Lecture Outline

1. Constrained Optimisation
 - Introduction
 - Pseudo-Theorem
 - Counterexample

2. Lagrange Theorem
 - Intuitive Argument
 - Implicit Function Theorem
 - First Order Necessary Conditions
 - Second Order Necessary Conditions
 - First and Second Order Necessary Conditions
 - Necessary Conditions are not Sufficient
 - First and Second Order Sufficient Conditions
Introduction

- Suppose $D \subseteq \mathbb{R}^K$, K finite, is open.
- $f : D \rightarrow \mathbb{R}$
- $g : D \rightarrow \mathbb{R}^J$, with $J \leq K$.
- We would like to solve:

$$\max_{x \in D} f(x) \text{ s.t. } g(x) = 0,$$

(1)

- In the previous notation, one wants to find

$$\max_{x \in D'} f(x)$$

where $D' = \{x \in D | g(x) = 0\}$.
- We will analyse when the Lagrangean method can be used.
- We will derive necessary and sufficient conditions for a constrained global maximum.
The method that is usually applied consists of the following steps:

1. Defining the Lagrangean function $\mathcal{L} : D \times \mathbb{R}^J \rightarrow \mathbb{R}$, by

 $$\mathcal{L}(x, \lambda) = f(x) + \sum_{j=1}^{J} \lambda_j g_j(x);$$

2. Finding $(x^*, \lambda^*) \in D \times \mathbb{R}^J$ such that $D\mathcal{L}(x^*, \lambda^*) = 0$.

That is, a recipe is applied as though there is a “Theorem” that states:

Let $f : D \rightarrow \mathbb{R}$ and $g : D \rightarrow \mathbb{R}^J$ be differentiable. Then $x^* \in D$ solves Problem (1) if and only if there exists $\lambda^* \in \mathbb{R}^J$ such that (x^*, λ^*) solves:

$$\frac{\partial f(x^*)}{\partial x_i} + \sum_{j=1}^{J} \lambda^*_j \frac{\partial g(x^*)}{\partial x_i} = 0, \text{ for all } i = 1, \ldots, K.$$
Countexample

- \(f(x_1, x_2) = x_1 x_2 \) and \(g(x_1, x_2) = (1 - x_1 - x_2)^3 \).

 \[x^* \text{ solves } \max_{x \in \mathbb{R}^2} f(x) \text{ s.t. } g(x) = 0 \iff x^* \text{ solves } \max_{x \in \mathbb{R}^2_+} f(x) \text{ s.t. } g(x) = 0. \]

- The second problem has a solution by Weierstrass Theorem.
- The unique maximiser is \((x^*_1, x^*_2) = (\frac{1}{2}, \frac{1}{2})\).
- According to the “theorem” there is \(\lambda^* \) such that \((x^*_1, x^*_2, \lambda^*)\) solves:

 \[
 \begin{align*}
 (a) \quad & \frac{\partial L}{\partial x_1} = 0 \iff x_2 - 3\lambda(1 - x_1 - x_2)^2 = 0 \\
 (b) \quad & \frac{\partial L}{\partial x_2} = 0 \iff x_2 - 3\lambda(1 - x_1 - x_2)^2 = 0 \\
 (c) \quad & \frac{\partial L}{\partial \lambda} = 0 \iff (1 - x_1 - x_2)^3 = 0
 \end{align*}
 \]

- A solution to this system of equations does not exist.
- Equation (c) implies that at any solution it must be the case that \(x^*_1 + x^*_2 = 1\).
- (a) and (b) imply that both \(x^*_1\) and \(x^*_2\) are zero, a contradiction.
Intuitive Argument

- Suppose $D = \mathbb{R}^2$ and $J = 1$, Given $f : \mathbb{R}^2 \to \mathbb{R}$ and $g : \mathbb{R}^2 \to \mathbb{R}$.

- We want to solve

 $$\max_{(x,y) \in \mathbb{R}^2} f(x,y) \quad \text{s.t.} \quad g(x,y) = 0. \quad (P)$$

- Suppose:

 A1. There is $h : \mathbb{R} \to \mathbb{R}$ such that $g(x, y) = 0$ if and only if $y = h(x)$.

 A2. The function h is differentiable.

- A ”crude” method would be to study the unconstrained problem

 $$\max_{x \in \mathbb{R}} F(x), \quad (P^*)$$

 where $F : \mathbb{R} \to \mathbb{R}$ is defined by $F(x) = f(x, h(x))$.
Intuitive argument

1. \(g(x, h(x)) = 0 \Rightarrow g_x'(x, h(x)) + g_y'(x, h(x)) h'(x) = 0, \)
2. \(h'(x) = -\frac{g_x'(x, h(x))}{g_y'(x, h(x))}. \)
3. Apply FONC to \((P^*)\): \(x^* \) solves \(\max_{x \in \mathbb{R}} F(x) \) only if \(F'(x^*) = 0. \)

 \[
 f'_x(x^*, h(x^*)) + f'_y(x^*, h(x^*)) h'(x^*) = 0,
 \]
 \[

 \iff

 f'_x(x^*, h(x^*)) - f'_y(x^*, h(x^*)) \frac{g'_x(x^*, h(x^*))}{g'_y(x^*, h(x^*))} = 0.
 \]

4. Define \(y^* = h(x^*) \) and \(\lambda^* = -\frac{\partial_y f(x^*, y^*)}{\partial_y g(x^*, y^*)} \in \mathbb{R}, \)
5. Then, we get that \((x^*, y^*, \lambda^*)\) solves

 \[
 f'_x(x^*, y^*) + \lambda^* g'_x(x^*, y^*) = 0,
 \]
 \[
 f'_y(x^*, y^*) + \lambda^* g'_y(x^*, y^*) = 0.
 \]
Intuitive argument

- The “crude” method has shown that:

Let \(f : D \to \mathbb{R} \) and \(g : D \to \mathbb{R}^J \) be differentiable and \((A1)-(A2)\) hold. If \(x^* \in D \) is a local maximiser in (1), there exists \(\lambda^* \in \mathbb{R}^J \) such that \((x^*, \lambda^*)\) solves:

\[
\frac{\partial f(x^*)}{\partial x_i} + \sum_{j=1}^{J} \lambda_j^* \frac{\partial g(x^*)}{\partial x_i} = 0, \text{ for all } i = 1, \ldots, K.
\]

- Under what conditions \((A1)\) and \((A2)\) hold?
- Under what conditions \(h\) exists and is differentiable?
Implicit Function Theorem

- We assumed h exists and
- We assumed $g'_y(x^*, y^*) \neq 0$. Of course, $g_x(x^*, y^*) \neq 0$ would be enough.
- What we actually require is $Dg(x^*, y^*)$ has rank 1, its maximum possible.
- Is this a general result, or does it only work in our simplified case?

Theorem The Implicit Function Theorem

Let $D \subseteq \mathbb{R}^K$ and let $g : D \rightarrow \mathbb{R}^J \in C^1$, with $J \leq K$. If $y^* \in \mathbb{R}^J$ and $(x^*, y^*) \in D$ is such that $\text{rank}(D_y g(x^*, y^*)) = J$, then there exist $\varepsilon, \delta > 0$ and $h : B_{\varepsilon}(x^*) \rightarrow B_{\delta}(y^*) \in C^1$ such that:

1. for every $x \in B_{\varepsilon}(x^*)$, $(x, h(x)) \in D$;
2. for every $x \in B_{\varepsilon}(x^*)$, $g(x, y) = g(x^*, y^*)$ for $y \in B_{\delta}(y^*)$ iff $y = h(x)$;
3. for every $x \in B_{\varepsilon}(x^*)$, $Dh(x) = -D_y g(x, h(x))^{-1} D_x g(x, h(x))$.
First Order Necessary Conditions

Theorem

Let \(f : D \rightarrow \mathbb{R} \) and \(g : D \rightarrow \mathbb{R}^J \) be \(C^1 \) and \(\text{rank}(D_y g(x^*, y^*)) = J \). If \(x^* \in D \) is a local maximiser in (1), there exists \(\lambda^* \in \mathbb{R}^J \) such that \((x^*, \lambda^*)\) solves:

\[
\frac{\partial f(x^*)}{\partial x_i} + \sum_{j=1}^{J} \lambda_j^* \frac{\partial g(x^*)}{\partial x_i} = 0, \quad \text{for all } i = 1, \ldots, K.
\]
Second Order Necessary Conditions

- The SONC for problem \((P^*)\) is that \(F''(x^*) \leq 0\). Note that:

\[
F''(x) = f'_{xx}(x, h(x)) + [f'_{xy}(x, h(x)) + f'_{yx}(x, h(x))]h'(x) + f'_{yy}(x, h(x))h'(x)^2 + f_y'(x, h(x))h''(x),
\]

\[
h''(x) = -\frac{\partial}{\partial x} \left(\frac{g_x(x, h(x))}{g_y(x, h(x))} \right) = -\frac{1}{g_y(x, h(x))} \left[1 \ h'(x) \right] D^2 g(x, h(x)) \left[\begin{array}{c} 1 \\ h'(x) \end{array} \right]
\]

- Substituting \(h''\) and writing in matrix form, \(F'' \leq 0\) becomes

\[
\begin{bmatrix} 1 & h'(x) \end{bmatrix} D^2 f(x, h(x)) \left[\begin{array}{c} 1 \\ h'(x) \end{array} \right] - \frac{f_y'(x, h(x))}{g_y'(x, h(x))} \left[1 \ h'(x) \right] D^2 g(x, h(x)) \left[\begin{array}{c} 1 \\ h'(x) \end{array} \right] \leq 0
\]

\[
\Leftrightarrow (1 \ h'(x^*)) D^2_{(x, y)} \mathcal{L}(x^*, y^*, \lambda^*) \left(\begin{array}{c} 1 \\ h'(x^*) \end{array} \right) \leq 0.
\]
This condition is satisfied if $D^2_{(x,y)} \mathcal{L}(x^*, y^*, \lambda^*)$ is negative semi-definite.

Notice that

\[
\begin{pmatrix} 1 & h'(x^*) \end{pmatrix} \cdot Dg(x^*, y^*) = 0,
\]

so it suffices that we guarantee that for every $\Delta \in \mathbb{R}^2 \setminus \{0\}$ such that $\Delta \cdot Dg(x^*, y^*) = 0$ we have that $\Delta^\top D^2_{(x,y)} \mathcal{L}(x^*, y^*, \lambda^*) \Delta \leq 0$.

So, in summary, we have argued that:

Let $f : D \to \mathbb{R}$ and $g : D \to \mathbb{R}^J$ be C^1 and rank$(D_y g(x^*, y^*)) = J$. If $x^* \in D$ is a local maximiser in (1), then $\Delta^\top D^2_{(x,y)} \mathcal{L}(x^*, y^*, \lambda^*) \Delta \leq 0$ for all $\Delta \in \mathbb{R}^2 \setminus \{0\}$ such that $\Delta \cdot Dg(x^*, y^*) = 0$.
First and Second Order Necessary Conditions

Theorem Lagrange - FONC and SONC

Let \(f : D \to \mathbb{R} \) and \(g : D \to \mathbb{R}^J \) be \(C^1 \) with \(J \leq K \). Let \(x^* \) be such that

\[
\text{rank}(D_y g(x^*, y^*)) = J.
\]

If \(x^* \in D \) is a local maximiser in (1), then there exists \(\lambda^* \in \mathbb{R}^J \) such that

1. \(D\mathcal{L}(x^*, \lambda^*) = 0 \).
2. \(\Delta^\top D^2\mathcal{L}(x^*, \lambda^*)\Delta \leq 0 \) for all \(\Delta \in \mathbb{R}^J \setminus \{0\} \) satisfying \(\Delta \cdot Dg(x^*) = 0 \);
Necessary Conditions are not Sufficient

- The existence of \((x^*, \lambda^*) \in \mathbb{R}^K \times \mathbb{R}^J\) such that

\[
\frac{\partial f(x^*)}{\partial x_i} + \sum_{j=1}^{J} \lambda_j^* \frac{\partial g(x^*)}{\partial x_i} = 0, \text{ for all } i = 1, \ldots, K.
\]

might not be sufficient for \(x^*\) to be a local maximiser of Problem 1.
Counterexample

- $f(x_1, x_2) = -\left(\frac{1}{2} - x_1\right)^3$ and $g(x_1, x_2) = 1 - x_1 - x_2$.
- $(x_1^*, x_2^*, \lambda^*) = (\frac{1}{2}, \frac{1}{2}, 0)$ satisfies the constraint qualification, it solves

\[
\begin{align*}
(a) & \quad \frac{\partial L}{\partial x_1} = 0 \iff 3 \left(\frac{1}{2} - x_1\right)^2 - \lambda = 0 \\
(b) & \quad \frac{\partial L}{\partial x_2} = 0 \iff -\lambda = 0 \\
(c) & \quad \frac{\partial L}{\partial \lambda} = 0 \iff 1 - x_1 - x_2 = 0
\end{align*}
\]

and satisfies the (necessary) second order condition since

\[
\begin{align*}
\frac{\partial L}{\partial x_i, x_i}(x_1^*, x_2^*, \lambda^*) & = 0, \text{ for } i = 1, 2 \\
\frac{\partial L}{\partial x_i, x_j}(x_1^*, x_2^*, \lambda^*) & = 0, \text{ for } i \neq j.
\end{align*}
\]

- However, $(x_1^*, x_2^*) = (\frac{1}{2}, \frac{1}{2})$ is not a local maximiser since $f(\frac{1}{2}, \frac{1}{2}) = 0$ but $(\frac{1}{2} + \varepsilon, \frac{1}{2} - \varepsilon)$ is also in the constrained set and $f(\frac{1}{2} + \varepsilon, \frac{1}{2} - \varepsilon) > 0$ for any $\varepsilon > 0$.

Theorem Lagrange - FOSC and SOSC

Let $f : D \to \mathbb{R}$ and $g : D \to \mathbb{R}^J$ be C^2, with $J \leq K$. If $(x^*, \lambda^*) \in \mathbb{R}^K \times \mathbb{R}^J$ satisfy:

1. $DL(x^*, \lambda^*) = 0$ and

2. $\Delta^\top D^2_{x,x} \mathcal{L}(x^*, \lambda^*) \Delta < 0$ for all $\Delta \in \{ \mathbb{R}^J \setminus \{0\} : \Delta \cdot Dg(x^*) = 0 \}$.

Then, x^* is a local maximiser in Problem (1).