Asset Prices, Market Selection and Belief Heterogeneity
Arrow-Debreu and Sequential Markets

Pablo F. Beker

Department of Economics
University of Warwick

April, 2016

This lecture is based on “Implementing Arrow-Debreu equilibria by trading infinitely-lived securities.” by Huang and Werner, Economic Theory, 24, 2004.
The Economy

- There is a single perishable consumption good every period.
- A consumption plan is a sequence \(\{ c_t \}_{t=0}^{\infty} \) such that \(c_0 \in \mathbb{R}_+ \) and \(c_t : S^\infty \rightarrow \mathbb{R}_+ \) is \(\mathcal{F}_t \)-measurable for all \(t \geq 1 \) and \(\sup_{(t,s)} c_t(s) < \infty \).
- Let \(c(s^t) \equiv c_t(s) \) for any \(t \) and \(s^t \in S^t \).
- Given \(s_0 \), \(C(s_0) \) denotes the set of all consumption plans.

- The economy is populated by \(I \) (types of) infinitely-lived agents where \(i \in I = \{ 1, \ldots, I \} \) denotes an agent’s name.
- Agent \(i \) is endowed with initial endowment \(\omega_i \in C(s_0) \)
- The aggregate endowment \(\bar{\omega} \equiv \sum_i \omega_i \).

- An allocation is a collection of plans \(\{ c_i \}_{i \in I} \).
- An allocation is feasible if \(\sum_i c_i(s^t) \leq \bar{\omega}, \forall s^t, \forall t \).
There exists a market at the initial date 0 for consumption at date \(t \) conditional on event \(s^t \), for every date \(t \) and every event \(s^t \).

Prices are described by a *pricing functional*, that is, a linear functional \(P \) which is positive and well-defined (finitely valued) on each consumer’s initial endowment.

It follows that a pricing functional is well-defined on the aggregate endowment \(\overline{\omega} \) and, therefore, on each feasible allocation. It may or may not be well-defined on the entire consumption set \(C(s_0) \).

The price of one unit of consumption in event \(s^t \) under pricing functional \(P \) is \(p(s^t) \equiv P(e(s^t)) \), where \(e(s^t) \) denotes the consumption plan equal to 1 in event \(s^t \) at date \(t \) and zero in all other events and all other dates.

A pricing functional \(P \) is **countably additive** if and only if \(P(c) = \sum_t \sum_{s^t} p(s^t)c(s^t) \) for every \(c \) for which \(P(c) \) is well-defined.
Arrow Debreu Budget Set

- Trades occur only at date zero.
- Agent \(i \) can only choose a consumption plan such that the value of consumption does not exceed the value of agent \(i \)'s endowment.
- The agent chooses a plan on the budget set \(B_{AD}(P, \omega_i) \) where:

\[
B_{AD}(P, \omega_i) \equiv \left\{ c \in C(s_0) : P(c) \leq P(\omega_i) \right\}
\]

\[
= \left\{ c \in C(s_0) : \sum_{t=0}^{\infty} \sum_{s^t \in S^t} p(s^t)c(s^t) \leq \sum_{t=0}^{\infty} \sum_{s^t \in S^t} p(s^t)\omega_i(s^t) \right\}
\]

- Consumer \(i \)'s problem is to choose a consumption plan \(c_i \in C(s_0) \) such that

\[
c_i \succsim_i c, \forall c \in B_{AD}(P, \omega_i)
\]
Arrow Debreu Equilibrium

- Agents trade at date zero under a single budget constraint.

Definition

An *Arrow-Debreu equilibrium* is a pricing functional P and a consumption allocation $\{c^i\}_{i=1}^I$ such that c^i solves consumer i’s problem and markets clear.

- The Arrow-Debreu model of contingent commodity markets is hardly realistic.
- Yet, it serves as an important tool for the analysis of infinite-time security markets.
- This is because one can show that Arrow-Debreu equilibria and equilibria in sequential security markets with debt constraints have the same consumption allocations when markets are dynamically complete and debt bounds are nonbinding.
Sequential Markets

- There are $J \geq S$ infinitely-lived securities traded at every date.
- Each security j is specified by a dividend process d_j which is adapted to $\{\mathcal{F}_t\}_{t=0}^\infty$ and nonnegative.
- The ex-dividend price of security j in event s^t is denoted by $q_j(s^t)$, and q_j is the price process of security j.
- Portfolio strategy θ specifies a portfolio of J securities $\theta(s^t)$ held after trade in each event s^t.
- The payoff of portfolio strategy θ in event s^t at a price process q is

$$z(q, \theta)(s^t) \equiv \left[q(s^t) + d(s^t) \right] \theta(s^{t-1}) - q(s^t)\theta(s^t)$$

Definition

Security price process q is one-period-arbitrage free in event s^t if there does not exist a portfolio $\theta(s^t)$ such that:

$$[q(s^t, s_{t+1}) + d(s^t, s_{t+1})] \theta(s^t) \geq 0 \text{ for all } s \text{ and } q(s^t)\theta(s^t) \leq 0,$$

with at least one strict inequality.
No arbitrage

If q is arbitrage free in every event, then there exists a sequence of strictly positive state prices $\{\{\pi_q(s^t)\}_{s^t \in S^t}\}_{t=0}^\infty$ with $\pi_q(s^0) = 1$ such that

$$\pi_q(s^t)q_j(s^t) = \sum_{s_{t+1} \in S} \pi_q(s^t, s_{t+1}) [q_j(s^t, s_{t+1}) + d_j(s^t, s_{t+1})] \quad \forall s^t, \forall j$$

Definition

Security markets are one-period complete in event s^t at prices q if the one-period payoff matrix $[q(s^t, s_{t+1}) + d(s^t, s_{t+1})]_{s_{t+1} \in S}$ has rank S. Security markets are complete at q if they are one-period complete at every event.

Suppose the security prices q are one-period arbitrage free and that markets are complete at q. Then, the fundamental value of security j at s^t is defined using the unique state prices as

$$\frac{1}{\pi_q(s^t)} \sum_{\tau=1}^\infty \sum_{s^\tau \in S^\tau} \pi_q(s^t, s^\tau) d_j(s^t, s^\tau) \quad (1)$$
Sequential Markets

- Each agent i has an initial portfolio $\alpha_i \in \mathbb{R}^J$ at date 0.

- The dividend stream $\alpha_i d$ on initial portfolio constitutes one part of consumer i’s endowment. The rest is $y_i \in C(s_0)$ and becomes available to the consumer at each date in every event. Thus,
 \[\omega_i(s_t) = y_i(s^t) + \alpha_i d(s^t), \quad \forall s^t \in S^t \]

- The supply of securities is $\bar{\alpha} = \sum_i \alpha_i$.

- The adjusted aggregate endowment is $\bar{y} = \sum_i y_i$. Let’s assume $\bar{\alpha} \geq 0$.
Sequential Budget Set

- \(\theta_i \) supports \(c_i \) at \((q, y_i) \) if

\[
c_{i,0} + q(s^0)\theta(s^0) \leq y_i(s_0) + q(s_0)\alpha_i
\]

\[
c_i(s^t) + q(s^t)\theta(s^t) \leq y_i(s^t) + [q(s^t) + d(s^t)]\theta(s^{t-1}), \quad \forall s^t \neq s_0
\]

- Consumers must also face constraints in their portfolio strategies for otherwise they would use Ponzi schemes. There is a set \(\Theta_i \) of feasible supporting portfolios.

- The sequential budget set is:

\[
B(q; y_i) \equiv \left\{ c_i \in C(s_0) : \exists \theta_i \in \Theta_i \; \exists c_i(s^t) + q(s^t)\cdot \theta_i(s^t) \leq y_i(s^t) + r(s^t)\cdot \theta_i(s^{t-1}), \; \forall s \in S^\infty, \; \forall t \geq 0. \right\}
\]
The Wealth Constraint

- A frequently used portfolio constraint is the so-called wealth constraint. It prohibits a consumer from borrowing more than the present value of his future endowment. Formally,

\[q(s^t)\theta(s^t) \geq -\sum_{\tau=1}^{\infty} \sum_{s^\tau \in S^\tau} \frac{\pi q(s^t, s^\tau)}{\pi q(s^t)} y(s^t, s^\tau) \]

- The set of Arrow-Debreu equilibrium allocations is the same as the set of Sequential Markets equilibrium allocations under the wealth constraint with no bubbles.

- There always exist a sequential equilibria with price bubbles under the wealth constraint if some securities are in zero net supply.
Essentially Bounded Portfolios

- A portfolio constraint for which neither price bubbles nor negative security prices arise in equilibrium and AD equilibria can be implemented in sequential markets.

Definition
A portfolio \(\theta \) is bounded from below if \(\min_j \inf_{(t,s^t)} \theta_j(s^t) > -\infty \)

Definition
A portfolio strategy \(\theta \) is essentially bounded from below at \(q \) if there is a bounded from below portfolio strategy \(b \) s.t. \(q(s^t)\theta(s^t) \geq q(s^t)b(s^t) \) \(\forall s^t \).

Proposition
If security price vector \(q(s^t) \) is positive and nonzero for every partial history \(s^t \), then portfolio \(\theta \) is essentially bounded if and only if \(\inf_{s^t} \frac{q(s^t)}{\sum_j q_j(s^t)} \theta(s^t) > -\infty. \)
Euler Equations

We say that c_i satisfies the *Euler* equation at the price process q if

$$u'_i(c_i, t(s)) q_j, t(s) = \beta_i \cdot E_{P_i}[r_j, t_{+1} \cdot u'_i(c_i, t_{+1}) | \mathcal{F}_t](s) \quad \forall j \in J, \forall s \in S^\infty, \forall t \geq 0.$$

Assumption U: $u_i : R^{++} \rightarrow R$ is

(i) strictly increasing, strictly concave, C^1 & $u_i(0) \equiv \lim_{c \rightarrow 0^+} u_i(c)$

(ii) $\beta_i \in (0, 1)$.

Definition

For i, c_i is a maximizer given q if

1. $c_i \in B(q; y_i)$ and

2. there is no $\tilde{c}_i \in B(q; y_i)$ for which

$$\lim_{T \rightarrow +\infty} \sum_{t=0}^{T} \beta_i^t E_{P_i}[u_i(\tilde{c}_i, t)] > \lim_{T \rightarrow +\infty} \sum_{t=0}^{T} \beta_i^t E_{P_i}[u_i(c_i, t)].$$
Necessary Condition

Suppose the investor can freely buy or sell as much of asset \(j \) as she wishes at a price \(q_{j,t} \).

Denote by \(c_i \) the optimal consumption plan.

She can alter her consumption plan as follows:

\[
\tilde{c}_{i,t} = c_t - q_{j,t} \cdot \xi_t \\
\tilde{c}_{i,t+1} = c_{t+1} + r_{j,t+1} \cdot \xi_t
\]

If \(c_i \) maximises the consumer’s utility, then

\[
q_{j,t} \cdot u_i'(c_{i,t}) = E_{P_i} \left[\beta_i \cdot u_i'(c_{i,t+1}) \cdot r_{j,t+1} \middle| \mathcal{F}_t \right],
\]
Sufficient Conditions

Theorem

Suppose Assumption \(\mathcal{U} \). Given \((q, y_i)\), let \(c_i \in B(q; y_i) \) be such that

1. \(\lim_{T \to +\infty} \sum_{t=0}^{T} \beta_t^i E_P[i u_i(c_i,t)] > -\infty \),
2. satisfies the Euler equation at the price process \(q \),
3. for every \(\tilde{\theta}_i \) that supports a \(\tilde{c}_i \in B(q; y_i) \) the transversality condition at date 0 holds,

\[
\lim_{T \to +\infty} \beta^T_i E_P[i u'_i(c_i, T) \cdot q_T \cdot (\tilde{\theta}_i, T - \theta_i, T)] \geq 0.
\]

where \(\theta_i \) supports \(c_i \) at \((q, y_i)\). Then \(c_i \) is the maximiser on \(B(q; y_i) \).
Bubbles

If the fundamental value (1) is finite, the price bubble $\sigma_{qj}(s^t)$ is

$$
\sigma_{qj}(s^t) \equiv q_j(s^t) - \frac{1}{\pi_q(s^t)} \sum_{\tau=1}^{\infty} \sum_{s^{\tau} \in S^\tau} \pi_q(s^t, s^{\tau}) d_j(s^t, s^{\tau})
$$

Proposition

If the price of security j is nonnegative in every event, then the fundamental value of security j is finite and does not exceed the price of security j, i.e.

$$
0 \leq \sigma_{qj}(s^t) \leq q_j(s^t)
$$

for every s^t. If the fundamental value of security j is finite and $\sigma_{qj}(s^t) \geq 0$ for every s^t, then $q_j(s^t) \geq 0$ for every s^t.

Note that (1) and (2) implies that

$$
\sigma_{qj}(s^t) = \frac{1}{\pi_q(s^t)} \sum_{s_{t+1} \in S} \pi_q(s^t, s_{t+1}) \sigma_{qj}(s^t, s_{t+1})
$$

$$
\sigma_{qj}(s^t) = \lim_{T \to \infty} \frac{1}{\pi_q(s^t)} \sum_{s^{T} \in S^T} \pi_q(s^t, s^{T}) q_j(s^t, s^{T})
$$
Bubbles under the Wealth Constraint

- A representative agent economy without uncertainty: \(y_t = y \) for all \(t \geq 0 \).
- A consol pays \(d_t = d < y \), is in zero net-supply and trades at price \(q^c_t \).
- In any equilibrium \(c_t = y \) and \(\theta_t = 0 \) for all \(t \geq 0 \).
- \(q^c_t = \frac{\beta}{1-\beta} d + \varepsilon_t \) where \(\varepsilon_t = \varepsilon_0 \left(\frac{1}{\beta} \right)^t \). Hence, \(\pi_q(s^t) = \beta^t \).
- The wealth constraint: \(q^c(s^t)\theta(s^t) \geq -\sum_{\tau=1}^{\infty} \frac{\pi_q(s^t,s^\tau)}{\pi_q(s^t)} y(s^t,s^\tau) = -y \frac{\beta}{1-\beta} \)
- \(c \) satisfies the Euler equation:
 \[
 q^c_t = \beta \left(\frac{1}{1-\beta} d + \varepsilon_0 \left(\frac{1}{\beta} \right)^{t+1} \right) = \beta \left(\frac{\beta}{1-\beta} d + d + \varepsilon_{t+1} \right) = \beta (q^c_{t+1} + d)
 \]
- \(c \) satisfies the TC:
 \[
 \lim_{T \to \infty} \beta^T q^c_T (\tilde{\theta}_T - \theta_T) = \lim_{T \to \infty} \beta^T q^c_T \tilde{\theta}_T \geq \lim_{T \to \infty} \beta^T \left(-y \frac{\beta}{1-\beta} \right) = 0.
 \]
Bubbles under the Wealth Constraint

- Suppose there is a risk-free bond with price q_t^b. Clearly, $q_t^b = \beta$.
- Let $q_t = (q_t^c, q_t^b)$.
- Suppose the agent shorts the consol in one unit and invest $\frac{\beta}{1-\beta}d$ units of the bond at zero to meet the consol payments?
 - $\tilde{\theta}_t = \left(-1, \frac{\beta}{1-\beta}d \frac{d}{\beta} \right)$ for all $t \geq 0$.
 - $q_0\tilde{\theta}_0 = -q_0^c + \frac{\beta}{1-\beta}d = \varepsilon_0 > 0$.
 - $\left[(q_t^c + d)\tilde{\theta}_{t-1}^c + \tilde{\theta}_{t-1}^b\right] - \left[q_t^c\tilde{\theta}_t^c + q_t^b\tilde{\theta}_t^b\right] = -d + \frac{\beta}{1-\beta}d + \beta \frac{\beta}{1-\beta}d = 0$
 - $\tilde{\theta}_t$ supports $\tilde{c}_0 = c_0 + \varepsilon$, $\tilde{c}_t = c_t$.
- How is this compatible with c being optimal?
- The key is that $\tilde{\theta}$ violates the wealth constraint and so $\tilde{c} \notin \mathcal{B}(q, y)$.
 - $q_t\tilde{\theta}_t = -q_t^c + q_t^b \frac{\beta}{1-\beta}d = -\left(\frac{\beta}{1-\beta}d + \varepsilon_t\right) + \frac{\beta}{1-\beta}d = -\varepsilon_0 \left(\frac{1}{\beta}\right)^t \to -\infty$.

Arrow Debreu and Sequential Markets
No Bubbles with Essentially Bounded Portfolios

Theorem

If \(q \) is an equilibrium price process such that \(\theta \) is essentially bounded and security markets are complete at \(q \), then \(q(s^t) \geq 0 \) and \(\sigma_{q_j}(s^t) = 0 \) for every \(s^t \).
Equivalence I

Theorem

Let allocation \(\{c_i\}_{i=1}^I \) and pricing functional \(P \) be an Arrow-Debreu equilibrium. If \(P \) is countably additive, \(P(d_j) < \infty \) for each \(j \), security markets are complete at prices \(q \) given by

\[
q_j(s^t) = \frac{1}{p(s^t)} \sum_{\tau=t+1}^{\infty} p(s^\tau) d_j(s^\tau) \quad \forall s^t, \forall j
\]

(3)

and there exists an essentially bounded portfolio strategy \(\eta \) such that

\[
-\frac{1}{p(s^t)} \sum_{\tau=t+1}^{\infty} \sum_{s^\tau \in S^\tau} p(s^\tau) y(s^\tau) \geq q(s^t) \eta(s^t) \quad \forall s^t, \forall j
\]

(4)

then there exists a portfolio allocation \(\{\theta_i\}_{i=1}^I \) such that \(q \) and the allocation \(\{c_i, \theta_i\}_{i=1}^I \) are a sequential equilibrium with essentially bounded portfolios.
Equivalence II

Theorem

Let security prices q and $\{c_i, \theta_i\}_{i=1}^I$ be a sequential equilibrium with essentially bounded portfolios. If security markets are complete at q and there exists an essentially bounded portfolio strategy η such that

$$-rac{1}{\pi_q(s^t)} \sum_{\tau=t+1}^{\infty} \sum_{s^\tau \in S^\tau} \pi_q(s^\tau) \bar{y}(s^\tau) \geq q(s^t)\eta(s^t) \quad \forall s^t,$$

then $\{c_i, \theta_i\}_{i=1}^I$ and pricing functional P given by

$$P(c) = \sum_t \sum_{s^t \in S^t} \pi_q(s^t)c(s^t)$$

are an Arrow-Debreu equilibrium.