper investigates the use of Maximum Simulated Likelihood estima-

tion for random effects dynamic probit models with autocorrelated errors. It
presents a new Stata command, redpace, for this estimator and illustrates its
usage. The paper also compares the use of pseudo-random numbers and Halton
sequences of quasi-random numbers for the MSL estimation of these models.

1 Introduction

This paper examines the estimation of dynamic probit models, specifically models
in which the outcome probability is dependent on the outcome in the previous time
period. The presence of omitted individual heterogeneity, in the form of individual-
specific effects, results in an “initial conditions” problem and renders the standard
Random Effects Probit estimator inconsistent.
If the latent equation time-varying error terms are serially uncorrelated, the model

can under certain conditions, be estimated consistently by a Maximum Likelihood
estimator proposed by Heckman. Evaluation of the likelihood in this case can be based
on the same Gauss-Hermite quadrature approximation for the resulting integral as is
used in standard Random Effects Probit estimators such as that in Stata’s xtprobit
command. A new Stata routine for the Heckman estimator of this model is presented
en route below.
If the error terms are autocorrelated, the Heckman estimator too is inconsistent.

Extending it to the autocorrelated case results in the need to evaluate higher dimen-
sional integrals. Maximum Simulated Likelihood is a natural estimator to use in this
case. This paper describes, and implements in Stata, a Maximum Simulated Likeli-
hood estimator for the Random Effects Dynamic Probit model with autocorrelated
errors. An empirical illustration is provided and the issue of the required number of
simulations investigated.
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2 A random effects dynamic probit model

The equation for the latent dependent variable is specified as

y∗it = γyit−1 + x0itβ + αi + uit (1)

(i = 1, . . . , N ; t = 2, . . . , T ), where y∗it is the latent dependent variable and yit is the
observed binary outcome variable, defined as:

yit =

½
1 if y∗it ≥ 0
0 else

(2)

and where xit is a vector of explanatory variables and uit ∼ N(0, σ2u). The subscript
i indexes individuals and the subscript t indexes time periods. N is taken to be
large, but T is typically small and regarded as fixed, so that asymptotics are on N
alone. Even when the errors uit are assumed serially independent, the composite
error term, vit = αi + uit, will be correlated over time due to the individual—specific
time—invariant αi terms. The individual-specific random effects specification adopted
implies equi-correlation between the vit in any two (different) periods:

λ = Corr(vit, vis) =
σ2α

σ2α + σ2u
t, s = 2, . . . , T ; t 6= s (3)

The standard (uncorrelated) random effects model also assumes αi uncorrelated
with xit. Alternatively, following Mundlak (1978) and Chamberlain (1984), correla-
tion between αi and the observed characteristics in the model can be allowed for by
assuming a relationship between α and either the time means of the x-variables or a
combination of their lags and leads, e.g.: αi = x0ia + ζi, where ζi ∼ iid Normal and
independent of xit and uit for all i, t. This simply has the effect of adding time means
or lags and leads to the set of explanatory variables. To simplify notation the original
form (1) will be used here with the understanding that these additional terms are
subsumed into the x-vector in the case of the correlated random effects model.
Since y is a binary variable, a normalization is required. A convenient one is that

σ2u = 1. If uit is normally distributed, the transition probability for individual i at
time t, given αi, is then given by

P [yit|xit, yit−1, αi] = Φ [(γyit−1 + x0itβ + αi)(2yit − 1)] . (4)

Estimation of the model requires an assumption about the initial observations,
yi1, and in particular about their relationship with the αi. The assumption giving
rise to the simplest form of model for estimation is to take the initial conditions, yi1,
to be exogenous. However even if the start of the y-process coincides with the start
of the observation period for each individual and the entire history of the y-process
is observed, which is not generally the case, the assumption of independence between
yi1 and αi is a very strong one. For example, in the context of the union membership
illustration used below, even if each individual were observed from labour market
entry onwards, the assumption would require an individual’s union status in first
job to be unrelated to their individual-specific factor αi. Under this assumption a
standard Random Effects Probit program (such as xtprobit) can be used, since the
likelihood can be decomposed into two independent factors and the joint probability
for t = 2, . . . , T maximized without reference to that for t = 1. If, however, the initial
conditions are correlated with the αi, as would be expected in most situations, this
method of estimation will tend to overstate the degree of state dependence, γ.
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3 Heckman’s estimator for the case of serially in-
dependent errors

The approach to the initial conditions problem proposed by Heckman (1981) involves
specifying a linearized reduced form equation for the initial value of the latent variable:

y∗i1 = z0i1π + ηi (5)

(i = 1, . . . , N), where zi1 is a vector of exogenous instruments (and includes xi1) and
ηi is correlated with αi, but uncorrelated with uit for t ≥ 2. Using an orthogonal
projection, it can be written as:

ηi = θαi + ui1 (6)

(θ > 0), with αi and ui1 independent of one another. It is also assumed that ui1
satisfies the same distributional assumptions as uit for t = 2, . . . , T . (Any change in
error variance will also be captured in θ.) The linearized reduced form for the latent
variable for the initial time period is therefore specified as

y∗i1 = z0i1π + θαi + ui1 (7)

(i = 1, . . . , N), where z will include period 1 values of x-variables, typically together
with pre-sample variables as instruments.1

The joint probability of the observed binary sequence for individual i, given αi,
in the Heckman approach, assuming serially independent uit, is thus:

Φ [(z0i1π + θαi)(2yi1 − 1)]
TY
t=2

Φ [(γyit−1 + x0itβ + αi)(2yit − 1)] . (8)

For a random sample of individuals the likelihood to be maximized is then given by

Y
i

Z
α∗

(
Φ [(z0i1π + θσαα

∗)(2yi1 − 1)]
TY
t=2

Φ [(γyit−1 + x0itβ + σαα
∗)(2yit − 1)]

)
dF (α∗)

(9)
where F is the distribution function of α∗ = α/σα. Under the normalization used,
σα =

p
λ/(1− λ). If α is taken to be normally distributed, the integral over α∗

can be evaluated using Gaussian—Hermite quadrature (Butler and Moffitt, 1982). See
Stewart (2005) for an application of the estimator in the context of an investigation
of the dynamics of the conditional probability of unemployment. A Stata program
for this estimator of the random effects dynamic probit model, redprob, can be
downloaded from the author’s website.

4 Models with autocorrelated errors

If the error term uit is autocorrelated, reflecting for example correlation between tran-
sitory shocks, this complicates estimation considerably. Extension of the Heckman
estimator to this case requires the evaluation of T-dimensional integrals of Normal

1An alternative Conditional Maximum Likelihood estimator for the serially independent errors
case has been proposed by Wooldridge (2005).
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densities. Simulation estimators provide a feasible way to address this problem. A
Maximum Simulated Likelihood (MSL) estimator (see for example Gourieroux and
Monfort, 1996, and Cameron and Trivedi, 2005), based on the GHK algorithm of
Geweke, Hajivassiliou and Keane (see for example Keane, 1994) is presented here.
The MSL estimation routine provides a consistent estimator of the vector of para-
meters as the number of simulation draws tends to infinity (and is asymptotically
equivalent to the ML estimator). Strictly for the simulation error to disappear as-
ymptotically, the number of simulation draws needs to increase at a rate greater than
the square root of the sample size.
The model used in the program described here is as described above but with uit

following either an AR(1) process or an MA(1) process. Ω, the variance-covariance
matrix of vi = (vi1, . . . , viT )

0 will now be a function of λ, θ and one additional pa-
rameter. The error vector can be written as vi = Cηi with ηi ∼ N(0, I) and C the
lower-triangular Cholesky decomposition of Ω (i.e. such that CC 0 = Ω). The GHK
algorithm then uses the fact that the probability of an observed sequence of ys can
be written as the product of recursively defined conditional probabilities.
Using the Cholesky decomposition, the latent equations can be written as

y∗it = μit +
tX

j=1

ctjηij (10)

where μit = γyit−1 + x0itβ for t ≥ 2 and μi1 = z0i1π. The probability of an observed
sequence of ys is given by

Pi = Φ((yi1 − 1)ai1) ×
Z Ui1

Li1

Φ((yi2 − 1)ai2)φ(ηi1)dηi1

×
Z Ui1

Li1

Z Ui2

Li2

Φ((yi3 − 1)ai3)φ(ηi1)φ(ηi2)dηi2dηi1

× . . . (11)

where ai1 = μi1/c11, ai2 = (μi2 + c21ηi1)/c22, ai3 = (μi3 + c31ηi1 + c32ηi2)/c33, etc. and
(Lit, Uit) = (−ait,∞) if yit = 1 or (−∞,−ait) if yit = 0. For a sequence of length
T this probability will be the product of T such terms. As can be seen from this
expression, simulation of the probabilities requires draws from a truncated Normal.
If ξit is a draw from a standard uniform distribution, then the required draws from a
truncated Normal are constructed as Φ−1[(1− ξit)Φ(Lit) + ξitΦ(Uit)].
The steps in the GHK simulator for this model are therefore as follows (for the

rth draw):

1. Calculate ai1 = μi1/c11.

2. Draw ξri1 from a standard uniform and calculate ηri1 = Φ−1[(1 − ξri1)Φ(Li1) +
ξri1Φ(Ui1)] and ari2 = (μi2 + c21η

r
i1)/c22.

3. Draw ξri2 from a standard uniform and calculate ηri2 = Φ−1[(1 − ξri2)Φ(L
r
i2) +

ξri2Φ(U
r
i2)] and ari3 = (μi3 + c31η

r
i1 + c32η

r
i2)/c33.

4. Repeat this step successively for the remaining time periods.
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The simulated likelihood is then given by

L∗ =
NY
i=1

(
1

R

RX
r=1

"
Φ((2yi1 − 1)ai1)

TY
t=2

Φ((2yit − 1)arit)
#)

(12)

Two models with first-order autocorrelation are considered here. In the first of
these, as considered by Hyslop (1999) and Stewart (2005), uit is specified as a first-
order autoregressive process:

uit = ρuit−1 + εit (13)

with −1 < ρ < 1. In this model the variance-covariance matrix of vi is given by:

Ω =

⎡⎢⎢⎢⎢⎢⎣
θ2σ2α + 1
θσ2α + ρ σ2α + 1
θσ2α + ρ2 σ2α + ρ σ2α + 1

...
...

...
. . .

θσ2α + ρT−1 σ2α + ρT−2 σ2α + ρT−3 · · · σ2α + 1

⎤⎥⎥⎥⎥⎥⎦ (14)

where σ2α = λ/(1− λ). The model is estimated by MSL as outlined above.
In the second model uit is specified as a first-order moving average process:

uit = εit − μεit−1 (15)

In this case the variance-covariance matrix of vi is given by:

Ω =

⎡⎢⎢⎢⎢⎢⎣
θ2σ2α + 1
θσ2α − ω σ2α + 1
θσ2α σ2α − ω σ2α + 1
...

...
...

. . .
θσ2α σ2α σ2α · · · σ2α + 1

⎤⎥⎥⎥⎥⎥⎦ (16)

where σ2α = λ/(1− λ) and ω = μ/(1 + μ2). Again the model is estimated by MSL.
The basic estimator uses R pseudo-random number draws (from a standard uni-

form), which are assumed to be independent. Efficiency of the estimator can be
improved by using variance reduction methods which use dependent draws. The best
known is antithetic sampling. In this case, for each draw ξ from the standard uniform
distribution, we also use (1−ξ). Hence the R random draws consist of R/2 antithetic
pairs, {ξr, 1− ξr}. Antithetic sampling can reduce the variance of the MSL estima-
tor, but this is not guaranteed. This idea can be extended by using segments of the
unit interval in conjunction with the antithetics. The sub-division provided by this
“symmetric systematic sampling” gives more even coverage, but there is a trade-off
between coverage and randomness. (See Train, 2003, pp. 221-4.)
Another approach to improving the efficiency of the estimator that can be used is

to replace the pseudo-random numbers by quasi-random numbers. These systematic
sequences are constructed to provide better coverage of the domain of the distribution.
One of the simplest is Halton sequences. A detailed treatment of these is given in Train
(2003). See Cappellari and Jenkins (2006) for a Stata program. In certain situations
use of these produces variance reduction and hence improves efficiency. To put this
another way, a particular level of efficiency can be achieved with a lower number of
draws and hence reduce computer time. The evidence of Train (2003) and others
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for mixed logit models suggests that the number of draws required can be reduced
considerably by the use of Halton sequences. However Train (2003) warns that Halton
draw results need to be viewed with caution and describes some anomalous findings.
Both pseudo-random draws (with and without antithetics) and Halton draws are
provided as options in the program described below. The comparison is discussed
further in the context of the empirical illustration in Section 6 below.

5 The redpace command

5.1 Syntax

redpace depvar varlist (varlistinit) [if exp] [in range] [, i(varname) t(varname)
seed(#) seg(#) halton primes(matname) drop(#) from(matname) mavg noauto]

The lagged dependent variable must be constructed by the user and must appear
as the first variable in varlist. It is the user’s responsibility to ensure that both this
variable and depvar are binary 0/1 variables. varlist should additionally contain the
variables in x . varlistinit should contain the variables in z .
redpace requires a balanced panel, that is the number of “time” observations, T ,

for each cross-section unit must be the same. This is checked by the program.
The parameters, λ, θ, and ρ (in the AR(1) model) are constrained by use of trans-

formations. Logit, log and arc-hyperbolic tangent transformations are used respec-
tively. The transformed parameters that are estimated are therefore: ln(λ/(1− λ)),
ln(θ), and 1

2
ln((1+ρ)/(1−ρ)). The estimates of the original parameters and their ap-

proximate asymptotic standard errors are presented after convergence using _diparm.

5.2 Options

i(varname) specifies the variable name that contains the cross-section identifier, cor-
responding to index i.

t(varname) specifies the variable name that contains the time-series identifier, cor-
responding to index t.

rep(#) specifies the number of replications, or draws, R.
seed(#) specifies the initial value of the pseudo-random number seed to be used by
the uniform() function. Use the seed option to ensure reproducibility of results.
The number specified must be an integer. The default is 81234567. seed is ignored
if halton is specified.

seg(#) specifies symmetric systematic sampling (with antithetics) to be used and
specifies the number of segments of the unit interval that are to be used. seg(2)
provides antithetic sampling. The default value is 1 (i.e. standard sampling). If
seg is specified, the number of replications, R, must be a multiple of the number
of segments, and the number of segments must be a multiple of 2.

halton specifies that Halton quasi-random sequences are to be used rather than
pseudo-random numbers, which is the default. This option requires the program
mdraws (Cappellari and Jenkins, 2006).

primes(matname) specifies a 1 × (T − 1) matrix containing the prime numbers to
be used for the Halton sequences. Ignored if halton not specified. The numbers
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specified must be integers. It is the user’s responsibility to ensure that they are
primes.

drop(#) specifies the number of initial elements of the Halton sequence to be dropped
for burn in. Ignored if halton not specified. The default is 0.

from(matname) specifies a matrix containing starting values for the parameters of
the model. Use this option to check that a global maximum has been found. Also
use to reduce required number of iterations or to restart a previously halted run.
The default uses a pooled probit for t ≥ 2 and separate probit for the initial period
reduced form.

mavg specifies that the first-order moving average model should be used. The default
is the first-order autoregressive model.

noauto specifies that the model without autocorrelated errors (i.e. the Heckman
model of Section 3) is to be estimated (by MSL). This is useful for comparing
with the Gaussian-Hermite quadrature estimates of the same model to see if the
value of R chosen is large enough in that case.

6 Example using Stata Reference Manual data

This section gives an example of the use of the command and the output produced
using the union data (http://www.stata-press.com/data/r9/union.dta) used in [R]
xtprobit to model the probability of union membership. The data are for US young
women and are from the NLSY. A subsample of the dataset is used: (1) only data
from 1978 onwards are used, (2) the data for 1983 are dropped, and (3) only those
individuals observed in each of the remaining 6 waves are kept:

drop if year<78
drop if year==83
by idcode: gen nwav=_N
keep if nwav==6

This gives N = 799 individuals observed in each of T = 6 waves and hence a
sample size of NT = 4, 794. In the example here the observations for 85 and 87 are
implicitly treated as if they were for 84 and 86 respectively, which would give 6 waves
at regular 2-year intervals.
In addition to the lagged dependent variable, the model used includes age (age

in current year), grade (years of schooling completed), and south (1 if resident in
south). These variables are contained in x in the specification of the model given
above. The vector z additionally contains the variable not_smsa (1 if living outside a
standard metropolitan statistical area). This variable has a significant negative effect
on the probability of union membership in the initial period reduced form, whether
estimated as a separate probit or as part of the full model.
The output from the redpace program using pseudo-random numbers without

antithetics and R = 500 to estimate the AR(1) model is as follows:

. sort idcode year

. by idcode: gen tper = _n

. by idcode: gen Lunion = union[_n-1]
(799 missing values generated)

. redpace union Lunion age grade south (age grade south not_smsa), /*
> */ i(idcode) t(tper) rep(500) seed(945430778) from(bstart1)
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Pseudo-random number draws
Seed set to 945430778
# of replications = 500
Standard sampling

(output deleted)

RE Dynamic Probit Model with AR1 errors Number of obs = 4794
Wald chi2(4) = 155.53

Log likelihood = -1854.0621 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
union | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
union |

Lunion | 1.322202 .1537599 8.60 0.000 1.020838 1.623566
age | -.0234323 .008068 -2.90 0.004 -.0392452 -.0076194

grade | -.0363382 .0199431 -1.82 0.068 -.0754259 .0027495
south | -.3695182 .0991797 -3.73 0.000 -.5639069 -.1751295
_cons | .0803735 .400068 0.20 0.841 -.7037454 .8644924

-------------+----------------------------------------------------------------
rfper1 |

age | .0108658 .024266 0.45 0.654 -.0366946 .0584262
grade | -.0133834 .0333403 -0.40 0.688 -.0787291 .0519623
south | -.7548028 .1667058 -4.53 0.000 -1.08154 -.4280655

not_smsa | -.4195162 .1659528 -2.53 0.011 -.7447778 -.0942547
_cons | -.891098 .8482112 -1.05 0.293 -2.553561 .7713655

-------------+----------------------------------------------------------------
/logitlam | .075697 .28295 0.27 0.789 -.4788748 .6302688

/atar1 | -.3512991 .0650661 -5.40 0.000 -.4788263 -.2237719
/ltheta | .2041693 .1742898 1.17 0.241 -.1374323 .545771

-------------+----------------------------------------------------------------
lambda | .5189152 .0706363 7.35 0.000 .3825179 .6525504

ar1 | -.3375271 .0576535 -5.85 0.000 -.4453032 -.2201101
theta | 1.226506 .2137674 5.74 0.000 .8715933 1.725939

------------------------------------------------------------------------------

The estimate of γ is positive and highly significant. The three x-variables all have
negative effects on the conditional probability of union membership. The effects of
age and south are significant at the 1% level, that of grade at the 10% level. The
estimate of λ implies that 52% of the composite error variance is attributed to that
in the individual-specific effects. The estimate of θ is significantly greater than 0 and
insignificantly different from 1. The estimate of ρ is significantly negative, implying
that successive realizations of uit are negatively correlated.
Alternative estimators for the model are presented in Table 1. The first estimates

presented are simple pooled probit estimates. These ignore the cross-correlation be-
tween the composite error term in different time periods for the same individual. This
gives an estimate of γ of 1.88, larger than for the other estimators in the table, but the
estimates of the β-coefficients are all smaller and less significant than for the other
estimators. However care needs to be taken with such comparisons. The random
effects models and the pooled probit model use different normalizations. The ran-
dom effects models use a normalization of σ2u = 1, while the pooled probit estimator
uses σ2v = 1. When making comparison with pooled probit estimates, random effects
model estimates need to be multiplied by an estimate of σu/σv =

√
1− λ.

The xtprobit estimates in the next column allow individual-specific effects, but
take the initial condition to be exogenous. This results in a considerable reduction
in the estimate of γ. Allowing for the different normalizations, the scaled estimate of
the coefficient on lagged union membership is 0.7949, less than half the pooled probit
estimate. The estimated coefficients on the x-variables are all more significant than
the pooled probit estimates and, even after rescaling for the different normalizations,
larger (in absolute value). The restriction λ = 0 reduces this random effects probit
specification to the pooled probit without the random individual-specific effects. This
restriction, i.e. the absence of individual-specific effects, can be tested by comparing
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columns [1] and [2]. However adjustment to the standard test is required since the
parameter vector under the null hypothesis lies on the boundary of the parameter
space, and the standard asymptotic theory of classical tests is not applicable in such
boundary situations. (See Godfrey, 1988, and Andrews, 2001.) The quasi-likelihood-
ratio statistic for this restriction equals 20.92. The limiting distribution of the test
statistic is equal to one half of the distribution function of a χ2(1) random variable
plus one half. Thus for example the 1% asymptotic critical value for the quasi-
likelihood-ratio test is given by the 98th percentile of a χ2(1) random variable, 5.412
(display invchi2(1,0.98)). The p-value for this quasi-likelihood-ratio test statistic can
be calculated as chi2tail(1,q)/2, where q is the test statistic. In this case the p-value
is zero to several decimal places. The hypothesis λ = 0 is strongly rejected.
The third column gives the results from using the Heckman estimator of Section 3

(using the program redprob). This allows for the endogeneity of the initial condi-
tions, but assumes no autocorrelation in the uit. This results in a reduction in the
estimate of γ compared to the xtprobit estimates, and a further increase in absolute
value in the β slope coefficients. Exogeneity of the initial conditions in the random
effects model can be viewed as resulting from imposing θ = 0 on this model. Here
too, testing this hypothesis must allow for the fact that it is on the boundary of the
parameter space. The quasi-likelihood-ratio statistic, comparing columns [2] and [3],
is 222.76. The p-value, calculated as above, is zero to several decimal places. The
hypothesis θ = 0 is strongly rejected.
The fourth column gives the corresponding estimates using Maximum Simulated

Likelihood estimation instead of Gaussian-Hermite quadrature, and using the same
pseudo-random number draws as used for the AR(1) model in the final column. There
is reasonably close agreement with the previous column, suggesting that 500 replica-
tions is sufficient for the MSL estimator at least in the no autocorrelation case.
The final column of the table reproduces the estimates from the Stata output given

above for the AR(1) model. Compared with the model without autocorrelation, the
estimate of γ doubles. The increase in γ̂ is to be expected since ρ̂ < 0. When the
estimates are scaled relative to σv rather than σu, the increase is even more marked.
The estimates of the β slope coefficients decline slightly in absolute value when au-
tocorrelation is introduced and are close to the corresponding xtprobit estimates.
The hypothesis of no autocorrelation is strongly rejected. The transformed parameter
atar1 has a z-ratio of -5.40 and hence gives a Wald χ2(1) test statistic of 29.2. The
likelihood-ratio test statistic (also χ2(1)) is 11.8. The random effects probit model
with AR(1) errors in column [5] clearly dominates the other columns of Table 1.
To investigate the number of replications required for the MSL estimator, the

same model was estimated (with the same initial seed) for different values of R. The
estimates of the main parameters of interest in the model (γ, λ, ρ) and the value of
the maximised log simulated likelihood are given in Table 2. The estimates change
relatively little once R is greater than about 100. The same is true for the maximised
log simulated likelihood. Note that the maximised log simulated likelihood is not
monotonic in R. How much accuracy one demands of the parameter estimates is a
matter of judgement. On the basis of this particular seed the 500 replications used
initially seems sufficient.
On a 2.4GHz Pentium 4 Windows XP machine running Stata/SE 9.0 this model

with 500 replications took 15 hours 37 minutes for 4 iterations to convergence. Run
times are close to proportional to R.
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Another useful approach to investigating the number of replications required is to
examine the MSL estimates based on different seeds. Of course this type of exercise
is almost limitless. The limited exercise conducted here examined the MSL estimates
for 10 different seeds (themselves randomly chosen). The 10 seeds were selected, to
avoid overlaps of the sequences, as follows:

set obs 10
set seed 987654321
gen long s=int((uniform()+10-_n)*100000000)

The resulting 10 seeds are listed in Table 3. The estimates of the main parameters
of interest in the AR(1) model (γ, λ, ρ) and the value of the maximised log simulated
likelihood using R = 500 based on each of these 10 seeds are given in Table 3. The
estimate of γ varies between 1.301 and 1.333, a range of 0.032, slightly over 2% of the
mean estimate. The estimates of λ have a range of 0.015 and those of ρ a range of
0.012. These seem relatively small. However the maximised log simulated likelihood
varies between -1853.55 and -1855.72 across the ten seeds. This gap of 2.17 is probably
rather more than one would want to see.
The variation in the estimates of the key parameters across the ten seeds for

different values of R is shown in Table 4. Required accuracy is a matter of judgement,
but the gaps between the minimum and maximum estimates for R ≤ 100 might be
viewed as greater than acceptable.
The same model was also estimated using Halton sequences of quasi-random num-

bers. To investigate the number of replications required for the MSL estimator in this
case, the model was estimated using 10 different sets of primes. (Each run requires 5
primes since T = 6.) The 10 sets of primes used are given in Table 5 together with
the estimates, using R = 100, of the main parameters of interest (γ, λ, ρ) and the
value of the maximised log simulated likelihood. While not essential, the primes 2
and 5 are not used with this value of R to avoid perfect correlations due to cycles.
The estimates of γ vary between 1.302 and 1.324, a range of 0.022. The estimates of
λ have a range of 0.011 and those of ρ a range of 0.009. These are all slightly less than
the corresponding ranges for pseudo-random numbers with R = 500. The maximised
log simulated likelihood has a range of 0.97, which is less than half the range for 500
pseudo-random numbers in Table 3.
The variation in the estimates of the key parameters across the ten sets of primes

for different values of R is shown in Table 6. Although again subject to judgement,
the variation for R < 100 might be viewed as greater than acceptable, while that for
R = 100 compares favourably with the results based on 500 pseudo-random numbers.
It may be debated whether comparing the variation in MSL estimates using Hal-

ton sequences of quasi-random numbers across different sets of primes is comparable
with comparing the variation in MSL estimates using pseudo-random numbers across
different seeds. However, subject to this, there is evidence here of the use of Halton
sequences reducing the number of replications required. Further investigation of this
issue is part of ongoing research.
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Table 1
Estimates for different models

Pooled RE probit redprob redpace redpace
probit (xtprobit) quadrature no auto with AR(1)

MSL MSL
[1] [2] [3] [4] [5]

γ 1.8849 1.1507 0.6344 0.6350 1.3222
(0.0525) (0.1421) (0.0983) (0.0985) (0.1538)

age -0.0087 -0.0240 -0.0286 -0.0285 -0.0234
(0.0058) (0.0086) (0.0092) (0.0092) (0.0081)

grade -0.0145 -0.0387 -0.0539 -0.0532 -0.0363
(0.0103) (0.0207) (0.0269) (0.0268) (0.0199)

south -0.1685 -0.3692 -0.4883 -0.4903 -0.3695
(0.0519) (0.1034) (0.1239) (0.1241) (0.0992)

constant -0.6986 0.1788 0.5633 0.5609 0.0804
(0.2474) (0.4183) (0.4799) (0.4795) (0.4001)

λ 0.5228 0.6996 0.6991 0.5189
(0.0730) (0.0345) (0.0346) (0.0706)

θ 0.8641 0.8613 1.2265
(0.1095) (0.1089) (0.2138)

ρ -0.3375
(0.0577)

No. obs. 3995 3995 4794 4794 4794
Model lnL -1573.64 -1563.18 -1860.22 -1859.96 -1854.06
Total lnL -1982.06 -1971.60 -1860.22 -1859.96 -1854.06

Notes:
1. Standard errors in brackets.
2. redpace estimates given are based on 500 replications.
3. The seed used is 945430778.
4. redprob and xtprobit estimates given are based on 24 quadrature points.
5. For the Pooled probit and RE probit columns, the total log-likelihood is the sum of

the model log-likelihood (for t ≥ 2; 3995 observations) and that for a simple probit for the
initial period reduced form (t = 1; 799 observations).

12



Table 2
MSL estimates for AR(1) model for different numbers of replications

R γ λ ρ Ln(SL)

20 1.376 (0.147) 0.479 (0.070) -0.328 (0.053) -1859.84
50 1.341 (0.154) 0.502 (0.072) -0.329 (0.057) -1858.15
100 1.312 (0.152) 0.521 (0.069) -0.329 (0.057) -1854.22
200 1.318 (0.154) 0.519 (0.070) -0.334 (0.058) -1853.80
500 1.322 (0.154) 0.519 (0.071) -0.338 (0.058) -1854.06
1000 1.316 (0.156) 0.521 (0.071) -0.335 (0.059) -1854.31

Notes:
1. Standard errors in brackets.
2. MSL based on pseudo-random numbers. The seed used is 945430778.
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Table 3
MSL estimates for AR(1) model for R=500 and different seeds
Pseudo-random numbers

Row Seed γ λ ρ Ln(SL)

1 945430778 1.322 (0.154) 0.519 (0.071) -0.338 (0.058) -1854.06
2 862683501 1.318 (0.155) 0.520 (0.071) -0.335 (0.059) -1854.74
3 700921694 1.323 (0.156) 0.518 (0.072) -0.336 (0.058) -1855.72
4 642850439 1.301 (0.156) 0.528 (0.070) -0.329 (0.060) -1854.51
5 594203018 1.326 (0.155) 0.516 (0.072) -0.337 (0.058) -1855.58
6 480067244 1.304 (0.156) 0.527 (0.070) -0.331 (0.060) -1853.85
7 366110265 1.327 (0.153) 0.517 (0.070) -0.338 (0.058) -1855.34
8 241963761 1.322 (0.152) 0.520 (0.070) -0.338 (0.057) -1854.53
9 177063593 1.333 (0.154) 0.513 (0.072) -0.341 (0.058) -1855.51
10 80102774 1.321 (0.153) 0.520 (0.070) -0.339 (0.058) -1853.55

Notes:
1. Standard errors in brackets.
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Table 4
Variation in MSL parameter estimates across different seeds
Pseudo-random numbers

Parameter Mean Min Max Std. Dev.

R = 20
γ 1.388 1.249 1.489 .0646
λ 0.475 0.423 0.531 .0287
ρ -0.334 -0.378 -0.270 .0277
R = 50
γ 1.356 1.289 1.451 .0466
λ 0.497 0.451 0.521 .0211
ρ -0.336 -0.372 -0.299 .0196
R = 100
γ 1.343 1.310 1.383 .0241
λ 0.506 0.486 0.521 .0114
ρ -0.338 -0.350 -0.329 .0075
R = 200
γ 1.333 1.311 1.372 .0182
λ 0.513 0.492 0.524 .0091
ρ -0.338 -0.350 -0.333 .0059
R = 500
γ 1.320 1.301 1.333 .0100
λ 0.520 0.513 0.528 .0046
ρ -0.336 -0.341 -0.329 .0036

Notes:
1. All statistics calculated across 10 seeds.
2. Seeds used are given in Table 3.
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Table 5
MSL estimates for AR(1) model for R=100 and different sets of primes
Halton quasi-random numbers

Row Primes γ λ ρ Ln(SL)

1 (3, 7, 11, 13, 17) 1.305 (0.156) 0.526 (0.070) -0.330 (0.059) -1854.89
2 (7, 11, 13, 17, 19) 1.322 (0.154) 0.519 (0.070) -0.338 (0.058) -1854.84
3 (3, 11, 13, 17, 19) 1.312 (0.154) 0.524 (0.070) -0.336 (0.058) -1854.08
4 (3, 7, 13, 17, 19) 1.322 (0.153) 0.519 (0.070) -0.338 (0.058) -1854.46
5 (3, 7, 11, 17, 19) 1.324 (0.154) 0.517 (0.071) -0.339 (0.058) -1854.79
6 (3, 7, 11, 13, 19) 1.314 (0.155) 0.522 (0.071) -0.335 (0.059) -1854.72
7 (7, 11, 13, 17, 23) 1.313 (0.156) 0.523 (0.071) -0.333 (0.059) -1855.05
8 (3, 11, 13, 17, 23) 1.302 (0.158) 0.528 (0.071) -0.330 (0.060) -1854.32
9 (3, 7, 13, 17, 23) 1.318 (0.156) 0.521 (0.071) -0.335 (0.059) -1854.65
10 (3, 7, 11, 17, 23) 1.316 (0.157) 0.521 (0.072) -0.334 (0.060) -1855.01

Notes:
1. Standard errors in brackets.
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Table 6
Variation in MSL parameter estimates across different sets of primes
Halton quasi-random numbers

Parameter Mean Min Max Std. Dev.

R = 10
γ 1.284 1.242 1.325 0.0283
λ 0.530 0.512 0.549 0.0118
ρ -0.302 -0.325 -0.282 0.0141
R = 20
γ 1.315 1.260 1.368 0.0371
λ 0.517 0.495 0.537 0.0151
ρ -0.327 -0.350 -0.295 0.0180
R = 50
γ 1.335 1.314 1.366 0.0158
λ 0.508 0.493 0.518 0.0082
ρ -0.335 -0.342 -0.329 0.0039
R = 80
γ 1.331 1.314 1.348 0.0135
λ 0.516 0.508 0.523 0.0056
ρ -0.342 -0.350 -0.335 0.0059
R = 100
γ 1.315 1.302 1.324 0.0073
λ 0.522 0.517 0.528 0.0033
ρ -0.335 -0.339 -0.330 0.0032

Notes:
1. All statistics calculated across 10 sets of primes.
2. Sets of primes used are given in Table 5.
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