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Abstract

This paper provides a unified framework to study the long-run dynamics of competitive
equilibrium consumption allocations in stochastic exchange economies with complete markets
and multiple consumers whose preferences belong to a general class of recursive preferences,
encompassing both expected-utility and various common non-expected utility preferences. We
provide a characterization of the long-run consumption dynamics and apply it to study the
robustness of the market selection hypothesis that market favors consumers with more accurate
beliefs. In sharp contrast to the results for the class of expected utility studied by Sandroni
(2000) and Blume and Easley (2006), we show that the existence of multiple survivors is the
robust long-run outcome for our general class of preferences. Our results imply there is an
inherent tension between two broadly held tenets in economics and finance, that markets
allocate resources efficiently and equilibrium allocations can eventually be described as a rational
expectations equilibrium.
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1 Introduction

A long-standing tenet in economics is that agents who do not make correct predictions are driven
out of the market, in the sense that they lose their wealth at the hand of those that make more
correct predictions. This tenet, put forward by authors like Alchian (1950), Friedman (1953) and
Cootner (1964), is known as the market selection hypothesis (henceforth, MSH). The MSH is very
influential. It is often invoked to justify the use of rational expectations equilibrium as a solution
concept in modern economics because it implies that asset prices eventually reflect only the beliefs
of agents making correct predictions.

Sandroni (2000) and Blume and Easley (2006) study formally the market selection hypothesis
in a general equilibrium framework.1 They find the MSH holds in a complete market with
bounded endowment when consumers have subjective expected utility (SEU hereafter) preferences.2

Specifically, they show that among consumers with the same discount rate, survival depends only
on the accuracy of beliefs. There has already been some progress on relaxing the SEU assumption.
Condie (2008) consider the cases of max-min preferences and shows that only consumers with SEU
and correct beliefs survive.3 Guerdjikova and Sciubba (2015) show that consumers with smooth
ambiguity aversion preferences and correct beliefs can drive SEU maximizers out of the market.
Dindo (2019) and Borovička (2020) show that consumers with homothetic Epstein-Zin preferences
and incorrect beliefs can survive in the presence of consumers with correct beliefs. These findings
suggest there might be a tension between two broadly held tenets in economics and finance: (a)
markets allocate resources efficiently and (b) equilibrium allocations can be described as a rational
expectations equilibrium. However, these recent papers do not provide a definite answer as they
only consider a particular set of preferences and the MSH could be restored once one allows for
other preferences.

In this paper, we provide a unified framework to study the MSH when consumers’ preferences
belong to a general class of recursive preferences, nesting both expected-utility and many common
non-expected utility preferences as special cases. More formally, we allow consumers’ preferences
to take the following recursive form

Vt = F (ct,Rt (Vt+1)) ,

where F is the time aggregator which describes the attitude toward temporal resolution of uncertainty,
and R is the certainty equivalent aggregator which describes the attitude toward the uncertainty
in continuation values. By appropriately choosing F and R, our framework can nest almost all

1Blume and Easley (1992) were the first to study the MSH in a market clearing model but they do not allow for
intertemporal optimization. Cogley and Sargent (2009) study the quantitative effect of the MSH on asset prices.

2Some alternative setups have been studied, for example unbounded endowments (Yan (2008), Cvitanić and
Malamud (2011) and Kogan et al. (2006, 2017)), incomplete markets (Blume and Easley (2006), Beker and
Chattopadhyay (2010), Coury and Sciubba (2012), Cao (2017) and Cogley et al. (2014)), continuum of agents
(Massari, 2019) and asymmetric information (Mailath and Sandroni, 2003).

3Da Silva (2011) and Easley and Yang (2015) consider the cases of variational and loss aversion preferences,
respectively, but also fail to identify a persistent impact on market outcomes.
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preferences studied in the MSH literature, and many other interesting deviations from SEU that
haven’t been explored before. Our general analysis shows the MSH is not robust both globally and
locally in a sense that will be made precise later. Furthermore, our analysis implies that the robust
long-run outcome with general preferences is the existence of multiple survivors. Therefore, our
paper makes evident there is actually an inherent tension between the two aforementioned tenets
in economics and finance.

In what follows, we describe our approach and results in greater detail. We consider an infinite-
horizon exchange economy similar to Sandroni (2000) and Blume and Easley (2006) extended
to allow for general recursive preferences. We begin our analysis by showing the existence of a
competitive equilibrium, which is based on the existence theorem due to Bewley (1969) that requires
preferences to be strongly monotone, weakly convex and continuous in the Mackey topology.
We assume monotonicity and concavity of the aggregators to argue that the generated recursive
preferences are strongly monotone and weakly convex, and we adapt the arguments in Marinacci
and Montrucchio (2010) to prove the desired continuity property.

Afterwards we provide our characterization of the long-run consumption dynamics. As in
Sandroni (2000) and Blume and Easley (2006), we study the evolution of consumption by studying
the dynamics of the ratio of marginal utilities of consumption stemming from the first-order
condition of the consumer’s problem. We show that in any competitive equilibrium, the growth
rate of any two consumers’ marginal utility ratio at date t depends on the ratio of two terms: (i)
the consumer’s marginal value of the certainty equivalent aggregator of future utility, F2, which
is referred to as the effective discount rate, and (ii) the consumers’ marginal certainty equivalent
value of next period utilities, ∇Rt, which is referred to as the effective belief. When consumers
have SEU preferences, the effective discount rate and beliefs become the standard discount rate
and subjective beliefs, so the dynamics of marginal utility ratios are relatively simple as both
objects are exogenously given. With general recursive preferences, instead, both effective beliefs
and effective discount rate are endogenously determined and can depend on consumers’ equilibrium
consumption.

To tackle this technical difficulty, this paper adopts a local approach that consists in studying
the (exogenous) dynamics of the marginal utility ratio when some consumer consumes the aggregate
endowment and argue that it approximates the original dynamics. We define a local domination
relation by saying that i locally dominates j if the expected log of consumer i’s effective discount
rate and beliefs is larger than that of consumer j when i consumes all the endowment. We show that
when i locally dominates j, the log ratio of their marginal utilities can be approximated by a local
supermartingale, which allows us to show that when i consumes almost all the endowment, there
is a positive probability that she dominates the market, i.e., is the unique consumer who survives
in the limit. Under the assumption that each such “one-consumes-all” neighborhood is visited
with positive probability, we characterize the long-run dynamics in terms of our local domination
relationship. We first consider the case of two consumers in Theorem 2. In sharp contrast with
the expected-utility case where, except for tie cases, the consumer with more accurate beliefs is the
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unique survivor, Theorem 2 shows that a variety of patterns can emerge with general utility. We
construct examples of economies where either (a) each consumer survives with positive probability
or (b) both consumers co-exist with probability one or (c) some consumer with incorrect beliefs
is the unique survivor. Afterwards, we extend the discussion to arbitrary number of consumers.
Theorem 3 and 4 provide our characterization for the case of multiple consumers. It is worth noting
that with general preferences, the survival patterns with multiple consumers can’t be considered
as a simple extension of the two-consumer case. To illustrate this point, Example 15 shows that a
consumer vanishes almost surely in a two-consumer economy but survives almost surely in a larger
economy.

We later apply our characterization to study the global and local robustness of the MSH. We
restrict attention to the class of preferences generated by identical separable time aggregators, so
that preferences are only determined by the certainty equivalent R. We first show that the MSH is
globally non-robust in Theorem 5. That is to say, there doesn’t exist any R that always dominates
the market. Furthermore, we show that there exist multiple “robust survivors”, i.e., preferences
that survive with positive probability in the presence of any possible preferences. Consequently,
even though Sandroni (2000) and Blume and Easley (2006) show there is a unique preference in the
SEU class that dominates the market, we argue that such dominating preference doesn’t exist in
the general class of preferences we study. Next, we further show that the MSH is locally non-robust
as well in Theorem 7. That is to say, there doesn’t exist any R that always dominates the market
in the presence of sufficiently similar preferences. Furthermore, we show that there exist multiple
“locally robust survivors”, i.e., preferences that survive with positive probability in the presence of
any sufficiently similar preferences. Perhaps surprisingly, we show that every preference that is not
effectively SEU, in a sense that will be formalized later, is a locally robust survivor, which suggests
that the local robustness of SEU preference only represents a knife-edge case.

This paper is organized as follows: Section 2 introduces the economy, the family of generalized
recursive preferences and defines a competitive equilibrium. Section 3 characterizes the competitive
equilibrium through a set of first order conditions and shows its existence. Sections 4 derives the
dynamics of marginal utility ratios. Section 5 introduces our local approach to study long-run
dynamics. Section 6 contains our characterization of the long-run dynamics. Section 7 discusses
the robustness of the MSH. All proofs are collected in the Appendix.

2 Model Setup

In this section, we introduce the basic notions for our infinite-horizon stochastic exchange economy
and define a competitive equilibrium.

2.1 Uncertainty and preferences

Time is discrete and denoted by t ∈ T = {0, 1, 2, 3, ...}. Let S denote the finite set of states of
nature. The initial state at time 0 is s0. At each period t ≥ 1, a state st ∈ S is realized. Let Σ
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denote the set of all paths with a typical element σ = (s1, s2, ...). Let Σt denote the set of histories
up to time t with a typical element σt = (s1, ..., st). Further define Σ (σt) = {σ̃ ∈ Σ : σ̃t = σt},
which denotes a cylinder set with base σt. Let Ft denote the σ-algebra that consists of all finite
unions of the sets Σ (σt), where F0 = {∅, S} is the trivial σ-algebra and F is the σ-algebra generated
by ∪∞

t=0Ft. The states of nature are drawn according to a distribution π0 on Σ. We also use P and
E to denote the probability measure and expectation induced by π0.

The economy is populated by I infinitely-lived consumers and there is a single good every
period. With some abuse of notation, we also use I to denote the set of consumers. A consumption
plan is a stochastic process c : Σ × T → R+, where ct (·) ≡ c (·, t) is Ft-measurable. The set of
all consumption plans is C = L+

∞, where L+
∞ denotes the set of non-negative adapted stochastic

processes on Σ that are essentially bounded. Each consumer is endowed with a consumption plan
ei ∈ C\ {0}. The aggregate endowment is denoted by e. Consumers have complete preferences
over all feasible consumption plans that are represented by some mapping V : C → L+

∞, where
Vσt(c) ≡ V (c)(σ, t) denotes the utility of consuming c at σt. We assume that consumers have
recursive preferences over the consumption plans which take the following form

Vσt (c) = F
(
ct,Rσt

(
Vσt+1 (c)

))
, (1)

where F : R2 → R is the time aggregator which describes the attitude toward temporal resolution
of uncertainty, Rσt : RS → R is the certainty equivalent aggregator which describes the attitude
toward the uncertainty in the next period’s utility values, and V σt+1 (c) = (Vσt,s (c))s∈S is vector
of utility values at date t+1. To simplify notation, we denote Vσt and Rσt as Vt and Rt henceforth.
Below we introduce some examples of recursive preferences.

Example 1. (Discounted Expected Utility) Let F (c, y) = u (c) + βy, and Rt (V ) = Eπ (V |Ft) .

Then, the utility satisfies
Vt (c) = u (ct) + β × Eπ (Vt+1 (c) |Ft) ,

which is the discounted expected utility preference. The survival in economies with these preferences
is studied by Sandroni (2000) and Blume and Easley (2006).

Example 2. (Epstein-Zin Preferences) Let F (c, y) =
(
(1− β) c1−ρ + βy1−ρ

) 1
1−ρ and Rt (V ) =[

Eπ

(
V 1−γ (c) |Ft

)] 1
1−γ . Then, the preference satisfies

Vt (c) =

(
(1− β) c1−ρ

t + β
[
Eπ

(
V 1−γ
t+1 (c) |Ft

)] 1−ρ
1−γ

) 1
1−ρ

,

which is the Epstein-Zin preference with homothetic aggregator, see Epstein and Zin (1989). Here,
1/ρ stands for the elasticity of intertemporal substitution (EIS), and γ stands for the coefficient of
relative risk aversion. The survival in economies for particular cases of these preferences is studied
by Dindo (2019) and Borovička (2020).4

4Borovička (2020)’s results are for a two-consumer economy with homogeneous preferences while Dindo (2019)’s
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Example 3. (Recursive Smooth Ambiguity) Suppose that consumers face model uncertainty and
entertain a set of distributions

M = {π1, ..., πM} .

Let F (c, y) = u (c) + βy, and Rt (V ) = ϕ−1 (Eµϕ [Eπ (V |Ft)]) , where µ stands for the distribution
over M. So, we have

Vt (c) = u (ct) + β × ϕ−1 (Eµϕ [Eπ (Vt+1 (c) |Ft)]) ,

which is the recursive smooth ambiguity preference (Klibanoff et al., 2009). The survival in
economies where consumers have these preferences and homogeneous beliefs is studied in Guerdjikova
and Sciubba (2015). Condie (2008) studies the extreme case of the max-min preferences with
heterogeneous beliefs.

Our setup also includes preferences that have not been studied in the previous literature on
market selection. Below are two examples.

Example 4. (Kreps-Porteus Preferences) Let F be an arbitrary function that is strictly increasing
in its second argument and let Rt (V ) = Eπ (V |Ft) . Then, the we have the utility functions
introduced by Kreps and Porteus (1978) given by

Vt (c) = F (ct,Eπ (V |Ft)) ,

where for some time aggregators, the concavity/convexity of F with respect to its second argument
determines whether the consumer displays a preference for the late/early resolution of uncertainty.

Example 5. (Chew-Dekel Preferences) The certainty equivalent aggregator is defined implicitly
as the solution to

R = Eπ [M (Vt+1,R) |Ft] ,

where M is increasing and concave in its first argument, homogeneous of degree one and satisfies
M(k, k) = k, see Chew (1983, 1989) and Dekel (1986). One salient example is the generalized
disappointment aversion preference, see Routledge and Zin (2010), where

Rt =

∑
s

πsV
α
σt,s − θ

∑
s:Vσt,s<δRt

πs

[
(δRt)

α − V α
σt,s

] 1
α

where α is the coefficient of relative risk aversion and there is penalty that is proportional to θ on
outcomes that lie below a disappointment threshold δRt. If θ = 0, these preferences are SEU while
if δ = 1 they are the disappointment aversion preferences introduced by Gul (1991).

are obtained under the restriction that the consumers with incorrect beliefs have unit elasticity of intertemporal
substitution.
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In addition to previous examples, there are many other important recursive preferences that
haven’t been explored in the market selection literature.5 In what follows we allow consumers to
have heterogeneous preferences and use superscript i to denote consumer i’s preferences.

2.2 Competitive Equilibrium

A contingent contract is a promise to deliver one unit of the consumption good contingent on the
realization of the observable states of the world and zero otherwise. We assume there is a complete
set of competitive markets to trade contingent contracts that open at date zero.

A price system is a stochastic process p : Σ × T → R and we define p(σt) ≡ p(σ, t) to be the
price of a contingent contract for σt. Let Q =

{
p ≥ 0 :

∑∞
t=0

∑
σ∈Σt p (σt) < ∞

}
denote the set of

summable contingent commodity prices. Consumer i’s problem given price system p is defined as
follows:

max
c∈C

V i
0 (c)

s.t.
∞∑
t=0

∑
σ∈Σt

p (σt)× c (σt) ≤
∞∑
t=0

∑
σ∈Σt

p (σt)× ei (σt) ,

c (στ ) ≥ 0 for all σ ∈ Σ and t ≥ 1

where σ0 is given and V i satisfies (1). A competitive equilibrium is a feasible allocation and a price
system such that consumer’s decisions are optimal in their budget sets.

Definition 1. A competitive equilibrium is (c, p) ∈ CI ×Q such that:
1. For every i, ci solves consumer i’s problem given price system p;
2.
∑

i c
i (σt) = e (σt) for all σt ∈ Σt and all t ∈ T.

3 Characterization and Existence of Equilibrium

In this section we characterize the dynamics of competitive equilibrium consumption in terms of
effective discount rates and effective beliefs and show the existence of a competitive equilibrium.

In order to characterize the competitive equilibrium using a set of equations, we introduce
Assumptions 1 and 2 to ensure the time aggregator is smooth and well-behaved at the boundary
and the certainty equivalent aggregator is smooth and strictly increasing in continuation utilities.

Assumption 1. F i (x, y) is continuously differentiable, F i ≥ 0, and F i
1, F

i
2 > 0 and lim

x→0
F i
1 (x, y) =

+∞ for all y ≥ 0.

Assumption 2. Ri
t (Vt+1) is continuously differentiable and strictly increasing in V i

σt,st+1
for all

st+1 ∈ S , σt ∈ Σt, t ≥ 1.
5Examples include rank-dependent utility (Quiggin, 1982), uncertainty averse preferences (Cerreia-Vioglio et al.,

2011; Strzalecki, 2013), dynamic preference for flexibility (Krishna and Sadowski, 2014), cautious expected utility
(Cerreia-Vioglio et al., 2015) and dynamic mixture-averse preferences (Sarver, 2018).
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The following proposition shows a competitive equilibrium can be described using a system of
first-order conditions. The result is a straightforward consequence of the one-deviation property
of optimal plans together with the monotonicity and boundary properties of F introduced in
Assumptions 1 and 2.

Proposition 1. Suppose Assumptions 1 and 2 hold. If (c, p) is a competitive equilibrium, then for
every i and σt ∈ Σt we must have that

p (σt, s)

p (σt)
=

F i
1

(
ci (σt, s) ,Ri

t+1

(
V i
t+2

))
F i
1

(
ci (σt) ,Ri

t

(
V i
t+1

)) ×∇sRi
t

(
V i
t+1

)
× F i

2

(
ci (σt) ,Ri

t

(
V i
t+1

))
, (2)

where ∇sRi
t

(
V i
t+1

)
≡ ∂Ri

t

(
V i
t+1

)
/∂V i

σt,s.

This result is the familiar first-order condition that the marginal rate of substitution between
present and future consumption, the right hand side of (2), must be equal to their relative price
at an optimal interior consumption plan. Unlike the case of discounted expected utility where
the marginal rate of substitution has a simple form that depends only on consumption at σt and
(σt, st+1), in this case it depends also on continuation utilities. This is because the generalized
marginal utility of consumption at σt, F i

1

(
ci (σt) ,Ri

t

(
V i
t+1

))
, depends not only on the consumption

at σt but also on the certainty equivalent Ri
t. Likewise, the marginal utility of consuming at (σt, s)

depends not only on the consumption level at (σt, s) but also on the continuation utilities at
dates t + 1 and t + 2. The latter is because the marginal utility of consuming at (σt, s) is equal
to the marginal utility of the certainty equivalent at σt, F i

2, times the marginal effect on the
certainty equivalent at σt of the consumption at (σt, s), that is ∇sRi

t × F i
1. In what follows, we

call ∇Ri
t ≡

(
∇sRi

t

)
s∈S the effective belief of consumer i and F i

2 the effective discount rate
of consumer i. In the special case of subjective expected utility, the effective belief equals the
consumer’s subjective belief πi and the effective discount rate is equal to βi. It is worth noting that
although we refer to ∇Ri

t as effective beliefs, it actually represents the gradient of the certainty
equivalent and may not add up to one for general preferences.

3.1 Existence of an Equilibrium

To study existence of equilibrium in this economy with countably many commodities we need to
introduce some assumptions on preferences and resources.

Assumption 3. There exists 0 < m < M < +∞ such that m < ei (σt) < M for all σt ∈ Σt and
t ∈ T.

Assumption 4. F i (x, y) is concave and satisfies that F i (x, y) = y has at least one non-negative
solution for every x ≥ 0 and F i (0, 0) > 0.6

6The last part of Assumption 4 rules out the case where the minimum utility is 0 as it requires F i (0, 0) > 0. This
requirement of Assumption 4 is for technical convenience, it could be relaxed in some interesting cases, e.g., separable
time aggregator. To establish existence of equilibrium, we could allow F i (0, 0) = 0 if we add the assumption that
F is a Blackwell contraction in y.
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Assumption 5. Ri
t (V ) is concave and satisfies Ri

t (k · 1) = k for all k ≥ 0.

Assumption 3 simply says that endowments are uniformly bounded. Assumptions 4 and 5
impose conditions on F and R that are used to prove continuity and convexity of the preference
relation, a key step to show the existence of an equilibrium. Now we are ready to state our result
on the existence of a competitive equilibrium in our economy.

Theorem 1. Suppose Assumptions 1 to 5 hold, then a competitive equilibrium exists and satisfies
(2).

Our proof is based on the existence theorem by Bewley (1969) that requires preferences to be
strongly monotone, weakly convex and continuous in the Mackey topology. We adapt the arguments
in Marinacci and Montrucchio (2010) to show that recursive utility functions generated by a time
aggregator and a certainty equivalent aggregator satisfying Assumptions 1, 2, 4 and 5 represent
preferences that are continuous in the product topology.7 Since the product topology is coarser
than the Mackey topology, it follows that preferences are continuous in the Mackey topology as
well. We also show that preferences are strongly monotone and weakly convex.

The assumptions in Theorem 1 allow for a wide range of preferences over consumption plans.
Below are some examples of preferences that satisfy these assumptions.

Example 6. Discounted expected-utility preferences with F (c, y) = u (c) + βy and Rt (V ) =

Eπ (V |Ft), where β ∈ (0, 1), and u (0) > 0, u′ (c) > 0, u′′ (c) < 0 and lim
c→0

u′ (c) = +∞, and π has

full support.8

Example 7. Epstein-Zin preferences with an “almost” homothetic time aggregator F (c, y) =(
(1− β)c1−ρ + βy1−ρ

) 1
1−ρ +ε and Rt (V ) = Eπ

(
V 1−γ |Ft

) 1
1−γ , where β, ρ ∈ (0, 1) and ε, γ > 0, and

π has full support.

Example 8. Recursive smooth ambiguity preferences with

F (c, y) = u (c) + βy, and Rt (V ) = ϕ−1 (Eµϕ [Eπ (V |Ft)]) ,

where β ∈ (0, 1), π has full support, u satisfy the conditions in Example 6, and ϕ is strictly
increasing and satisfies Φ (x) ≡ − ϕ′(x)

ϕ′′(x) is concave.9 Below are some examples of ϕ.

• Constant relative ambiguity aversion (CRAA): ϕ (x) = ax1−γ

1−γ + b, where a, γ > 0.

• Constant absolute ambiguity aversion (CAAA): ϕ (x) = −a exp (−γx) + b, where a, γ > 0.

7The existence and uniqueness of a utility function satisfying recursion (1) follows almost directly from Theorem
1(ii) in Marinacci and Montrucchio (2010), albeit with a slight modification. Marinacci and Montrucchio (2010)
restrict attention to consumption plans c that are bounded away from 0 (i.e., [c]∞ > 0 in their notation). Since
we are interested in the case where ct → 0, we cannot restrict to the case in which ⌊c⌋∞ > 0. Instead, we assume
F i (0, 0) > 0 and show that their result still hold.

8For the discounted expected-utility case, we actually don’t need u (0) > 0 because F is linear in y and β ∈ (0, 1),
and hence it is a Blackwell contraction (see footnote 6).

9The concavity of Φ ensures that R is concave (see Chapter 3 of Hardy et al. (1952)), so Assumption 5 is satisfied.
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• Hyperbolic absolute ambiguity aversion (HAAA): ϕ (x) = 1−γ
γ

(
ax
1−γ + b

)γ
, where a, γ > 0.

Our characterization of the consumption dynamics relies only on equation (2) and so it extends
to cases where Assumptions 4 and 5 might not hold (i.e., when F is convex in its second argument)
provided an equilibrium still exists.

4 Consumption Dynamics

In this section, we introduce the survival notions and derive a recursive description of consumption
dynamics in the same spirit of Sandroni (2000) and Blume and Easley (2006).

Definition 2. We say consumer i survives on a path σ if lim supt→∞ cit(σ) > 0, vanishes on a
path σ if limt→∞ cit(σ) = 0 and dominates on a path σ if all other consumers vanish on that path.

In what follows, we are interested in consumers’ survival in the competitive equilibrium, and we
focus on the equilibrium consumption allocations without explicitly mentioning them. We analyze
consumption dynamics by examining the dynamics of the marginal utility ratio between any two
consumers. Lemma 1 introduces a key property employed throughout this paper.

Lemma 1. Under Assumptions 1-3 and Rt (k · 1) = k for all k ≥ 0, we have

Lij (σt) ≡
F i
1

(
ci (σt) ,Ri

t

(
V i
t+1

))
F j
1

(
cj (σt) ,Rj

t

(
V j
t+1

)) → ∞ ⇒ ci (σt) → 0 P-a.s.,

where Lij (σt) is the generalized marginal utility ratio between i and j.10

Lemma 1 says that consumer i vanishes on all paths where the generalized marginal utility ratio
between i and any other consumer j goes to infinity.

To study the dynamics of marginal utility ratios, we divide the first-order conditions (2) of any
pair of consumers i and j to obtain the following equation

Lij (σt, st+1) = Lij (σt)×Bji (σt, st+1)×Dji (σt) , (3)

which provides a recursive description of the marginal utility ratio between i and j, where

Bji (σt, s) =
∇sRj

t

(
V j
t+1

)
∇sRi

t

(
V i
t+1

) , and Dji (σt) =
F j
2

(
cj (σt) ,Rj

t

(
V j
t+1

))
F i
2

(
ci (σt) ,Ri

t

(
V i
t+1

)) , (4)

are the effective belief ratio and discount rate ratio respectively between j and i. From (3),
we see that if i’s effective belief on state s and effective discount rate are higher than j’s (i.e.,
Bji (σt, s) and Dji (σt) are greater than 1), then i’s generalized marginal utility decreases relative
to j when the next-period state realization is s. Intuitively, if i has a higher effective belief on state

10We actually only need the weaker condition that the process R (k) ≡ {Rt (k · 1)}t∈T ∈ L∞ for each k ≥ 0.
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s, it means that the marginal effect of next-period utility in state s on the certainty equivalent is
higher, so i tends to allocate more consumption to state s; also, if i has a higher effective discount
rate, then it means that i is effectively more patient and tends to allocate more consumption to the
next period. Both effects contribute to the decrease of generalized marginal utility ratio between i

and j. Below are some special cases of the dynamics.

Example 9. (Dynamics of discounted EU) Suppose that consumers have discounted expected
utility preferences with i.i.d. beliefs. Then, (3) becomes

u′i
(
ci (σt+1)

)
u′j (c

j (σt+1))
=

u′i
(
ci (σt)

)
u′j (c

j (σt))
× πj (st+1)

πi (st+1)
× βj

βi
, (5)

which corresponds to the dynamics in Sandroni (2000), Blume and Easley (2006, 2009). Suppose
that the state distribution is also i.i.d., then (5) implies that

lim
T→+∞

1

T
log

u′i
(
ci (σT )

)
u′j (c

j (σT ))
= lim

T→+∞

1

T

T∑
t=1

log
πj (st)

πi (st)
+ log

βj

βi

→ I
(
πi
)
− I

(
πj
)
+ log

βj

βi
P− a.s.,

where I
(
πi
)
= −E log

[
πi (s)

]
represents the relative entropy of πi. Suppose that βi = βj , then

the consumer with a larger entropy—thus less precise belief—will vanish in the limit, as predicted
by the market selection hypothesis.

In Example 9, marginal utility ratio can be characterized by a simple Markov process, where
the transition function only depends on beliefs and discount rates. This property allows us to
conveniently investigate the dynamics of marginal utility ratio by analyzing a stochastic process
which is exogenous to the economic system without having to solve for the equilibrium. Notice
that this property relies on that the discounted expected-utility preference has a linear certainty
equivalent aggregator and separable time aggregator. The linearity implies that Vt+1 does not
enter in the first-order condition, so the effective beliefs and discount rates are independent of the
continuation utility. However, with general recursive preferences, today’s utility can depend on
the continuation utility in a non-linear way, so effective belief and discount rate can depend on
continuation utility and are endogenously determined in equilibrium. Below are some examples.

Example 10. (Dynamics of Epstein-Zin) Suppose that consumers have Epstein-Zin preferences
and i.i.d. beliefs. Then, effective discount rates and beliefs are

F i
2 =

(
V i
σt

Ri
t(V

i
t+1)

)ρi

︸ ︷︷ ︸
time adjustment

βi, ∇sRi
t

(
V i
t+1

)
=

(
V i
σt,s

Ri
t(V

i
t+1)

)−γi

︸ ︷︷ ︸
risk adjustment

πi (s) , (6)

and the generalized marginal utility is F i
1 =

(
V i
σt
/cit
)ρi . The dynamics of generalized marginal

11



utility ratios are described by

Lij (σt, st+1) = Lij (σt)×

(
V j
σt,st+1

Rj
t (V

j
t+1)

)−γj

πj (st+1)(
V i
σt,st+1

Ri
t(V

i
t+1)

)−γi

πi (st+1)

×

(
V j
σt

Rj
t (V

j
t+1)

)ρj

βj(
V i
σt

Ri
t(V

i
t+1)

)ρi
βi

. (7)

Compared with the SEU case (5), we have time and risk adjustments in front of the standard
beliefs and discount rates. The time adjustment depends on the current utility, V i

σt
, relative to

the date t certainty equivalent of future utility: When current utility is relative low (high), the
consumer becomes more impatient (patient) and discounts the future more (less) heavily. The risk
adjustment of state st+1 depends on the future utility in that state, V i

σt,st+1
, relative to the the date

t certainty equivalent of future utility: States where utility is relatively low (high) are overweighted
(underweighted).

Example 11. (Dynamics of smooth ambiguity) Suppose that consumers have recursive smooth
ambiguity preferences and i.i.d. beliefs. Then, effective discount rates and beliefs become

F i
2 = βi, ∇sRi

t

(
V i
t+1

)
= Eµi

ϕ′
i

[
Eπ

(
V i
t+1 (c)

)]
ϕ′
i

(
Ri

t(V
i
t+1)

)︸ ︷︷ ︸
ambiguity adjustment

π (s)

 . (8)

and the generalized marginal utility is F i
1 = u′(ci). Note that effective discount rates and the

generalized marginal utility are both standard because F is separable. The dynamics of generalized
marginal utility ratios follow

Lij (σt, st+1) = Lij (σt)×
Eµj

(
ϕ′
j[Eπ(V j

t+1(c))]
ϕ′
j(R

j
t (V

j
t+1))

× π (st+1)

)
Eµi

(
ϕ′
i[Eπ(V i

t+1(c))]
ϕ′
i(Ri

t(V
i
t+1))

× π (st+1)

) × βj

βi
, (9)

which corresponds to the dynamics in Guerdjikova and Sciubba (2015). When consumers are
ambiguity neutral, ϕ′ is constant and (9) becomes (5) with πi = Eµi (π). When consumers are
ambiguity-averse, there is ambiguity adjustment for each model. The ambiguity adjustment of
model π depends on the expected future utility evaluated under π relative to the date t certainty
equivalent of future utility: Models where the expected future utility is relatively low (high) are
overweighted (underweighted).

Example 12. (Dynamics of Generalized Disappointment Aversion) Suppose that consumers have
generalized disappointment aversion preferences with i.i.d. beliefs and a separable time aggregator.

12



Then, effective discount rates and beliefs are11

F i
2 = βi, ∇sRi

t

(
V i
t+1

)
= α

(
V i
σt,s

Ri
t

)α−1
 1 + θi · 1{V i

σt,s
<δiRi

t}

1 + (δi)α θi ·
∑

s′ π
i(s′) · 1{V i

σt,s
′<δiRi

t}


︸ ︷︷ ︸

disappointment adjustment

πi(s), (10)

and the generalized marginal utility is F i
1 = u′(ci). The dynamics of generalized marginal utility

ratios are described by

Lij (σt, st+1) = Lij (σt)×
αj

(
V j
σt,st+1

Rj
t

)αj−1
(

1+θj ·1
{V j

σt,st+1
<δjRj

t}

1+(δj)αθj ·
∑

s π
j(s)·1

{V j
σt,s

<δjRj
t}

)
πj(st+1)

αi

(
V i
σt,st+1

Ri
t

)αi−1( 1+θi·1{V i
σt,s

<δiRi
t}

1+(δi)αθi·
∑

s π
i(s)·1{V i

σt,s
<δiRi

t}

)
πi(st+1)

× βj

βi
. (11)

Compared with the SEU case (7), we have disappointment adjustments in front of standard beliefs.
In the case α = 1, the disappointment adjustment overweights all the disappointing events by the
same factor and underweights the probabilities of the complementary events. In the case α < 1,

the disappointment adjustment involves an additional term,
(

V i
σt,st+1

Ri
t

)αi−1

, that is a decreasing

functon of the ratio between future utility in that state, V i
σt,st+1

, relative to the the date t certainty
equivalent of future utility. Consequently, compared to the case α = 1, disappointing events receive
an additional weight that is larger the more disappointing the event is.

From previous examples, we see that the evolution of the generalized marginal utility can
be complicated as both effective beliefs and discount rates may be endogenous. To characterize
the consumption dynamics, this paper adopts a “local approach” by studying the approximated
dynamics when a specific consumer almost dominates the market, i.e, consumes almost all the
endowment. Suppose that consumer i dominates on a path. Then, it turns out that when t is
sufficiently large, cit can be approximated by the total endowment, and V i

t+1 can be approximated by
be the utility of consuming the aggregate endowment forever, and correspondingly, the consumption
of all other consumers j ̸= i is approximately 0, and their utility V j

t+1 approaches the utility of
consuming zero forever. Therefore, we can approximate endogenous terms in (6), e.g., Vt+1, by
terms that are exogeneously determined. This approach will be explained in greater detail in the
following sections.

5 Local Survival Index

In this section we introduce some concepts to implement the aforementioned local approach. For
simplicity, we focus on the stationary case and impose the following assumption.

11Although these preferences are not differentiable at the point Vσt,s = δRt , we can approximate them by a
smooth version for which the above FOC holds as noted by Routledge and Zin (2010).
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Assumption 6. (Stationarity) States and endowments are i.i.d, and Ri
t = Ri for all t ∈ T.

Assumption 6 posits a stationary structure on uncertainty. First, uncertainty manifests itself
in a time-independent manner, i.e., state and endowment are i.i.d. distributed. Second, consumers
have time-independent preference toward uncertainty, e.g., consumers hold i.i.d. beliefs and there
is no learning. This assumption simplifies the analysis and allows us to focus on the pure effect of
market selection.12

Definition 3. (Local utility) Under Assumption 6, we define V i = V i
σt
(0) and V

i
st = V i

σt
(e) for

all st ∈ S and i ∈ I.

In words, V i denotes the continuation utility of consumer i when she consumes 0 in every
period, and V

i
st denotes the continuation utility of i when the current state is st and she consumes

the total endowment e in every period. Under Assumption 6, V i is fixed and V
i
st only depends on

the current state st, and they can be simply obtained by solving a system of equations.13 We then
define the local survival index as follows.

Definition 4. (Local survival index) For all i, j, we define

Sj
i =

E log
[
∇sRi

(
V

i
)]

+ E logF i
2

(
e (s) ,Ri

(
V

i
))

, if j = i

E log
[
∇sRj

(
V j
)]

+ E logF j
2

(
0,Rj

(
V j
))

, if j ̸= i.

called the local survival index of consumer j when i dominates.

The local survival index Sj
i has two components. The first component is the expected log,

or the negative of the relative entropy, of consumer j’s effective belief when i dominates.14 The
second component is the expected log of consumer j’s effective discount rate when i dominates. A
consumer has a higher survival index if her effective belief has a lower entropy, and if her effective
discount rate is higher. A special case is the discounted expected utility where Sj

i = −I(πj)+log βj

for all i, j. We then introduce the following concept.

Definition 5. (Local dominance) For all i, j, we denote by

i ≻i j if Si
i > Sj

i ,

and we say that i locally dominates j. We denote by j ≻i i if the inequality is reversed.
12We believe that our approach can extend to situations with time heterogeneity by appropriately modifying

notations. For example, suppose there is learning but beliefs converge to some limit, then the exact same analysis
applies here; also, we can re-define the entropy using its time average to characterize dynamics for non-i.i.d. cases.

13From the definition of recursive utility (1), V i
s and V

i
s must satisfy

V i = F i
(
0,Ri

(
V i

))
and V

i
s = F i

(
e (s) ,Ri

(
V

i
))

for all s ∈ S,

where V
i
=

(
V

i
s

)
s∈S

is the vector of the maximum local utility.
14With some abuse of language, we refer to −E log

(
∇sRi

)
as the relative entropy of i’s effective belief though

∇Ri may not be a probability.
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Definition 5 says that i locally dominates j if she has a higher survival index than j when she
dominates the market, i.e., consumes the total endowment. The local dominance is closely related
to the consumption dynamics. Intuitively, when i consumes almost everything, dynamics (3) can
be approximated by

Lij (σt+1) ≈ Lij (σt)×
∇sRj

(
V j
)

∇sRi
(
V

i
) ×

F j
2

(
0,Rj

(
V j
))

F i
2

(
e (s) ,Ri

(
V

i
)) , (12)

where each consumer’s utility is approximated by the local utility when i dominates.15 (12) implies
that

E log
Lij (σt+1)

Lij (σt)
≈ Sj

i − Si
i .

Therefore, i ≻i j implies that the log marginal utility ratio between i and j decreases on expectation
when i consumes almost everything, which further implies that i’s consumption has a tendency to
increase relative to j’s when i consumes almost everything. With expected utility, each consumer
j has a fixed survival index Sj

i = Sj across all i, so the relative consumption dynamics remain
identical when a consumer dominates the market and when she vanishes. This leads to a complete
ranking among all consumers based on their survival index, where only those with the highest
index can survive (Sandroni (2000), Blume and Easley (2006)). However, with general utilities, the
survival index can vary with the consumption allocation and may result in reversed ranking, such
as i ≻i j and j ≻j i both holding true. This suggests that the rankings based on survival index can
be incomplete, leading to a variety of survival patterns different from those in the standard case.

6 Characterizations of Dynamics

This section presents our characterization of the consumption dynamics using the aforementioned
local approach. To implement the local approach, we introduce an irreducibility assumption, that
is every consumer has positive probability of almost dominating the market, or equivalently, the
marginal utility ratio between any consumer i and all other consumers can be arbitrarily small
with positive conditional probability at every date.

Assumption 7. (Irreducibility) For all 0 < L < L < +∞ and i ∈ I, there exist K < ∞ such that
whenever maxj∈I L

ij (σt) < L, we have

max
j∈I

Lij (σt, s1, ..., sK) < L for some s1, ..., sK ∈ S,

for all t ∈ T and σt ∈ Σt.

Notice this is an assumption on endogenous variables as Lij depends on the equilibrium consumption
allocation. While in the Appendix A.5 we provide conditions on exogenous variables to ensure this

15This approximation arises from the continuity of preferences in the product topology, which will elaborated in
the proof sketch of Theorem 2 in Section 6.
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1 2

C2 ↑C1 ↑

(a): 1 ≻1 2 and 2 ≻2 1

1 2

C2 ↑C1 ↓

(b): 2 ≻1 1 and 2 ≻2 1

1 2

C2 ↓C1 ↑

(c): 1 ≻1 2 and 1 ≻2 2

1 2

C2 ↓C1 ↓

(d): 2 ≻1 1 and 1 ≻2 2

Figure 1: Two-consumer case

assumption holds,16 we retain Assumption 7 in the main text because it explicitly highlights the
crucial property of the marginal utility ratio used in the proof. From a technical standpoint, we
consider it a natural assumption because even when it fails for certain consumers, we can still apply
our characterization to those consumers for whom it holds (which is why we call it ‘irreducibility’).
Moreover, we demonstrate that violations of Assumption 7 are not robust to small perturbations,
as explained in more detail in Section 7.1. Therefore, this assumption is convenient for the purpose
of exploring the robustness of the MSH.

6.1 Two-consumer case

We first present our characterization for the two-consumer case.

Theorem 2. (Two-consumer) Suppose that |I| = 2. Under Assumptions 1 to 7, we have:
(i) if i ≻i j and i ≻j j, then i survives and j vanishes P-almost surely;
(ii) if i ≻j j and j ≻i i, then i and j survive together P-almost surely;
(iii) if i ≻i j and j ≻j i, then only one consumer survives P-almost surely, and each survives

with a P-strictly positive probability.

Theorem 2 shows that a variety of patterns can emerge with non-expected utility unlike the
SEU case when there is always a unique survivor except for tie cases. Figure 1 depicts the four
possible cases of the local dominance relation. Figure 1(a) illustrates Theorem 2(iii) in which
both consumer 1 and 2 are locally dominant. To see that, note that 1 ≻1 2 implies that when
consumer 1 almost dominates the market, her consumption increases relative to that of consumer
2 in expectation. This relation reinforces the initial dominating position of consumer 1, so she will
eventually dominate the market with a strictly positive probability, and the argument is symmetric
for consumer 2. Assumption 7 further guarantees that each neighborhood where some consumer
almost dominates will be visited with a uniformly positive conditional probability, which establishes

16For example, the assumption holds as long as consumers’ disagreement, as captured by their belief ratio, about
one of the states is large enough.
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a global result that both consumers can dominate regardless of the initial condition, and one of
them dominates almost surely. Other cases can be discussed similarly.

Proof sketch of Theorem 2

Here, we focus on explaining why i ≻i j implies consumer i dominates the market with a strictly
positive probability. The claim proceeds in the following steps.

Step 1: We prove that every consumer’s utility can be approximated by their local utility
(Definition 3) when the marginal utility ratio is sufficiently small (or large). More precisely, we
show that for all t ∈ T, σ ∈ Σ and ε > 0, there exists L > 0 such that

Lij (σt) < L implies that |V i (σt)− V
i| < ε and |V j (σt)− V j | < ε. (13)

This is because under our assumptions, effective belief and discount rate ratios are bounded, so
when the current marginal utility ratio Lij

t is sufficiently small, the future marginal utility ratios
Lij
t+1, ..., L

ij
t+K for any K < ∞ can be arbitrarily small, which implies that cjt , ...., c

j
t+K can be

arbitrarily close to 0. Lemma 5 in the Appendix shows that Vσt is continuous in product topology,
so sufficiently many (but still finite) periods of low consumption imply that the utility is close to
the utility of consuming 0 forever, which establishes (13).

Step 2: We construct a modified process of marginal utility ratio between i and j and show that
its log is a local supermartingale when i almost dominates the market. Specifically, we construct a
process

{
L̂ij
}

where

L̂ij (σt, st+1) = L̂ij (σt)×Bji (σt, st+1)×Dji (σt, st+1) . (14)

Note that only change from (3) is that we shift forward the ratio of discount rate by one period. This
modification allows us to construct a local supermartingale with increment given by the difference
of local survival index. That is, we have

E
(
log
(
L̂ij
t+1

)
|Ft

)
≈ log

(
L̂ij
t

)
+ Sj

i − Si
i < log

(
L̂ij
t

)
,

when Lij
t is sufficiently small. We then show that the local supermartingale property further implies

that L̂ij
t → 0 with a strictly positive probability. We note that the effective discount rate ratios

are bounded, so the ratio between L̂ij
t and Lij

t is also bounded, so L̂ij
t → 0 implies Lij

t → 0, which
further implies that consumer i dominates the market with positive probability.

Similarly, we can prove that j ≻i i implies that consumer i dominates the market with
0 probability. The irreducibility assumption implies that every neighborhood is reachable, so

17



Theorem 2 follows from different combinations of the local dominance relation.

Examples

Below we illustrate Theorem 2 using some examples of non-expected utility preferences that
generate survival patterns absent in the expected-utility framework.

∇R1(V 1) = π1 π2

1/3 3/4

∇R(V
2
)π1 ∇R2(V 2) = π2

1/3 3/41/2

∇R1(V
1
)

3/5
1/2

∇R2(V 2) = π2

1/3 3/41/2

∇R1(V
1
) = π1

π2

1/3 3/41/2

∇R(V
2
) ≈ 0 ∇R1(V 1) = π1π1

1/3 3/41/2

∇R1(V
1
) ≈ 0 ∇R2(V 2) = π2

∇R1(V 1) = π1 π2

1/3 3/4

∇R(V
2
)

3/5
1/2

(a):

(b):

(c):

Figure 2: Survival with non-expected utility in Example 13

Note: All beliefs depicted in the figure, e.g., πi and ∇Ri, denote the probability on the first
state, s1. Graphs on the left (right) depict effective beliefs when consumer 1 (2) consumes all the
endowment.

Example 13. Suppose that S = {s1, s2}, I = {1, 2}. Consumers have i.i.d. subjective beliefs
π1 = (1/3, 2/3), π2 = (3/4, 1/4), and the true state distribution is π0 = (1/2, 1/2). The total
endowment in each state is expressed as utilities with u (s1) = 2 and u (s2) = 1, where u(s) ≡
u(e(s)) denotes the utility of consuming the aggregate endowment in state s. Consumers have the
following preferences

V i
σt

= u (ct)− β × 1

γi
log

 ∑
st+1∈S

exp
(
−γiV

i
σt,st+1

)
πi (st+1)

 ,

where γi > 0 is the degree of ambiguity aversion.17 When i consumes all the endowment, both
consumers’ effective beliefs are

∇sRj
(
V j
)
= πj (s) and ∇sRi

(
V

i
)
=

exp (−γiu (s))π
i (s)∑

s′∈S exp (−γiu (s′))πi (s′)
. (15)

We see that i’s effective belief overweights the bad state, but j’s effective belief is unadjusted
because she consumes 0 in every state and so bears no uncertainty. The case where j consumes all

17This is a special case of the smooth ambiguity preference where the first-order distributions are Dirac beliefs.
This formulation is to simplify the exposition so that we don’t need to discuss beliefs over models, and then over
states, but the exact same analysis extends to general smooth ambiguity preferences.
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the endowment is symmetric. First notice that, consumer 1’s subjective belief is more precise than
consumer 2’s in the sense that it has a lower relative entropy. As illustrated in Figure 2, π1 = 1/3

is closer to the true probability π0 = 1/2 than π2 = 3/4. From Sandroni (2000) and Blume and
Easley (2006), we know that consumer 1 will drive out consumer 2 if they have SEU preferences.
However, with non-expected utility preferences, we can have the following patterns.

1. The less correct consumer dominates. Suppose that both consumers are ambiguity-averse
with γ1 = γ2 = ln 2, then∇R1

(
V

1
)

= (1/5, 4/5)

∇R2
(
V 2
)

= (3/4, 1/4)
⇒ S1

1 < S2
1 , and

∇R1
(
V 1
)

= (1/3, 2/3)

∇R2
(
V

2
)

= (3/5, 2/5)
⇒ S1

2 < S2
2 ,

so we have 2 ≻1 1 and 2 ≻2 1, and consequently, consumer 2 dominates the market. This is
illustrated in Figure 2(a), where the first and second graphs depict the effective beliefs when
consumers 1 and 2 consume the aggregate endowment, respectively. First note that s2 is the worse
state because it has a lower aggregate endowment. Therefore, both consumers’ effective beliefs
will overweight s2—and hence underweight s1—when they consume the aggregate endowment. In
Figure 2(a), this means that ∇Ri(V

i
) moves to the left of πi for both i = 1, 2. Let’s first consider the

left graph in which consumer 1 consumes all endowment. Notice that consumer 1 underestimates
the probability of s1, which, in the graph, means that π1 is on the left of 1/2. Therefore, consuming
all the endowment amplifies her underestimation by shifting her effective belief further to the left.
This makes her effective belief less correct than π2, and we have 2 ≻1 1. Now, let’s consider the
right graph in which consumer 2 consumes all endowment. In contrast, consumer 2 overestimates
the probability of s1, meaning that π2 is on the right of 1/2. When consumer 2 consumes all the
endowment, her effective belief on s1 also shifts to the left, but this belief adjustment compensates
for her initial belief overestimation. This makes her effective belief more correct than consumer
1’s, and we have 2 ≻2 1. Since consumer 2 locally dominates consumer 1 in both neighborhoods,
she will dominate the market almost surely as stated in Theorem 2 (i).

2. Co-existence. Suppose that γ1, γ2 sufficiently large, say γ1, γ2 → +∞. Then, we have∇R1
(
V

1
)

→ (0, 1)

∇R2
(
V 2
)

= (3/4, 1/4)
⇒ S1

1 < S2
1 , and

∇R1
(
V 1
)

= (1/3, 2/3)

∇R2
(
V

2
)

→ (0, 1)
⇒ S1

2 > S2
2 ,

so we have 2 ≻1 1 and 1 ≻2 2, which corresponds to the co-existence of both consumers, as
illustrated in Figure 2 (b). Let’s first consider the left graph, in which consumer 1 consumes all
endowment. In this case, consumer 1 bears the aggregate uncertainty, and when she is extremely
ambiguity-averse, her effective belief assigns almost all weight to the worse state, s2. In contrast,
consumer 2 bears no uncertainty, and her effective belief is undistorted and equal to her subjective
belief. Therefore, consumer 1’s effective belief is less accurate than consumer 2’s, resulting in
2 ≻1 1. The case in the right graph, where consumer 2 consumes all the endowment, is symmetric.
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In this case, consumer 2’s effective belief approaches a point-mass belief on s2, leading to 1 ≻1 2.
Since both consumers are locally dominated by each other, they co-exist in the market as indicated
by Theorem 2 (ii).

3. Each consumer dominates with a positive probability. Suppose γ1 = 0 and γ2 = ln 2, then∇R1
(
V

1
)

= (1/3, 2/3)

∇R2
(
V 2
)

= (3/4, 1/4)
⇒ S1

1 > S2
1 , and

∇R1
(
V 1
)

= (1/3, 2/3)

∇R2
(
V

2
)

= (3/5, 2/5)
⇒ S1

2 < S2
2 ,

so we have 1 ≻1 2 and 2 ≻2 1, and hence each consumer dominates with a strictly positive
probability. This case is depicted in Figure 2(c). Since consumer 1 has standard SEU preferences,
her effective belief is always equal to her subjective belief. In the left graph where consumer 1
consumes all the endowment, both consumers’ effective beliefs are their subjective beliefs, leading
to 1 ≻1 2 because consumer 1 has a more precise belief. In the right graph where consumer 2
consumes all the endowment, consumer 2’s effective belief shifts to the left, bringing it closer to
1/2 than π1. Consequently, we have 2 ≻1 1. Since both consumers locally dominate each other,
both can dominate with a strictly positive probability as indicated by Theorem 2 (iii).

The preferences we assumed in Example 2 imply that the effective beliefs when some consumer
dominates the market are probability measures, so a consumer with correct beliefs can’t be driven
out of the market by consumers with incorrect beliefs. The following example shows that for some
other preferences a consumer i with incorrect beliefs can actually drive another with correct beliefs
out of the market almost surely if the mass i allocates to future states becomes larger than one.

Example 14. Suppose I = {1, 2}, S = {s1, s2} and the true state distribution consists of i.i.d.
draws with π0 =

(
1
2 ,

1
2

)
. Consumers have i.i.d. subjective beliefs π1 =

(
3
4 ,

1
4

)
, π2 = π0 and

preferences given by

V i
t (c) = u(ct) + β

[
Eπi

((
V i
t+1

)1−γi (c) |Ft

)] 1
1−γi

where u(0) > 0. Effective discount rates are identical and given by F i
2 = β, thus irrelevant for

survival. When i dominates the market, the consumers’ effective beliefs are

∇sRj
(
V j
)
= πj (s) and ∇sRi

(
V

i
)
=

(
V

i
s

Ri(V
i
)

)−γi

πi (s) , (16)

Note that the effective beliefs of the consumer who consumes all the endowment need not add up
to one. We have:

The correct consumer vanishes. Let γ1 = γ2 = 3
2 . Let V

1
1 = 4, V 1

2 = 1 and R1(V
1
) = 64

25 .
18

18These values can be obtained by letting β = 25
128

, u(e(1)) = 3.5 and u(e(2)) = 0.5.
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Figure 3: Multiple Consumers

Then, V 2
1 ≈ 3.791, V 2

2 ≈ 0.791 and R2(V
2
) ≈ 1.491. It is easy to show that: ∇R1

(
V

1
)

≈ (0.384, 1.024)

∇R2
(
V 2
)

= (0.5, 0.5)
⇒ S1

1 > S2
1 , and

 ∇R2
(
V

2
)

≈ (0.123, 1.294)

∇R1
(
V 1
)

= (0.75, 0.25)
⇒ S1

2 > S2
2 ,

It follows by Theorem 2 (i) that consumer 1 dominates the market almost surely. Note that the
effective beliefs of consumer 1 when she dominates the market add up to more than one, which can
be interpreted as the consumer becoming endogenously more patient. This property is necessary
for the consumer with incorrect beliefs to dominate the market.19

Remark: In these examples, consumers have identical discount factors and so local dominance
depends only on their effective beliefs. It turns out that for a non-expected utility consumer i, her
effective beliefs differ from their actual beliefs in three senses:

– First, the odds of the states are distorted because the effective beliefs over states are obtained by
re-weighting the original beliefs. In Example 13, consumers increase the weight on low endowment
states when they consume all the endowment, which in some cases make the effective belief of the
more optimistic consumer to be closer to the true distribution.

– Second, the total mass of future states is distorted as it can add up to more or less than one,
which can be interpreted as the consumer becoming endogenously more patient or more impatient,
respectively. In Example 14, the effective beliefs of the consumer with incorrect beliefs, when she
consumes all the endowment, put mass sufficiently larger than one, compensating for her incorrect
effective odds.

– Third, they are allocation dependent and might cause a reversal of the local dominance relation,
allowing the existence of multiple survivors as in Example 13.

6.2 Multiple-consumer case

In this section, we extend the previous section characterization to general cases with an arbitrary
number of consumers. We also argue that the survival patterns with multiple consumers cannot

19Although the effective beliefs of consumer 2 when she dominates the market also satisfy the necessary condition,
they add up to a smaller number and are more skewed leading to a much lower survival index.
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be considered as a simple extension of the two-consumer case.
We first provide a condition for a consumer to dominate the market with positive probability.

Proposition 2. Suppose that Assumptions 1 to 6 hold. Then for every i ∈ I, we have: (i) If there
exists some j ∈ I such that j ≻i i, then consumer i dominates the market with P-zero probability;
(ii) if Assumption 7 holds and i ≻i j for all j ̸= i, then consumer i dominates the market with a
P-strictly positive probability.

Proposition 2 provides a full characterization of the property that some consumer dominates
with a positive probability: A consumer dominates the market with a strictly positive probability
if—and only if except for tie cases—she locally dominates all other consumers. It’s worth noting
that Proposition 2 identifies consumers who dominate the market but does not fully address which
consumers will survive or vanish. Next, we demonstrate that in some cases, we can even identify
the complete set of survivors.

Definition 6. (Local contour set) For each i, we define i′s local upper contour set Ui =

{j : j ≻i i} and i′s local lower contour set Di = {j : i ≻i j}.

We impose the following assumption.

Assumption 8. (No-indifference) For all i and j ̸= i, either j ∈ Ui or j ∈ Di holds.

The local upper (lower) contour set of consumer i consists of the consumers who dominate i

(are dominated by i) when i consumes the aggregate endowment. Assumption 8 stipulates that
every consumer belongs to either the local upper contour set or the lower contour set of any other
consumer, thereby ruling out indifference cases. The following theorem uses Assumption 8.

Theorem 3. Suppose that Assumptions 1 to 8 hold, and that there exists a re-labeling of consumers
{i1, i2, ..., in} such that

Ui1 ⊂ Ui2 ⊂ ... ⊂ Uin .

Let I∗ = {i : Ui = ∅}, then (i) all consumers not in I∗ will vanish P-almost surely, and (ii) every
consumer in I∗ will dominate the market with a P-strictly positive probability.

Theorem 3 states that if every consumer’s local upper contour set can be ranked completely
based on set inclusion, then survivors are the consumers whose local upper contour set is empty,
indicating that they are locally undominated. Each of these survivors will dominate the market
with a strictly positive probability. Figure 3 provides some illustrative examples. In Figure 3 (a),
we have

U1 = {2, 3} , U2 = {3} , and U3 = ∅,

resulting in a complete ranking: U3 ⊂ U2 ⊂ U1. According to Theorem 3, the only survivor is
I∗ = {3}, meaning that consumer 3 almost surely dominates the market, while consumers 1 and 2

almost surely vanish. In Figure 3 (b), we have

U1 = {2, 3} , U2 = U3 = ∅,
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resulting in a set of survivors: I∗ = {2, 3}. In this case, consumer 1 will vanish almost surely, and
consumer 2 and 3 will dominate the market, each with a strictly positive probability.

To explain the proof, we will focus on the scenario depicted in Figure 3 (a) and demonstrate
that consumer 3 almost surely dominates. First, we note that under the irreducibility assumption,
the marginal utility ratio Lt =

(
Lij
t

)
must repeatedly enter at least one of the “one-consumes-

all” neighbourhoods infinitely often. Let’s suppose that Lt enters the neighborhood of consumer
1. Within consumer 1’s neighborhood, we have U1 = {2, 3}, and according to Proposition 2,
consumer 1 cannot dominate the market. Therefore, Lt will almost surely escape from consumer
1’s neighborhood. Once Lt is outside of consumer 1’s neighborhood, one of two things must occur:
either consumer 2 or consumer 3’s consumption level becomes greater than some positive constant.
In accordance with Assumption 7, this implies that, after a bounded number of steps, Lt will enter
the neighborhood of either consumer 2 or consumer 3. Suppose Lt enters the neighborhood of
consumer 2. Again, using the information that U2 = {3}, we can conclude that Lt will almost
surely escape from consumer 2’s neighborhood and enter the neighborhood of consumer 3 with a
positive probability. Once Lt enters consumer 3’s neighborhood, we have U3 = ∅, and Proposition
2 implies that Lt will be trapped in that neighborhood with a positive probability. In summary, Lt

will visit consumer 3’s neighborhood infinitely often, and each visit will be captured with a positive
probability. Consequently, Lt will eventually settle in consumer 3’s neighborhood, and as a result,
consumer 3 almost surely dominates.

There are situations where Theorem 3 doesn’t apply. Figure 3 (c) shows one example, where
we can’t rank the upper contour sets completely. In this scenario, we can apply Proposition 2 to
demonstrate that no consumer will dominate, meaning that at least two consumers will survive.
However, we are still unable to determine the identity of the survivors. The following theorem
allows us to provide more insight in such cases.

Theorem 4. Suppose that Assumptions 1 to 8 hold. Let G ⊂ I be any subset satisfying that
{Ui ∩G : i ∈ G} can be completely ranked by set inclusion, and let G∗ = {i ∈ G : Ui ∩G = ∅}. If
Ui ̸= ∅ for all i ∈ G∗, then P-almost surely some consumer in I\G survives.

Applying Theorem 4 to Figure 3 (c), we can further conclude that both consumers 2 and 3 will
almost surely survive. To see that, we first choose G = {1, 3}. Note that

U1 ∩G = {3} , and U3 ∩G = ∅,

so they can be ranked by set inclusion, and we obtain G∗ = {3}. Now, since U3 = {2} ≠ ∅, Theorem
4 implies consumers in I\G = {2} survives almost surely. The survival of consumer 3 is symmetric
by letting G = {1, 2}. Here’s the intuition: When all consumers in I\G vanish, the economy can
be approximated as one with only consumers in G. Theorem 3 implies that in an economy with
G, some consumer in G∗ must dominate except for null events. However, since Ui ̸= ∅ for every
i ∈ G∗, Proposition 2 implies that no one in G∗ can dominate. Therefore, the event of everyone in
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(a): consumer 1 vanishes a.s.

1 2

3

(b): consumer 1 survives a.s.

Figure 4: Revitalization of an extinct consumer

I\G vanishing must have a probability of 0.

Remark 1. Theorems 3 and 4 nest Theorem 2 as a special case. More specifically, Theorem 3
implies Theorem 2 (i) and (iii), in which the upper contour sets can be ranked; Theorem 4 implies
Theorem 2 (ii), in which Ui = {j} and Uj = {i}, so we can choose G to be any singleton to show
that I\G almost surely survives.

It is worth noting that the multiple-consumer case can’t be considered as a straightforward
extension of the two-consumer case. The following example, using Theorem 4, illustrates that it’s
possible for a consumer who almost surely vanishes in a two-consumer economy to almost surely
survive in a larger economy.

Example 15. Consider the same setup as in Example 13. We have the following cases.

• Consumer 1 vanishes a.s. in two-person economy. Suppose the economy originally has two
consumers I = {1, 2} with subjective beliefs π1 = (1/3, 2/3), π2 = (3/4, 1/4), and ambiguity
aversion is γ1 = γ2 = ln 2. From the discussion in Example 13, we know 2 ≻1 1 and 2 ≻2 1

as depicted in Figure 4 (a), so consumer 1 vanishes almost surely.

• Consumer 1 survives a.s. in three-person economy. Now consider a new economy I = {1, 2, 3}
by adding a consumer 3 with π3 = (1/2, 1/2) and γ3 = ln (7/3). It can be verified that effective
beliefs are

∇Ri
(
V

i
)
=


(0.2, 0.8) i = 1

(0.6, 0.4) i = 2

(0.3, 0.7) i = 3

and ∇Ri
(
V i
)
= πi,

Then, it is then easy to verify that local dominance relations are as depicted in Figure 4 (b).
Consider a subset G = {2, 3}. Then, we note that

∅ = U3 ∩G ⊂ U2 ∩G = {3} ,

so G∗ = {3}. Besides, U3 ̸= ∅, so Theorem 4 implies that consumer 1 survives almost surely.
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This example shows that the analysis of survival of a two-consumer economy with general
preferences in the literature (e.g. Guerdjikova and Sciubba (2015) and Borovička (2020)) is not
sufficient to understand the prospects for survival in general. With general preferences, the local
survival indexes can be allocation dependent, leading to a reversal of the indexes’ order. In our
example above, the local survival index of consumer 2 is larger than that of consumer 1 when
either of them dominates the market (so consumer 1 would vanish in a two-consumer economy
with I = {1, 2}) and the local survival index of consumer 3 is larger than that of consumer 2 (so
consumer 2 would vanish in a two-consumer economy with I = {2, 3}). However, consumer 1’s local
survival index is the largest when consumer 3 dominates the market, which prevents consumer 1
from vanishing in the three-consumer economy. This reversal of local survival indexes cannot occur
when all consumers have SEU preferences. Therefore, in the SEU case, a consumer who vanishes
in a two-consumer economy must also vanish in a larger economy.

7 Non-robustness of the Market Selection Hypothesis

This section introduces our second main result. It examines the robustness of the market selection
hypothesis. In the SEU case, if all consumers have the same discount rate, those with correct
beliefs dominate the market. The natural question is whether this result is robust: If we allow
consumers to have general preferences, do the consumers with SEU preference with correct beliefs
still dominate? If not, can we find a particular preference relation with which a consumer always
dominates the market? Before answering this question, we impose the following assumptions.

Assumption 9. For all t ∈ T and σ ∈ Σ, there exists s, s′ ∈ S such that e (σt, s) ̸= e (σt, s
′).

Assumption 10. For all i ∈ I , F i (c, y) = u (c) + βy for some β ∈ (0, 1).

Assumption 9 requires that the aggregate endowment is uncertain. Without uncertainty,
consumers will act as if they have SEU preferences locally, and the problem degenerates to the
standard case. Assumption 10 requires that all consumers have the same separable time aggregator.
Assumption 10 is imposed because: First, to make the discussion meaningful, we must require
that all consumers discount the future in the same manner, i.e., we need to require all F i to
be equal, because otherwise we can always make a consumer more likely to survive by making
her more patient;20 second, the separable time aggregator nests the standard discounted expected
utility, which enables us to examine the robustness of the standard market selection results. In
this section, we allow R ∈ R, where R stands for all aggregators satisfying Assumptions 2, 5
and 6. Note that under Assumption 10, preference differences stem solely from varying attitudes
towards uncertainty, described by the certainty equivalent aggregator R. Therefore, we refer to R
as the preferences of the consumers throughout this section for simplicity. In what follows, we are

20The key element of Assumption 10 is that the discount rates are all equal to β. Assumption 10 also requires
that consumers have a homogeneous utility function u, because it simplifies notation so that we can only use R to
capture preferences differences, but the results won’t change if we allow for heterogeneous u.
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interested in examining whether there exists some R ∈ R with which a consumer always dominates
the market.

7.1 The ε-perfection of the economy

It is worth noting that our characterizations in Theorems 2, 3 and Proposition 2 may not apply to
all preferences within R. More specifically, whether Assumption 7 holds depends on various details
of the economy, such as the state space, distribution, and endowment. Fortunately, we have found
that for every preference R ∈ R and every economy, Assumption 7 can be satisfied by introducing
a small ε-perturbation to it. This perturbed economy is referred to as the ε-perfected economy.
By focusing on perfected economies, we can discuss all preferences in R in a unified manner. The
following section describes how to construct this perturbation. This construction primarily serves
technical purposes, so first-time readers may opt to skip this part.

Construction of the ε-perfection. Recall that Assumption 7 fails when some consumer’s
consumption decreases in every state, preventing us from reaching the neighborhood where this
consumer almost dominates the market. However, if there exists at least one state in which this
consumer’s consumption increases, even if that state occurs with low probability, it is sufficient
to restore Assumption 7. The idea behind the ε-perturbation is to introduce such low-probability
states that enable consumption dynamics to enter each “consume-all neighborhood”. Below is the
formal definition.

Let tuple ES = (e, π0, F,R) denote the original economy, where e = {ei}i∈I , F =
{
F i
}
i∈I ,

and R =
{
Ri
}
i∈I denote the profiles of endowment, time aggregators, and certainty equivalent

aggregators, and the subscript S emphasizes that the state space is S.21 Consider another economy
with an extended state space Ŝ ⊃ S and tuple EŜ =

(
ê, π̂0, F̂ , R̂

)
. Next we want to talk about

the distance between EŜ and ES . Note that ES is defined on a smaller domain, but we can
describe all elements ES in the same domain as EŜ by natural extension, i.e., putting zeros in
additional dimensions. The distance ||ES − EŜ || is then defined as the maximum distance between
the coordinates of EŜ and ES on the extended domain. The formal definition of the distance is
stated in Appendix A.11.

Definition 7. We say that EŜ is an ε-perfection of ES if we have: (i) ||ES −EŜ || < ε, and (ii) EŜ
satisfies Assumptions 1 to 7.

An ε-perfected economy is associated with an extended state space that satisfies two key
conditions. First, it provides an ε-approximation to the original economy, meaning that (i) the
characteristics of the new economy, such as preferences and distributions, are ε-close to the old
ones, and (ii) the new states are negligible, occurring with at most ε probability, carrying at
most ε endowment, and having negligible effects on preferences. Second, it must also satisfy

21Throughout this section, the discount rate for all consumers is equal to β (Assumption 10) and the set of
consumers is always I, so we remove them from the definition of an economy for brevity.
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the assumptions required for our characterizations. The existence of an ε-perfected economy is
guaranteed by the lemma below.

Lemma 2. (Existence) For all ES satisfying Assumptions 1 to 6 and all ε > 0, there exists an
ε-perfection of ES.

Lemma 2 says that for all the economies of interest, we can always find a perfected economy
that is arbitrarily close to the original. This lemma, therefore, enables us to apply this paper’s
characterizations in a universal manner. It can be applied directly to any given economy or to a
small perturbation of it. Moreover, the perturbed economy can approximate the original preferences
arbitrarily well, enabling us to explore the robustness of survival for a wide range of preferences
examined in this paper.

7.2 Global non-robustness of the MSH

We begin our discussion by examining the robustness of the market selection hypothesis at a global
level, encompassing all preferences in R. To facilitate the discussion, we introduce the following
key concepts.

Definition 8. (Robust dominator) Preference Ri ∈ R robustly dominates if for all
{
Rj
}
j ̸=i

∈
RI−1 with Rj ̸= Ri for all j ̸= i, consumer i dominates P-almost surely in all ε-perfected economies
with sufficiently small ε.22

This definition implies that preference Ri dominates the market in a robust sense. In other
words, a consumer with Ri dominates almost surely, regardless of other consumers’ preferences, in
all perfected economies that are sufficiently close to the original economy.

Definition 9. (Robust survivor) Preference Ri ∈ R robustly survives if for all
{
Rj
}
j ̸=i

∈ RI−1

with Rj ̸= Ri for all j ̸= i, consumer i survives with a P-strictly positive probability in all ε-
perfected economies with sufficiently small ε.

Preference Ri robustly survives if, regardless of other consumers’ preferences, consumer i

survives with a strictly positive probability in all perfected economies with small perturbations.
This implies that Ri cannot robustly vanish in the market. It’s important to note that Ri cannot
robustly dominate if there is another preference that robustly survives.

Example 16. (Expected-utility case) Suppose that we restrict attention to SEU preferences with
i.i.d. beliefs, REU , where

REU = {R : R (V ) = Eπ (V ) , where π ∈ ∆(S)} ,

In the space of SEU preferences, the preference with correct belief, R0 = Eπ0 (V ), is the unique
robust dominator and survivor. This is because for all profile of beliefs π−i ≡

{
πj
}
j ̸=i

that consists

22Formally, there exists some δ > 0 such that consumer i dominates P-a.s. in all ε-perfected economies with ε < δ.
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of incorrect beliefs, the consumer with the correct belief has a strictly higher survival index. Due
to the continuity and strict local dominance relation, she also has a strictly higher survival index,
and hence will dominate the market, in all ε-perfected economies with sufficiently small ε.

In summary, on REU , there exists a unique preference that robustly dominates. However, the
argument fails when we extend the discussion to the general preference space R.

Theorem 5. Under Assumptions 1 to 10, (i) there doesn’t exist an Ri ∈ R that robustly dominates;
(ii) there exist multiple Ri ∈ R that robustly survive; (iii) Ri robustly survives if i ≻i r and only
if i ⪰i r, where r denotes the consumer with the correct expected-utility preference.

Theorem 5 conveys two important messages regarding the validity of the market selection
hypothesis. First, there is no preference that can robustly dominate in the general preference
space R, indicating that MSH is not robust with general preferences. Second, there are multiple
preferences that can robustly survive within R, suggesting that the survival of heterogeneous
preferences is a robust result under our general preference framework. Additionally, Theorem 5
also provides a simple characterization of robust survivors: a preference relation robustly survives
if and almost only if any consumer with those preferences locally dominates the rational consumer
(i.e., the correct SEU consumer)—so the set of robust survivors are those who include the correct
SEU preferences in the local lower contour set.

Proof sketch of Theorem 5

Theorems 5 (i) and (ii) are proved by construction, and we will provide an example to illustrate this
later (see Example 17). The main focus is to prove Theorem 5 (iii). To prove it, we first show that
under our assumptions, preferences must exhibit the local-expected-utility property at certainty,
which means that effective beliefs must be a probability distribution if the continuation utility is
constant across all states.

Lemma 3. (Local-EU property) For all R ∈ R and k ∈ R++, we have ∇R (k · 1) ∈ ∆(S).

Proof. Euler’s homogeneous function theorem implies that for all k ∈ R++, we have

k = R (k · 1) = k × ∂R (k · 1)
∂k

= k ×
∑
s∈S

∂R (k · 1)
∂Vs

⇒
∑
s∈S

∂R (k · 1)
∂Vs

= 1.

Assumption 1 says that ∂R(k·1)
∂Vs

> 0, so ∇R (k · 1) is a probability distribution.

Next we sketch the proof of Theorem 5 (iii). For simplicity, we focus on the two-consumer
case, I = {i, j}. To prove the “if” direction, suppose that i ≻i r. In cases where consumer i

consumes all the endowment, consumer j bears no uncertainty and behaves like an expected-utility
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consumer due to Lemma 3. Therefore, we must have r ⪰i j because any SEU consumer is locally
dominated by the correct SEU consumer. Transitivity then implies i ≻i j, which further leads to the
conclusion that consumer i dominates the market with a strictly positive probability by Theorem
2. Importantly, this argument holds irrespective of consumer j’s preference, making consumer
i a robust survivor. To prove the “only if” direction, suppose that r ≻i i. In this scenario,
we can construct a preference Rj ∈ R such that: (i) Consumer j locally dominates the rational
consumer r, and (ii) Consumer j’s effective belief becomes correct when she vanishes, e.g., the
HAAA preference in Example 17 with the correct belief. Lemma 3 implies that when consumer j

dominates, consumer i will act like an SEU consumer. Therefore, (i) implies that j ≻j i. Similarly,
when consumer i dominates, (ii) implies that consumer j acts like an SEU consumer with the
correct belief. Consequently, if r ≻i i, it implies j ≻i i. Since consumer j dominates consumer
i in both neighborhoods, consumer i vanishes almost surely as per Theorem 2. Consequently,
consumer i cannot be a robust survivor. The following example uses Theorem 5 to demonstrate
how to identify robust survivors.

Example 17. (Robust survivors with HAAA) Consider the case where S = {s1, s2}, π0 =

(1/2, 1/2), and a consumer with HAAA preferences where

Vσt = u (ct) + β × ϕ−1 (Eπϕ (Vσt,s)) , where ϕ (x) =
1− γ

γ

(
x

1− γ
+m

)γ

.

For simplicity, let’s suppose m = 0 and β ≈ 0. Let us ≡ u (es) denote the utility value of the
aggregate endowment in state s, then effective beliefs are

∇sR
(
V
)
≈ uγ−1

s × π (s)(∑
s∈S uγs × π (s)

)1−1/γ
, and ∇sR (V ) = π (s) .

From Theorem 5, the preference robustly survives if

E log
uγ−1
s × π (s)(∑

s∈S uγs × π (s)
)1−1/γ

> E log π0 (s) . (17)

and only if (17) holds with weak inequality. Figure 5 visually represents the set of robust survivors,
with u1 = 1, u2 = exp (k) > 1, and the vertical axis denoting π (s1). We see that: (i) robust
surviving preferences exist when γ ∈ (0, 1), and (ii) for any γ ∈ (0, 1), as the aggregate uncertainty
increases k → +∞, the set of robustly-surviving beliefs π expands to the whole interval [0, 1]. That
is, every full-support belief can robustly survive under some HAAA preference if there is sufficiently
high uncertainty.

7.3 Local non-robustness of the MSH

The market selection hypothesis is not only globally but also locally robust within the class of SEU
preferences in the sense that incorrect beliefs can’t survive in the presence of some arbitrarily close
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Figure 5: Robust survivors with HAAA preferences

beliefs. In this section, we further show the local robustness property does not extend to the case
of general preferences. To discuss the local robustness, we need to define some distance notion. Let
V denote a compact set that contains all possible utility values.23 We define

D0

(
R,R′) = max

V ∈V

∣∣R (V )−R′ (V )
∣∣ and D1

(
R,R′) = max

V ∈V,s∈S

∣∣∇sR (V )−∇sR′ (V )
∣∣ ,

and define D = max {D0, D1}. We adopt metric D throughout this subsection, but all metrics
equivalent to (or finer than) D also work. We believe that D serves as a natural distance notion
as it captures the idea that if two preferences are similar, their utility and marginal utility levels
should also be similar. We introduce the following concept.

Definition 10. (Locally robust dominator) Preference Ri ∈ R locally robustly dominates if
there exists some δ > 0 such that for all

{
Rj
}
j ̸=i

∈ RI−1 with

0 < D
(
Rj ,Ri

)
< δ, for all j ̸= i,

consumer i dominates P-almost surely in all ε-perfected economies with sufficiently small ε.

This definition differs from the previous definition of a robust dominator by restricting all other
preferences to be within distance δ of Ri. In simple terms, preference Ri locally robustly dominates
if consumer i always dominates the market in the presence of sufficiently similar preferences. Recall
that Theorem 5 states that no preference can robustly dominate. A natural conjecture is that some
preferences might robustly dominate in a local sense. The following theorem refutes this conjecture.

Theorem 6. Under Assumptions 1 to 10, there is no preference Ri ∈ R that locally robustly
dominates.

23It is well-defined because the endowment is bounded, e.g., we can let V = [0, v] with v = maxi
ui(e)
1−β

where e is
maximum level of total endowment.
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Theorem 6 asserts that no preference can robustly dominate in a local sense. Specifically, if Ri

is the expected-utility preference with correct belief, Theorem 6 implies that there exists another
preference arbitrarily close to it that prevents it from dominating the market almost surely, which
shows that the standard result that a correct SEU consumer dominates the market is not robust.
Before explaining the proof, let’s first introduce the concept of locally robust survivor.

Definition 11. (Locally robust survivor) Preference Ri ∈ R locally robustly survives if there
exists some δ > 0 such that for all

{
Rj
}
j ̸=i

∈ RI−1 with

0 < D
(
Rj ,Ri

)
< δ, for all j ̸= i,

consumer i survives with a P-strictly positive probability in all ε-perfected economies with sufficiently
small ε.

Similarly, a preference relation locally robustly survives if a consumer with those preferences
survives almost surely in the presence of consumers with preferences within some small neighborhood.
Let’s look at the SEU case for a better understanding.

Example 18. (Local robustness with SEU) As in Example 16, we study the preferences that
locally robustly dominates/survives on REU . It can be verified that R0 = Eπ0 (V ) is also the
unique preference that locally robustly dominates or survives. This is because for any other belief
π ̸= π0, there exists another belief π̂ that has a lower relative entropy and can be arbitrarily close
to π.24 This implies that a consumer with any incorrect beliefs will be driven out of the market
by another consumer with an arbitrarily close belief, so the consumer can’t be a locally robust
dominator or survivor, which shows the local robustness of MSH within SEU.

Next, we discuss how to find preferences that locally robustly survive in a general class of
preferences. A natural conjecture is that we should have a characterization parallel to Theorem 5,
where a preference relation locally robustly survives if and (almost) only if a consumer with those
preferences locally dominates an expected-utility consumer with some local belief. However, the
characterization turns out to be very different from Theorem 5. To present the characterization,
we introduce the following concepts.

Definition 12. Preference Ri ∈ R is effectively uncertainty neutral if

E log
[
∇sRi

(
V i
)]

= E log
[
∇sRi

(
V

i
)]

, (18)

and is effectively uncertainty favored (or unfavored) if the L.H.S. of (18) is less (or greater)
than the R.H.S.

24For example, we define π̂ = (1− ε)π+ επ0 where ε ∈ (0, 1). The strict convexity of the relative entropy implies
that

I (π̂) < (1− ε) I (π) + εI (π0) = (1− ε) I (π) < I (π) ,

so π̂ has a smaller entropy and can be arbitrarily close to π if we take ε sufficiently small.
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Figure 6: Locally robust survivor

In simple terms, Ri is effectively uncertainty neutral if the effective beliefs when i dominates
and when i vanishes have the same survival index. Effectively uncertainty-neutral consumers can
be loosely thought of as SEU consumers. This is because with discounted SEU preferences, effective
beliefs are allocation-independent, so (18) always holds; in contrast, in most cases with non-expected
utility, effective beliefs are allocation-dependent, and are often different when a consumer bears all
uncertainty compared to when she bears no uncertainty. In cases where the effectively uncertainty
neutrality is absent, we refer to a consumer as effectively uncertainty favored (or unfavored) if
their local survival index is greater when they consume all the endowment compared to when they
consume nothing.

Theorem 7. Suppose that |I| = 2. Under Assumptions 1 to 10, Ri ∈ R locally robustly survives
if it is not effectively uncertainty neutral.

By Example 18, we know that an expected-utility consumer with any incorrect belief can’t
be a locally robust survivor. However, Theorem 7 presents a sharp contrast by showing that a
consumer with any preference that is not effectively SEU (i.e., effectively uncertainty neutral) is
a locally robust survivor. Theorem 7 establishes that for a class of general preferences, the local
selection result with SEU preferences represents a knife-edge case. Furthermore, it suggests that
the co-existence of consumers seems more robust—every consumer who is not effectively neutral
towards uncertainty can robustly survive at least in a local sense.

Sketch of the proof of Theorems 6 and 7.

We’ll begin by discussing how to prove Theorem 6. For each Ri ∈ R, there are three possibilities:
Ri can be effectively uncertainty neutral, favored, or unfavored. We will demonstrate that Ri does
not locally robustly dominate in any of these cases.

(i) Ri is effectively uncertainty favored. In this case, for all preferences sufficiently close
to Ri, the local dominance pattern is depicted as Figure 6 (a), where every consumer locally
dominates all other consumers. According to Proposition 2, every consumer dominates the market
with a strictly positive probability. Therefore, Ri can’t locally robustly dominate.
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(ii) Ri is effectively uncertainty unfavored. In this case, for all preferences sufficiently
close to Ri, the local dominance pattern is depicted as Figure 6 (b), where every consumer is
locally dominated by all other consumers. Proposition 2 implies that no consumer can dominate
the market. This, in turn, implies that Ri cannot locally robustly dominate.

(iii) Ri is effectively uncertainty neutral. In this case, we can construct a preference Rj

arbitrarily close to Ri that prevents i from dominating the market. One example is given by:

Rj ≡ (1− δ)Ri + δRk,

where ∇Rk satisfies has a lower entropy than ∇Ri at V i (roughly, we can think of it as k ≻k i).25

Under this construction, for all δ > 0, we can show that j ≻j i in some ε-perfected economy for
any ε > 0, so Ri can’t locally robustly dominate the market.

The proof of Theorem 7 follows directly. As explained above, we have two cases: (i) When Ri

is effectively uncertainty favored, every consumer dominates the market with a positive probability,
so Ri locally robustly survives; (ii) When Ri is effectively uncertainty unfavored, every consumer
is locally dominated by all other consumers. In the case of |I| = 2, each consumer survives almost
surely as per Theorem 2. Therefore, Ri locally robustly survives as well.

Note that Theorem 7 assumes |I| = 2. This limitation arises because our characterizations
are less comprehensive for multi-consumer cases. Specifically, when Ri is effectively uncertainty-
unfavored as shown in Figure 6 (b), our characterizations don’t provide information on which
consumer survives. Therefore, we remain agnostic about whether i is a locally robust survivor.
However, we do know that at least two consumers coexist on every path, allowing us to establish
a weaker but qualitatively similar property.

Definition 13. (Locally robust co-survivor) Preference Ri ∈ R locally robustly co-survives if
for all δ > 0 and

{
Rj
}
j ̸=i

∈ RI−1 with

0 < D
(
Rj ,Ri

)
< δ, for all j ̸= i,

there are at least two consumers surviving with a P-strictly positive probability in all ε-perfected
economies with sufficiently small ε.

In simple terms, if some preference locally robustly co-survives, then for consumers with
preferences in any small neighborhood around Ri, there are at least two consumers who can survive
with a strictly positive probability. In other words, no preference can always dominate the market
in any neighborhood around Ri. We have the following corollary.

Corollary 1. Under Assumptions 1 to 10, Ri ∈ R locally robustly co-survives if it is not effectively
uncertainty neutral.

25For example, the HAAA preferences with γ ∈ (0, 1) considered in Guerdjikova and Sciubba (2015).
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Corollary 1 indicates that multiple consumers can survive in any neighborhood around any
preference that is not effectively uncertainty neutral. In other words, local co-existence is densely
spread throughout the general preference space. From previous discussion, the local co-existence
can take two forms: When i is effectively uncertainty favored, multiple consumers dominate with
positive probability; when i is uncertainty unfavored, multiple consumers co-exist on every path.

8 Conclusion

We provide a unified framework to study the dynamics of competitive equilibrium consumption
when markets are complete and consumers’ preferences belong to a general class of recursive
preferences, nesting both expected-utility and many common non-expected utility preferences as
special cases.

Using this framework, we study the robustness of the market selection hypothesis. Sandroni
(2000) and Blume and Easley (2006) show that among consumers with SEU, those with correct
beliefs dominate the market. Their analysis, however, left open the question of whether this is
an intrinsic property of optimal plans made by consumers with correct beliefs or it is due to the
ancillary restriction to SEU preferences. Thus, to study whether that property is robust to the
introduction of more general preferences, we considered economies with a rich class of recursive
preferences. We first characterize when a consumer can robustly survive globally, that is against
any combination of consumers with arbitrary preferences in that class. We show that a consumer
robustly survives if and only if, except for tie cases, the consumer locally dominates an SEU
consumer with correct beliefs. We use our characterization to show there is no preference relation
that robustly dominate the market. Later we consider whether a consumer can robustly survive
locally, that is against some other consumers with arbitrarily close preferences. We show that any
consumer who is not effectively uncertainty neutral is a locally robust survivor. Thus, the local
selection result that holds for SEU preferences represents a knife-edge case. Our local and global
robustness analysis lets us conclude that, in sharp contrast to the case of SEU, the existence of
multiple survivors is the robust long-run outcome when the class of preferences is rich enough.

Our results underscore that there is an inherent tension between the efficiency of competitive
equilibrium allocations and the concept of rational expectations equilibrium. Therefore, we give
a novel foundation for the idea put-forward by the behavioral finance literature that some irrational
behaviors, i.e. incorrect beliefs, can have long-run effects on asset prices. Contrary to the conventional
wisdom in economics, we show there is no need to assume the presence of market frictions for such
irrationality to have a persistent effect on asset prices in a world with sufficiently rich preferences.

Although we consider general preferences, we have limited ourselves to deviations from expected
utility that keep the time consistency property. The relevant case of time-inconsistent preferences
is left for future work. Similarly, this paper considers the case of complete markets but one could
also use the local approach developed in this paper to deepen our understanding of the dynamics
of consumption in incomplete markets economies.
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A Proofs

A.1 Proof of Proposition 1

Proof. Since (c, p) is a competitive equilibrium, then ci ∈ C must solve consumer i′s maximization
problem and, therefore, it must satisfy the one-deviation property. That is, for all σt ∈ Σt and all
t, c (σt) and {c (σt, s) : s ∈ S} must solve the following problem

max F i
(
x (σt) ,Rt

(
F i
(
x (σt, s) ,Ri

t+1

(
V i
t+2

))))
s.t. p (σt)x (σt) +

∑
s∈S

p (σt, s)× x (σt, s) ≤ p (σt) c (σt) +
∑
s∈S

p (σt, s)× c (σt, s) ,

x (σt) , x (σt, s) ≥ 0.

Since Assumptions 1 and 2 hold, then p (σt) > 0 and ci (σt) > 0 for all σt and all i. So the constraint
qualification holds and there exists a Lagrange multiplier λi (σt) such that

(
c (σt) , λ

i (σt)
)

must
satisfy the following FOC:

λi (σt) p (σt) =F i
1

(
ci (σt) ,Ri

t

(
V i
t+1

))
λi (σt) p (σt, s) =F i

2

(
ci (σt) ,Ri

t

(
V i
t+1

))
× ∂Ri

t

∂V i
σt,s

× F i
1

(
ci (σt, s) ,Ri

t+1

(
V i
t+2

))
.

Therefore, we must have

p (σt, s)

p (σt)
=

F i
1

(
ci (σt, s) ,Ri

t+1

(
V i
t+2

))
F i
1

(
ci (σt) ,Ri

t

(
V i
t+1

)) × ∂Ri
t

∂V i
σt,s

× F i
2

(
ci (σt) ,Ri

t

(
V i
t+1

))
,

A.2 Some Useful Results for the Proof of Theorem 1

The economy has countably many commodities, so we can use the following theorem due to Bewley
(1969) to establish the existence of a competitive equilibrium in our economy.26

Theorem 8. Let E=
(
C, (Ci,⪰i, ei)i∈I

)
be an economy which satisfies the following:

1) C = L∞(B,B, υ) where (B,B, υ) is a positive measure space.
2) ∀i, Ci = xi +K, where K = {c ∈ C : c ≥ 0} is the positive cone of C.
3) ∀i, ei ≫ xi,
4) ∀i, the pre-order (i.e. a binary relation that is reflexive and transitive) ⪰i is

(a) Mackey continuous: for each c ∈ Ci, the sets {c ∈ Ci : c ⪰i c} and {c ∈ Ci : c ≲i c} are
closed in Ci with respect to the Mackey topology for the dual pair (L∞, L1) ,

26The existence theorem in Bewley (1969) focuses on an exchange economy, which can be directly applied here.
See Bewley (1972) for an existence theorem that includes production as well.
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(b) weakly convex: for each c ∈ Ci, the set {c ∈ Ci : c ⪰i c} is convex.
(c) strongly monotone: c ∈ Ci and k > 0 implies that c+ k ≻i c,
(d) complete: if c1,c2 ∈ Ci, then either c1 ⪰i c2 or c2 ⪰ c1.

Then E has a competitive equilibrium.

Next, we introduce the following definitions used by Marinacci and Montrucchio (2010).

Definition 14. F is γ-subhomogeneous if there exists some γ > 0 such that

F (αγx, αy) ≥ αF (x, y)

for all α ∈ (0, 1] and all x, y ∈ R+.

Definition 15. F is a Thompson aggregator if F (x, 0) > 0 for all x > 0, and

F (x, αy) ≥ αF (x, y) + (1− α)F (x, 0)

for all α ∈ [0, 1] and all x, y ∈ R+.

Definition 16. R is subhomogeneous if Rt (αVt+1) ≥ αRt (Vt+1) for all α ∈ [0, 1], t ≥ 0 and all
adapted process V = {Vt : t ∈ T}.

An example of a certainty equivalent function that is subhomogeneous can be found in Example
1. The following fact is easy to verify.

Lemma 4. Under Assumptions 1, 4 and 5, F is a Thompson aggregator and γ-subhomogeneous,
and R is subhomogeneous.

Proof. (i) Thompson: From Assumption 1, F ≥ 0 and F1, F2 > 0, we must have F (x, 0) > 0 for all
x > 0; the second condition comes from concavity of F , i.e., Assumption 4. (ii) γ-subhomogeneous:
The concavity and non-negativity of F implies that

F (αx, αy) ≥ αF (x, y) + (1− α)F (0, 0) ≥ αF (x, y) ,

then we simply let γ = 1. (iii) Similarly, R is subhomogeneous because

Rt (αVt+1) ≥ αRt (Vt+1) + (1− α)Rt (0) ≥ αRt (Vt+1) ,

where the first equality comes from concavity, and the second comes from non-negativity.

A.3 Proof of Theorem 1

Let c ∈ L+ be a consumption plan and T : L+ → L+ be the operator given by

T (V ) = F (c,R(V )) (19)
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that is, for all t ⩾ 0, Tt (V ) = F (ct,Rt(Vt+1 )). For a fixed consumption sequence c ∈ L∞, let T c

be the operator defined in (19). The next lemma shows the existence of a unique V c ∈ L+ that
solves V = T c (V ) and that the mapping c 7→ V c is continuous in the product topology.

Lemma 5. Under Assumptions 1, 2, 4 and 5, there exists a unique V c ∈ L+ that solves equation
V = T c(V ) and the mapping c 7→ V c

t is pointwise continuous in the product topology for all t ≥ 0.

Proof. The existence and uniquenss follows from Theorem 1 in Marinacci and Montrucchio (2010).
We only need to show that hypothesis (ii) in their Theorem 10 holds as the proof that hypothesis
(i) and (iii) hold is not affected by our assumption that F (0, 0) > 0. By Assumption 4 there exists
y∗ such that F (∥c∥∞ , y∗) = y∗. Let X ∈ [0, Y ∗] where Y ∗

t = y∗ for all t ≥ 0. Let α = F (0,0)
y∗ and

β = 1. Note that α > 0 by Assumption 4 and β > 0. Note also that:

αY ∗ = F (0, 0)1 ≤ F (c, 0)1 = T (0) ≤ Y ∗ = βY ∗

where 1 ∈ L+ is the sequence of ones, the first inequality follows because F increases in its first
argument by Assumption 1. It follows that condition (ii) holds.

The continuity of the mapping c 7→ V c
t in the product topology follows from Theorem 6 in

Marinacci and Montrucchio (2010). To conclude the proof we verify that the assumptions of their
Theorem 6 hold. Note that F is continuous by assumption 1; besides, it is Thompson and γ-
subhomogeneous by Lemma 4. For every consumption plan c ∈ L∞, their condition (17) becomes
limt→+∞ F (1, t) /t < 1. This is satisfied because: (i) by Assumption 4, there is some y such that
F (1, y) = y, and (ii) by their Lemma 1, F (1, t) /t is strictly decreasing. Again, we know that Ri

is subhomogeneous by Lemma 4. The continuity and monotonicity Ri
t implies that: (i) V n

t+1 ↑ Vt+1

implies Ri
t

(
V n
t+1

)
↑ Ri

t (Vt+1) for every t, and (ii) V n
t+1 → Vt+1 implies Ri

t

(
V n
t+1

)
→ Ri

t (Vt+1). So
the hypothesis for their Theorem 6 are satisfied.

Lemma 6. Under Assumptions 1 and 2, ⪰i satisfies strong monotonicity.

Proof. Suppose that c ≥ c′, that is, c (σt) ≥ c′ (σt) for all σt ∈ Σt and t ≥ 1. For all T ≥ 1, we
define

cT (σt) =

c (σt) t ≤ T

c′ (σt) t > T
for all σt ∈ Σt. (20)

Since F is increasing in its first argument, then we have that for every σT ∈ ΣT :

V i
σT

(
cT
)
= F i

(
cT (σT ) ,Ri

T

(
VT+1

(
cT
)))

= F i
(
cT (σT ) ,Ri

T

(
VT+1

(
c′
)))

≥ F i
(
c′ (σT ) ,Ri

T

(
VT+1

(
c′
)))

= V i
σT

(
c′
)
. (21)
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Similarly, for all σT−1 ∈ ΣT−1, we have

V i
σT−1

(
cT
)
= F i

(
cT (σT−1) ,Ri

T−1

(
VT

(
cT
)))

≥ F i
(
c′ (σT−1) ,Ri

T−1

(
VT

(
c′
)))

= V i
σT−1

(
c′
)
,

where the inequality comes from (21), the monotonicity of F in both arguments by Assumption 1
and because Ri is increasing in continuation utilities by Assumption 2. By induction, we have

V i
σ0

(
cT
)
≥ V i

σ0

(
c′
)
.

Notice that as T → +∞, we have cT → c in the product topology.27 V i
σ0

is continuous in product
topology, so we have

V i
σ0

(c) = lim
T→+∞

V i
σ0

(
cT
)
≥ V i

σ0

(
c′
)
,

which proves that ⪰i satisfies weak monotonicity, that is, c ≥ c′ implies c ⪰i c′. To prove the
strong monotonicity, we note that for any k > 0, we have

V i
σ0

(c+ k) = F i
(
c (σ0) + k,Ri

0 (V1 (c+ k))
)

> F i
(
c (σ0) ,Ri

0 (V1 (c+ k))
)

≥ F i
(
c (σ0) ,Ri

0 (V1 (c))
)
= V i

σ0
(c) ,

where the strict inequality comes from F i
1 > 0 and the weak inequality comes from the weak

monotonicity of ⪰i.

Remark 2. Lemma 6 shows that V0 is monotonic in c. From the proof, it is straightforward that
Vt is monotonic in c for all t ∈ T, that is, if c ≥ c′ from time t on, then we have Vt(c) ≥ Vt(c

′).

Lemma 7. Under Assumptions 1, 2, 4 and 5, ⪰i satisfies weak convexity.

Proof. Suppose that c ̸= c′ , c ⪰i c′, and α ∈ (0, 1). Again, we define cT as in (20), and the
concavity of F implies that for all σT ∈ ΣT , we have

V i
σT

(
αcT + (1− α) c′

)
= F i

(
αcT (σT ) + (1− α) c′ (σT ) ,Ri

T

(
VT+1

(
c′
)))

≥ αF i
(
αcT (σT ) ,Ri

T

(
VT+1

(
c′
)))

+ (1− α)F i
(
c′ (σT ) ,Ri

T

(
VT+1

(
c′
)))

= αV i
σT

(
cT
)
+ (1− α)V i

σT

(
c′
)

(22)

27That is, limT→+∞ ||πt

(
cT

)
− πt (c) ||∞ = 0 for all t ≥ 1, where πt (c) denotes the time-t projection of c.
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For all σT−1 ∈ ΣT−1, we have

V i
σT−1

(
αcT + (1− α) c′

)
=F i

(
αcT (σT−1) + (1− α) c′ (σT−1) ,Ri

T−1

(
VT

(
αcT + (1− α) c′

)))
(23)

≥F i
(
αcT (σT−1) + (1− α) c′ (σT−1) , αRi

T−1

(
V i
σT

(
cT
))

+ (1− α)Ri
T−1

(
V i
σT

(
c′
)))

(24)

≥αF i
(
cT (σT−1) ,Ri

T−1

(
V i
σT

(
cT
)))

+ (1− α)F i
(
c′ (σT−1) ,Ri

T−1

(
V i
σT

(
c′
)))

(25)

=αV i
σT−1

(
cT
)
+ (1− α)V i

σT−1

(
c′
)
,

where (24) follows from (22) and the monotonicity and concavity of Ri
T−1, and (25) comes from

the concavity of F i. By induction, we have

V i
σ0

(
αcT + (1− α) c′

)
≥ αV i

σ0

(
cT
)
+ (1− α)V i

σ0

(
c′
)
.

Again, since cT → c in product topology and V i is continuous in the product topology, we must
have

V i
σ0

(
αc+ (1− α) c′

)
≥ αV i

σ0
(c) + (1− α)V i

σ0

(
c′
)
,

which proves that ⪰ is convex.

Proof of Theorem 1

Proof. Let B = Σ× T , B =F⊗2T and υ = Pπ0 ⊗ λ, where λ is the counting measure on
(
T, 2T

)
.

Conditions (1) and (2) in Theorem 8 hold as Ci = L+
∞(B,B, υ) for all i ∈ I. Condition (3) follows

by our Assumption 3. Lemma 5 shows preferences are continuous in the product topology. Since
the product topology is coarser than the Mackey topology, it follows preference are continuous in
the Mackey topology as well and so (a) in condition (4) holds.28. Finally, Lemmas 6 and 7 show
preferences are strongly monotone and weakly convex, respectively, and so (b) and (c) in condition
(4) hold.

A.4 Proof of Lemma 1

Proof. The proof consists of the following four steps.

Step 1 : We show that Ri
t

(
V i
t+1

)
belongs to a compact set almost surely. Let e ≡ I × M

denote an upper bound of the aggregate endowment. Denote by vi ≡ ess supσ,t
∣∣V i

σt
(e)
∣∣ and by

vi ≡ ess infσ,t
∣∣V i

σt
(0)
∣∣. From Lemma 6 (and Remark 2), we know that V i

σt
(c) is monotonic in c, so

V i
σt
(c) ∈

[
V i
σt
(0) , V i

σt
(e)
]
, and hence V i

t ∈
[
vi, vi

]
≡ V i P-almost surely. As a consequence,

Ri
t

(
V i
t+1

)
∈
[
Ri

t

(
vi
)
,Ri

t

(
vi
)]

=
[
vi, vi

]
= V i P− a.s.,

28See Lemma 2.48 in Aliprantis and Border (1999)
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which comes from the monotonicity of Ri
t and the fact that Ri

t (k · 1) = k. By assumption,
V i (c) ∈ L+

∞ for all c ∈ C, so 0 ≤ vi ≤ vi < ∞, and hence V i is compact.

Step 2 : We show that F i
1

(
ci (σt) ,Ri

t

(
V i
t+1

))
is almost surely bounded away from 0. Let

C ≡ [0, e], which is the feasible set of consumption. From Assumption 1, F i
1 : C × V i → (0,+∞] is

continuous and hence lower semicontinuous. Using the generalization of the Weierstrass’ theorem
to lower semicontinuous function where +∞ is allowed as a value (see Lemma 2.40 in Aliprantis
and Border (1999)), we know that F i

1 obtains its minimum on C × V i, so there exists some f1 > 0

such that F i
1

(
ci (σt) ,Ri

t

(
V i
t+1

))
≥ f1 almost surely.

Step 3 : We have Lij (σt) → +∞ almost surely implies F i
1

(
ci (σt) ,Ri

t

(
V i
t+1

))
→ +∞. This is a

direct implication from Step 2.

Step 4 : We show that F i
1

(
ci (σt) ,Ri

t

(
V i
t+1

))
→ +∞ almost surely implies ci (σt) → 0. Suppose

not, then on a positive-probability set of paths, we can find an ε > 0 and an infinite sequence{
ci (σtk)

}∞
k=1

such that ci (σtk) ≥ ε for each k. Let Cε ≡ [ε, e], and we have

F i
1

(
ci (σtk) ,R

i
tk

(
V i
tk+1

))
≤ max

(c,R)∈Cε×Vi
F i
1 (c,R) < +∞, P− a.s.,

where the maximum can be obtained since F i
1 : Cε × V i → (0,+∞) is a continuous function

on a compact domain, and hence the standard Weierstrass’ theorem applies. However, this fact
contradicts F i

1

(
ci (σt) ,Ri

t

(
V i
t+1

))
→ +∞, so we must have ci (σt) → 0.

A.5 Discussion on Assumption 7

Below is a condition on exogenous variables that is sufficient for Assumption 7 to hold.

Proposition 3. There exists some M ∈ (0, 1) such that Assumption 7 holds if for all i ∈ I and
t ∈ T, we have

sup
V ∈V

[
max
j ̸=i

∇sRj
t (V )

∇sRi
t (V )

]
≤ M for some s ∈ S,

where V denotes a compact set containing all possible utility values.

Proposition 3 says that one sufficient condition for Assumption 7 to hold is that there exists
some state s ∈ S at which every consumer’s effective belief is sufficiently different from other
consumers.

Proof. By definition, we have

max
j ̸=i

Lij
t+1 ≤ max

j ̸=i
Lij
t ×max

j ̸=i

∇sRj
t (Vt+1)

∇sRi
t (Vt+1)

×max
j ̸=i

Dji (σt)

≤ max
j ̸=i

Lij
t ×M × d when st+1 = s,
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where d < ∞ denotes the upper bound of Dji. Let M < 1/d. It is easy to see that when
maxj ̸=i L

ij
t < L, then after K =

⌈
log

L/L
Md

⌉
realizations of state s, we have maxj ̸=i L

ij
t+K < L, so

Assumption 7 is satisfied.

To get a more concrete idea, we employ Proposition 3 to provide conditions for smooth ambiguity
preferences below. Other preferences can be discussed analogously.

Example 19. (Smooth ambiguity preferences) Suppose that consumers have smooth ambiguity
preferences with i.i.d. beliefs,

Vt (c) = u (ct) + β × ϕ−1 (Eµϕ [Eπ (Vt+1 (c))]) .

Denote by m = mini
ϕ′
i(V )

ϕ′
i(V )

, M = maxi
ϕ′
i(V )

ϕ′
i(V )

and d = mini βi

maxi βi
, where V and V denote the lowest

and the highest possible utility levels. If for all i, we have

max
j ̸=i

πj (s)

πi (s)
<

m

M
× d for some s ∈ S, (26)

where πi (s) ≡
∑

π µ
i (π)× π (s), then Assumption 7 is satisfied.

A.6 Auxiliary Results

Recall that consumption dynamics are determined by

Lij
t+1 = Lij

t ×Bji (σt, st+1)×Dji (σt) .

To characterize the dynamics, it is more convenient to consider a modified process
{
L̂ij
t

}∞

t=1
where

L̂ij
t+1 = L̂ij

t ×Bji (σt, st+1)×Dji (σt, st+1) .

We first notice that these two processes are comparable in the sense that their ratios are uniformly
bounded.

Lemma 8. (Comparability) There exists 0 < α < β < +∞ such that α < Lij
t /L̂

ij
t < β for all

t ≥ 1.

Proof. By definition, we have

Lij (σt)

L̂ij (σt)
=

∏t−1
τ=0B

ji (στ+1)×Dji (στ )∏t−1
τ=0B

ji (στ+1)×Dji (στ+1)
=

Dji (σ0)

Dji (σt)
.

Note that

Dji (σt) =
F j
2

(
c (σt) ,Rj

t

(
V j
t+1

))
F i
2

(
c (σt) ,Ri

t

(
V i
t+1

)) ∈ (0,+∞) ,
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because consumption and utility are bounded, and F2 ∈ (0,+∞) and is continuous. So, there exists
0 < d < d < +∞ that bound Dij from below and above, which proves the lemma.

Lemma 9. (Continuity) For all i, j ∈ I and t ∈ T, and ε > 0, there exists a uniform L ∈ R+ such
that

L̂ij
t > L =⇒ |V i

t − V i| < ε.

Remark 3. Lemma 9 says that when the (modified) marginal utility ratio between i and j becomes
very large, the continuation utility of i at time t becomes very close to the utility of consuming
zero forever.

Proof. First, note that V i
t is continuous in product topology by Lemma 5, so for all ε > 0, there

exists some K ∈ N and ϵ > 0 such that

max
ω∈Σt

max
0≤k≤K

cit+k(ω) < ϵ =⇒ |V i
t − V i| < ε. (27)

Second, we can show that fixing ϵ > 0 and K ∈ N, there exists some L0 ∈ R+ such that

min
{
Lij
t , ..., L

ij
t+K

}
> L0 =⇒ max

{
cit, ..., c

i
t+K

}
< ϵ. (28)

This comes from the fact that for all τ ∈ T,

Lij
τ > L0 ⇒ F i

1

(
ciτ ,Ri

τ

)
> L0 × F j

1

(
cjτ ,Rj

τ

)
,

and
F j
1

(
cjτ ,Rj

τ

)
> min

{
F j
1 (e, V ) : V ∈ Vj

}
≡ F j

1 > 0,

where Vj =
[
V j ,maxs V

j
s

]
stands for the set of possible utility values for consumer j. Note that

Ri
τ ∈ V i has a compact range, and F i satisfies the Inada condition, so we can choose L0 sufficiently

large such that
F i
1

(
ciτ ,Ri

τ

)
> L0 × F j

1 ⇒ ciτ < ϵ,

which proves (28). Lemma 8 then implies that there exists L such that

min
{
L̂ij
t , ..., L̂

ij
t+K

}
> L =⇒ min

{
Lij
t , ..., L

ij
t+K

}
> L0, (29)

so Lemma 9 is proved after combining (27), (28) and (29).
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A.7 Proof of Proposition 2

A.7.1 Proof of Proposition 2 (i)

Lemma 10. When j ≻i i, there exists L < ∞ such that for all t ∈ T, we have

P
(
L̂−i
τ ≤ L, for some τ ≥ t|L̂−i

t > L
)
= 1, (30)

where L̂−i (σt) = mink ̸=i L̂
ki (σt).

Remark 4. L̂−i
t ∈

(
L,+∞

)
means that consumer i almost dominates the market, so Lemma 10

says that if consumer i is locally dominated by another consumer, then i can’t dominate the market
with positive probability.

Proof. Suppose (30) doesn’t hold, then there exists t ∈ T and corresponding σt such that for all
L < ∞, we have

P
(
L̂−i
τ > L, for all τ ≥ t|L̂−i

t > L
)
> 0, (31)

i.e., consumer i remains her dominant position in all future periods. From Lemma 9, we can choose
L sufficiently large such that whenever L̂−i

t > L, V i
t is very close to V

i, and V k
t is very close to V k

for k ̸= i. Let the local discount rate ratio and the local belief ratio be defined as

Dji
i (s) =

F j
2

(
0,Rj

(
V j
))

F i
2

(
e (s) ,Ri

(
V

i
)) and Bji

i (s) = ∇sRj
(
V j
)
/∇sRi

(
V

i
)
, (32)

which are the effective discount rate and belief ratios between j and i when consumer i consumes
all the endowment forever. When L̂−i

τ > L for all τ ≥ t, and when L is very large, the generalized
discount rate ratio, Dij (στ ), and belief ratio, Bij (στ ), are very close to the local discount rate ratio
Dij

i (sτ ) and belief ratio Bij
i (sτ ) for all τ ≥ t. Formally, for all ε > 0, there exists some L < ∞

such that for all τ ≥ t, we have

log
(
L̂ji
τ+1

)
= log

(
L̂ji
τ

)
+ log

[
Bij (στ , sτ+1)D

ij (στ , sτ+1)
]

≤ log
(
L̂ji
τ

)
+ (1 + ε)

[
logBij

i (sτ+1)D
ij
j (sτ+1)

]
.

Taking the limit of the time average, we have

lim
T→+∞

1

T − t

T∑
k=t

log
(
L̂ji
τ+1

)
≤ lim

T→+∞

1

T − t
log
(
L̂ji
τ

)
+ lim

T→+∞

1 + ε

T − t

T∑
k=t

[
logBji

i (sτ+1)D
ji
j (sτ+1)

]
= (1 + ε)E

[
logDij

i (sτ )B
ij
i (sτ )

]
= (1 + ε) (Si

i − Sj
i ) < 0 P− a.s.,

(33)

where the convergence comes from the strong law of large numbers, and the inequality comes from
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j ≻i i. However, (33) implies that L̂ji
τ → 0 almost surely, which contradicts (31), so we must have

(30).

Proposition 2 (i) then follows directly from Lemma 10, because if i dominates the market with
positive probability, we must have L̂−i

t → +∞ with positive probability, which contradicts Lemma
10.

A.7.2 Proof of Proposition 2 (ii)

For some L > 0, we define T = inf
{
τ : L̂i−

τ > L
}

, where L̂i−
τ = maxj ̸=i L̂

ij
τ . We construct a local

martingale mij
t =

(
L̂ij
t∧T

)ρ
. That is,

mij
t+1 =

mij
t ×

[
Bji (σt, st+1)×Dji (σt, st+1)

]ρ
t < T

mij
t t ≥ T

,

We present the following facts.

Fact 1. If i ≻i j, then there exists some ρ > 0 such that E
[
Bji

i (s)×Dji
i (s)

]ρ
< 1.

Proof. Let X (s) = Bji
i (s)×Dji

i (s), which is a bounded random variable. Then,

lim
ρ→0+

E
(
Xρ − 1

ρ

)
= E

(
lim

ρ→0+

Xρ − 1

ρ

)
= E

(
lim

ρ→0+
Xρ × logX

)
= E logX < 0,

where the first equality uses the dominated convergence theorem and the second one uses L’Hopital
rule. Since E

(
Xρ−1

ρ

)
is continuos in ρ, there exists ρ > 0 such that E

(
Xρ−1

ρ

)
< 0, that is

EXρ < 1.

Fact 2. If i ≻i j, there exists L, ρ > 0 such that
{
mij

t

}
is a supermartingale.

Proof. Let ρ satisfy Fact 1. When L̂i−
0 > L, the process is constant, and hence trivially a

supermartingale. Suppose that L̂i−
0 ≤ L. From Lemma 9, when L is very small and when L̂i−

t ≤ L,
both Bji (σt, s) and Dji (σt, s) are very close to Bji

i (s) and Dji
i (s). So for all ε > 0, there exists

L > 0 such that when t < T , we have

E
[
mij

t+1|Ft

]
≤ mij

t × (1 + ε)E
[
Bji

i (s)×Dji
i (s)

]ρ
.

By Fact 1 we can choose ε > 0 to be sufficiently small so that E
[
mij

t+1|Ft

]
≤ mij

t when t < T{
mij

t

}
is a supermartingale.

Lemma 11. If i ≻i j for all j ̸= i, there exists p > 0 and ε′ > ε > 0 such that for all t ∈ T, we
have

P
(
L̂i−
τ ≤ ε′, for all τ ≥ t|L̂i−

t ≤ ε
)
> p. (34)
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Remark 5. Lemma 11 says that if i locally dominates everyone else, then conditional on i almost
dominating the market, she will maintain the dominating position with a strictly positive probability.
As showed later, this further implies that consumer i will (unconditionally) dominate the market
with a strictly positive probability.

Proof. From Fact 2,
{
mij

t

}
is a non-negative supermartingale, therefore it almost surely converges

to some finite random variable mij
∞ for all j ̸= i. We have

P (T < ∞) ≤ P
(
∃j ̸= i : mij

∞ > Lρ
)
≤
∑
j ̸=i

P
(
mij

∞ > Lρ
)

≤
∑
j ̸=i

Emij
∞

Lρ ≤ (I − 1)×

(
L̂i−
0

L

)ρ

, (35)

where the third inequality comes from Markov inequality and the last one comes from the supermartingale
property. Let ϵ ∈ (0, 1), (35) implies that

P

(
T = ∞|L̂i−

0 ≤
(

ϵ

I − 1

)1/ρ

L

)
> 1− ϵ > 0. (36)

For all t ∈ T and L̂i−
t , we construct a stopped process

{
mij

t+k

}∞

k=0
that starts from time t and

applying the same arguments.29 Then, we have

P

(
L̂i−
τ ≤ L for all τ ≥ t|L̂i−

t ≤
(

ϵ

I − 1

)1/ρ

L

)
> 1− ϵ, (37)

so the lemma is proved by setting ε =
(

ϵ
I−1

)1/ρ
L, ε′ = L and p = 1− ϵ.

Next we show that Lemma 11 implies that consumer i will dominate the market with a strictly
positive probability. First, Assumptions 7 implies that for all L̂i−

0 < ∞, there exists some t ∈ T

such that L̂i−
t ≤

(
ϵ

I−1

)1/ρ
L happens with a strictly positive probability. Therefore, (37) implies

that there exists some δ > 0 such that

P
(
L̂i−
τ ≤ L for all τ ≥ t

)
> δ. (38)

The martingale convergence theorem and (38) imply that L̂ij
t converges to some limit L̂ij

∞ ∈ [0, L]

with a strictly positive probability for all j ̸= i. Assumptions 6 and 7 imply that the limit can
only be L̂ij

∞ = 0 (otherwise L̂ij
t can always drift away from L̂ij

∞ with a probability bounded away
from 0, and hence unstable). So, (38) is equivalent to that consumer i dominates the market with
a strictly positive probability.

29Formally, define T = inf
{
τ : L̂i−

τ+t > L
}

and mij
t+k =

(
L̂ij

t+min{k,T}

)ρ

.
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A.8 Proof of Theorem 2

Proof. (i) Suppose that i ≻i j and i ≻j j. From i ≻j j and Lemma 10, we know that for all t ∈ T,

P
(
L̂ij
τ ≤ L for some τ ≥ t

∣∣∣ L̂ij
t > L

)
= 1. (39)

Assumption 7 imply that there exists δ > 0 such that for all t ∈ T,

P

(
L̂ij
t+K ≤

(
ϵ

I − 1

)1/ρ

L

∣∣∣∣∣ L̂ij
t ≤ L

)
> δ. (40)

From (36), i ≻i j implies that for all t ∈ T, we have

P

(
L̂ij
τ ≤ L for all τ ≥ t

∣∣∣ L̂ij
t ≤

(
ϵ

I − 1

)1/ρ

L

)
> 1− ϵ > 0. (41)

Denote by E = ∪∞
k=1

{
L̂ij
t ≤ L for all t ≥ k

}
. Combining (39), (40) and (41), we know that for all

t ∈ T, we have
P (E|Ft) ≥ (1− ϵ) δ > 0,

which further implies that P (E) = 1 by Levy’s 0-1 law, i.e., L̂ij
t will be trapped below L eventually

with probability 1. We can choose L to be arbitrarily small, so we must have L̂ij
t → 0 almost

surely, which implies that cjt → 0, i.e., consumer j vanishes and consumer i is the only survivor.
(ii) Suppose that i ≻j j and j ≻i i. Proposition 2 implies that both i and j dominate with zero

probability. That is, they survive simultaneously with probability 1.
(iii) Suppose that i ≻i j and j ≻j i. Proposition 2 implies that both i and j dominate

with a strictly positive probability. We define Ei = ∪∞
k=1

{
L̂ij
t ≤ L for all t ≥ k

}
and Ej =

∪∞
k=1

{
L̂ij
t ≥ 1/L for all t ≥ k

}
. Following the proof in case (i), there exists some p > 0 such

that for all t ∈ T, we have

P
(
Ei ∪ Ej |Ft

)
> p =⇒ P

(
Ei ∪ Ej

)
= 1.

Similarly, because we can choose L to be arbitrarily small, it implies that

P
({

L̂ij
t → 0

}
∪
{
L̂ij
t → +∞

})
= 1 ⇒ P

({
cjt → 0

}
∪
{
cit → 0

})
= 1.

That is, with probability 1, one of the two consumers will dominate the market. Besides, both
Ei and Ej occur with a strictly probability by Proposition 2, so both P

(
cjt → 0

)
and P

(
cit → 0

)
occur with a strictly positive probability.
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A.9 Proof of Theorem 3

Lemma 12. There exists some p > 0 and ε′ > ε > 0 such that for all i with Ui ̸= ∅ and all t ∈ T,
we have

P
(
max
j∈Ui

L̂ij
T ≥ ε′

∣∣∣∣ L̂i−
t < ε

)
≥ p,

where T = inf
{
τ > t : L̂i−

τ ≥ ε′
}
.

Remark 6. Lemma 12 improves Lemma 10. Recall that Lemma 10 says that if there is a consumer
j such that j ≻i i, then i can’t dominate the market. Lemma 12 further says that when consumer
i almost dominates the market, her dominating position will be destroyed by some other consumer
j such that j ≻i i (i.e., the marginal utility consumption of i increases relative to some j ∈ Ui and
falls outside of the dominating neighborhood).

Proof. For all t ∈ T and given that L̂i−
t < ε, then we define a stopping time T = inf

{
τ > t : L̂i−

τ ≥ ε′
}

,

where ε′ > ε > 0. For all i and j, define a stopped process mij
t+k =

(
L̂ij
min{t+k,T}

)ρ
. Fact 2 shows

that there exists ρ, ε′ > 0 such that
{
mij

t+k

}
is a supermartingale, and hence converges to some

limit mij
∞. Doob’s optional stopping theorem implies that

ερ ≥
(
L̂ij
t

)ρ
≥ E

(
mij

∞|Ft

)
≥ (ε′)ρ × P{T<∞}

(
L̂ij
T ≥ ε′|Ft

)
.

Therefore, we have

P{T<∞}

(
max
j∈Di

L̂ij
T ≥ ε′

∣∣∣∣Ft

)
≤
∑
j∈Di

P{T<∞}

(
L̂ij
T ≥ ε′

∣∣∣Ft

)
≤ I

( ε

ε′

)ρ
. (42)

Suppose that Ui ̸= ∅, then Lemma 10 implies that P (T = ∞) = 0, that is,30

P
(
L̂i−
T ≥ ε′

∣∣∣Ft

)
= 1,

so (42) implies that

P
(
max
j∈Di

L̂ij
T ≥ ε′|Ft

)
≤ I

( ε

ε′

)ρ
=⇒P

(
max
j∈Ui

L̂ij
T ≥ ε′

∣∣∣∣Ft

)
≥ 1− I

( ε

ε′

)ρ
, (43)

Here, we choose ε sufficiently small relative to ε′, so the probability on the R.H.S. of (43) is strictly
positive, which implies the lemma.

30Recall that L̂i−
τ = 1

L̂−i
τ

.
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Lemma 13. For all ε > 0, there is some q > 0 such that for all i ∈ I with Ui ̸= ∅ and all t ∈ T,
we have

P
(
∪j∈Ui

{
L̂j−
τ < ε for some τ ≥ t

}
|L̂i−

t < ε
)
≥ q. (44)

Remark 7. Lemma 13 says that conditional on that i almost dominates the market, some other
consumer who dominates i (if existing) will almost dominate the market as well sometime in the
future.

Proof. From Lemma 12, there exists p > 0 such that

P
(
∪j∈Ui

{
L̂ij
τ ≥ ε′ for some τ > t

}
|Li−

t < ε
)
≥ p. (45)

Define T = inf
{
τ > t : L̂i−

τ ≥ ε′
}

. So we have: (i) T < ∞, and (ii) there exists some j ∈ Ui such

that L̂ij
T ≥ ε′. Each such j must satisfy

L̂j−
T = max

k ̸=j
L̂jk
T = L̂ji

T ×max
k ̸=j

L̂ik
T

≤ 1

ε′
× ε′max

(
DkiBki

)
≤ 1

ε′
× ε′M for some M < ∞. (46)

where the boundedness of D and B comes from the proof of Lemma 8. (45) and (46) imply that

P
(
∪j∈Ui

{
L̂j−
τ ≤ ε′M for some τ ≥ t

}
|Li−

t < ε
)
≥ p.

Assumption 7 implies that conditional on L̂j−
t ≤ ε′M , there exists K < ∞ signals after which we

have L̂j−
τ+K < ε. So, there exists some q > 0 such that probability of L̂j−

τ < ε for some τ > t is
uniformly bounded by q.

Next, we prove the following claim, which implies Theorem 3 directly.

Lemma 14. P
(
∪i∈I∗

{
cjt → 0 for all j ̸= i

})
= 1, with P

(
cjt → 0 for all j ̸= i

)
> 0 for all i ∈ I∗.

Proof. Let L̂ ≡
{
L̂ij , for all i, j ∈ I

}
and we define Bi

ε =
{
L̂ : L̂i− < ε

}
. From Assumption 7, we

know that for all t ∈ T, the probability that there exists some j1 ∈ I such that L̂t1 ∈ Bj1
ε for some

t1 ≥ t is uniformly greater than 0.31 Then, when L̂t1 ∈ Bj1
ε , and if Uj1 ̸= ∅, Lemma 13 implies that

with a strictly positive probability that exists some t2 > t1 such that L̂t2 ∈ Bj2
ε for some j2 ∈ Uj1 .

Applying the arguments iteratively, we know that with a strictly positive probability, L̂t follows the
trajectory Bj1

ε → Bj2
ε → Bj3

ε → ...., where jm+1 ∈ Ujm until it enters some Bj∗
ε with Uj∗ = ∅. Once

L̂t ∈ Bj∗
ε , Lemma 11 implies that L̂t is trapped inside Bj∗

ε with a strictly positive probability, in
which case consumer j∗ dominates the market. Note that in each step, the probability is uniformly

31We simply choose j1 ∈ argminj∈I F
j
1

(
cjt ,R

j
t

)
. By definition we have Lj1−

t = maxi L
ji
t ≤ 1 < ∞. Assumption 7

implies that the probability that Lj1−
t1

< ε for some t1 > t is uniformly bounded from below.
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bounded away from 0. Therefore, for all t ∈ T and Ft, there exists some p > 0 and i ∈ I∗ such that

P
(
∪i∈I∗

{
cjt → 0 for all j ̸= i

}
|Ft

)
> p,

i.e., the probability that some consumer in I∗ eventually dominates the market is uniformly greater
than 0. Levy’s 0-1 law then implies that with probability 1, some consumer in I∗ will eventually
dominate. Besides, from Lemma 11 and Assumption 7, we know that each consumer in I∗ dominates
with a strictly positive probability.

A.10 Proof of Theorem 4

Denote by E the event that all consumers in I\G vanish. Under the assumptions of Theorem 4,
we have the following lemmas.

Lemma 15. On E, P−almost surely there exists some i ∈ G such that L̂i−
t doesn’t converge.

Proof. Suppose not, then it happens with a strictly positive probability that L̂i−
t converges for all

i ∈ G. We first notice that by Assumption 7, the limit L̂i−
∞ can only be 0 or ∞ except for null

events. We further note that on E, all consumers in I\G vanish, and since Ui ̸= ∅ for all i ∈ G,
no consumer in G dominate the market by Proposition 2, so L̂i−

∞ cannot be zero. Therefore, L̂i−
∞

must be ∞ for all i ∈ G. But then all consumers in G vanish as well, which is not possible by
definition.

Lemma 16. Suppose that L̂i−
t doesn’t converge, then lim inf L̂i−

t = 0 except for P-null events.

Proof. Denote by G the event that L̂i−
t doesn’t converge, so we can rewrite it as

G = ∪m,n∈Z++

{
L̂i−
t crosses

[
1

m
,n

]
infinitely many times

}
≡ ∪m,n∈Z++Gmn.

Further denote by F the event that lim inf L̂i−
t > 0, which can be rewritten as

F = ∪k∈Z++

{
lim inf L̂i−

t ≥ 1/k
}
≡ ∪k∈Z++Fk.

Therefore, G∩F = ∪k,m,n∈Z++Gmn∩Fk denotes the event that L̂i−
t doesn’t converge and lim inf L̂i−

t >

0. Suppose that k ≤ m, then by definition Gmn ∩ Fk is a null event. Suppose that k > m, then
on Gmn, L̂i−

t falls below 1/m infinitely often. By Assumption 7, whenever L̂i−
t ≤ 1/m, then it will

fall below 1/k with a strictly positive probability in the future. So, on Gmn, we have∑
t

P
(
L̂i−
τ < 1/k for some τ > t|Ft

)
= +∞.

By Levy’s extension of Borel-Cantelli Lemmas (See Chapter 12 of Williams (1991)), we almost
surely have

{
L̂i−
t < 1/k i.o.

}
on Gmn, which implies P (Gmn ∩ Fk) = 0. The arguments hold for all
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k,m, n ∈ Z++, so we further have P (G ∩ F ) = 0, which implies that when L̂i−
t doesn’t converge,

we have lim inf L̂i−
t = 0 except for null events.

Proof of Theorem 4

Proof. Combining Lemmas 15 and 16, we know that on E, there almost surely exists i ∈ G such
that L̂t ∈ Bi

ε =
{
L̂ ∈ RI×I

++ : L̂i− < ε
}

happens infinitely often. Recall that Lemma 12 says that

P
(
max
j∈Ui

L̂ij

T i
t
≥ ε′

∣∣∣∣ L̂i−
t < ε

)
≥ p,

where T i
t = inf

{
τ > t : L̂i−

τ ≥ ε′
}

. Recall that T i
t is P-almost surely finite. Therefore on E, we

almost surely have ∑
t

P
(
max
j∈Ui

L̂ij

T i
t
≥ ε′

∣∣∣∣Ft

)
= +∞

which, by Levy’s extension of Borel-Cantelli Lemma, implies that maxj∈Ui L̂
ij
t ≥ ε′ occurs infinitely

often on E almost surely. By definition, all consumers in I\G vanish on E, so we have maxj∈Ui∩G L̂ij
t ≥

ε′ occurs infinitely often on E.32 For any t ∈ T, suppose that L̂ij
t ≥ ε′ for some j ∈ G, then L̂t

enters Bj
ε with a positive probability. Following the iterated arguments as in Lemma 14, L̂t follows

a trajectory Bj1
ε → Bj2

ε → Bj3
ε → ...., where jm+1 ∈ Ujm ∩ G for each m and finally enters Bg

ε

for some g ∈ G∗ with a positive probability, and the probability is bounded away from 0 for all t.
Therefore, on E, we have∑

t

P
(
∪g∈G∗

{
L̂τ ∈ Bg

ε for some τ > t
}
|Ft

)
= +∞,

which implies that L̂t ∈ Bg
ε for some g ∈ G∗ infinitely often almost surely. Lemma 12 says that

conditional on L̂t ∈ Bg
ε , the probability that maxj∈Ug L̂

gj
T g
t
≥ ε′. Therefore, on E, we have

∑
t

P
(
∪g∈G∗

{
max
j∈Ug

L̂gj
T g
t
≥ ε′

}
|Ft

)
= +∞, (47)

which implies that L̂gj
T g
t
≥ ε′ for some g ∈ G∗and j ∈ Ug infinitely often almost surely. Notice that

by assumption, Ug ̸= ∅ and Ug ⊂ I/G, so (47) implies L̂gj
T g
t
≥ ε′ infinitely often for some g ∈ G∗and

j ∈ I/G, which further implies, once again, that some consumer j ∈ I/G doesn’t vanish on E

almost surely, so E must be a null event.
32If there were some j ∈ Ui ∩Gc such that L̂ij

T i
t
≥ ε′ occurs infinitely often, it would imply that j’s consumption

is greater than 0 infinitely often, which contradicts the definition of E. To see this, let T = T i
t and note that

maxk
F i
T−1

Fk
T−1

< ε, which implies that maxk
F i
T

Fk
T

< ε × M for some M < ∞, so F i
T < εM · mink F

k
T . Also note that

F i
T

F
j
T

> ε′, so F j
T < F i

T · 1
ε′ < ε

ε′M ·mink F
k
T , which implies that j’s consumption must be greater than 0.
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A.11 Proof of Lemma 2

We first state the formal definition of the distance below.

Definition 17. For economy ES = (e, π0, F,R) and EŜ =
(
ê, π̂0, F̂ , R̂

)
with Ŝ ⊃ S. We define

||ES − EŜ || = max {de, dπ, dF , dR} ,

where

de = max
i∈I,s∈Ŝ

|ei (s)− êi (s) |, where ei (s) ≡ 0 for s ∈ Ŝ\S

dπ = max
s∈Ŝ

|π0 (s)− π̂0 (s) |, where π0 (s) ≡ 0 for s ∈ Ŝ\S

dF = max
c,y∈C×Y

|F (c, y)− F̂ (c, y) |,

dR = max
i∈I,V ∈V

|Ri (V )− R̂i (V ) |,where Ri (V ) ≡ Ri
(
{Vs}s∈S

)
,

where C ≡ [0, e] and Y = [0, v], where e is the maximum total endowment in these two economies
and v denotes the maximum continuation utility, and V ≡ [0,v] ⊂ RŜ where v = v × 1 ∈ RŜ .

Next we prove Lemma 2

Proof. The proof is by construction. Let Ŝ = S ∪ {ŝ1, ..., ŝI}. For some ϵ > 0, we define

êi (s) =

ei (s) when s ∈ S

ϵ when s ∈ Ŝ\S
, and π̂0 (s) =

(1− ϵ)π0 (s) when s ∈ S

ϵ when s ∈ Ŝ\S
.

It is straightforward that ê and π̂0 satisfy all relevant assumptions when ϵ is sufficiently small. We
keep F unchanged, so F̂ i = F i. For any vector V ⊂ RŜ

+, define

R̂i (V ) =
(
1− ϵ− ϵ2

)
Ri (V |S) + ϵVŝi +

∑
j ̸=i

ϵ2

I − 1
Vŝj ,

where V |S ≡ (Vs)s∈S is the restriction of V on S. By assumption, we have: (i) Ri is continuously
differentiable and strictly increasing in Vs for s ∈ S, and (ii) Ri is concave and satisfies Ri (k) = k.
Therefore, R̂i also satisfies these properties on the extended domain. When ϵ is sufficiently small,
the difference between R̂i and Ri is also sufficiently small. Last, we show that it also satisfies
Assumption 7. Recall that consumption dynamics satisfy

Lij
t+1 = Lij

t ×Bji (σt, st+1)×Dji (σt) .
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For all i ∈ I, when st+1 = ŝi, we have

Bji (σt, st+1) =
∇st+1Rj(V i

t+1)

∇st+1Ri(V i
t+1)

=
ϵ

I − 1
, ∀j ̸= i.

Besides, Dji is bounded by some constant d from the proof of Lemma 8. Therefore, when ϵ

is sufficiently small, finitely many realizations of ŝi make Li−
t below any given threshold, so it

satisfies Assumption 7.

A.12 Proof of Theorem 5

Proof. (i) “if” part: Suppose that i ≻i r, then we have

E log
[
∇sRi

(
V

i
)]

> E log (π0 (s)) ≥ E log
[
∇sRj

(
V j
)]

for all Rj ∈ R, (48)

where the first inequality comes from i ≻i r, and the second inequality employs the facts that: (i)
∇Rj

(
V j
)

is a probability distribution, which comes from Lemma 3 and that V j is constant across
states, and (ii) the entropy achieves its minimum at the true distribution π0. (48) implies that
i ≻i j for all Rj ∈ R. As a consequence, in all ε-perfect economies with small sufficiently small ε,
we also have i ≻i j for all Rj ∈ R by continuity arguments. The previous argument applies to all
j ̸= i, so we have i ≻i j for all j ̸= i for all

{
Rj
}
j ̸=i

∈ RI−1. Therefore, consumer i dominates
the market with a positive probability in ε-perfect economies with small ε for all

{
Rj
}
j ̸=i

∈ RI ,
which establishes that Ri robustly survives.

(ii) “Only if” part: Suppose that r ≻i i, we want to prove that Ri can’t robustly survive. Let
R+ ∈ R be any preference such that: (a) a consumer with R+ locally dominates r, and (b) the
effective belief at certainty is correct, that is, ∇R+(k · 1) = π0 for all k ∈ R++.33 Consider the
preference profile

{
Rj
}
j ̸=i

where Rj = R+ for all j ̸= i. Under this construction, j’s effective
belief is correct at certainty, so when i dominates the market, we must have j ≻i i because r ≻i i

by assumption. Therefore, the local upper contour set of i is Ui = I\ {i}. On the other hand, each
j locally dominates r, so we have j ≻j r ⪰j k for all k ̸= j. Therefore, the local upper contour set
of j is Uj = ∅ for all j ̸= i. Theorem 3 implies that consumer i vanishes almost surely. As such, we
find a preference profile

{
Rj
}
j ̸=i

such that consumer i vanishes, so Ri can’t robustly survive.

A.13 Proof of Theorem 6

Case 1: E log
[
∇sRi

(
V

i
)]

< E log
[
∇sRi

(
V i
)]

.

From the definition of D, we know that for all δ > 0, there exists some ϵ > 0 such that

D
(
Rj ,Ri

)
< ϵ ⇒

∣∣∣∣∣E log

[
∇sRi

(
V i
)

∇Rj
(
V j
) ]∣∣∣∣∣ < δ, (49)

33Such preference exists, e.g., HAAA utility with correct subjective belief as in Example 17
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that is, the entropy of ∇Ri
(
V i
)

and ∇Rj
(
V j
)

can be arbitrarily close when Ri and Rj are
sufficiently similar. Therefore, there exists ϵ > 0 such that whenever D

(
Rj ,Ri

)
< ϵ, we have

E log
[
∇sRi

(
V

i
)]

< E log
[
∇sRj

(
V j
)]

, (50)

which implies that j ≻i i, so consumer i dominates the market with 0 probability from Proposition
2, and hence Ri can’t locally robustly dominate.

Case 2: E log
[
∇sRi

(
V

i
)]

> E log
[
∇sRi

(
V i
)]

.

Similarly, for all δ > 0, there exists some ϵ > 0 such that

D
(
Rj ,Ri

)
< ϵ ⇒

∣∣∣∣∣E log

[
∇sRi

(
V i
)

∇sRj
(
V j
)]∣∣∣∣∣ < δ and

∣∣∣∣∣∣E log

∇sRi
(
V

i
)

∇sRj
(
V

j
)
∣∣∣∣∣∣ < δ. (51)

So, there exists ϵ > 0 such that for all Rj ,Rk ∈ Bϵ

(
Ri
)
≡
{
R ∈ R : D

(
R,Ri

)
< ϵ
}
, we have

E log
[
∇sRj

(
V

j
)]

> E log
[
∇sRk

(
V k
)]

. (52)

That is, for all Rj ∈ Bϵ

(
Ri
)
, we have j ≻j k for all Rk ∈ Bϵ

(
Ri
)
, so j dominates the market

with a strictly positive probability, which implies that consumer i can’t dominate the market with
probability 1 from Proposition 2, and hence Ri can’t locally robustly dominate.

Case 3: E log
[
∇sRi

(
V

i
)]

= E log
[
∇sRi

(
V i
)]

.

To prove this case, we construct the following preference

Rj (V ) = (1− εj)Ri (V ) + εj ×R∗ (V ) , (53)

where εj ∈ [0, 1] and R∗ is a preference that satisfies E log

[
∇sR∗

(
V

i
)

∇sRi(V i)

]
> 0, e.g., the HAAA

preference with γ ∈ (0, 1) (see Guerdjikova and Sciubba (2015)). Next, we want to prove that
j ≻j i in some ε-perfected economy where ε can be arbitrarily small. We first state the following
lemma.

Lemma 17. For all Ri ∈ R, we have E log

[
∇sRj

(
V

i
)

∇sRi(V i)

]
> 0 for all εj > 0.
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Proof. Notice that

E log

∇sRj
(
V

i
)

∇sRi
(
V i
)
 = E log

(1− εj)∇sRi
(
V

i
)
+ εj∇sR∗

(
V

i
)

∇sRi
(
V i
)


≥ (1− εj)× E log

∇sRi
(
V

i
)

∇sRi
(
V i
)
+ εjE log

∇sR∗
(
V

i
)

∇sRi
(
V i
)


= εjE log

∇sR∗
(
V

i
)

∇sRi
(
V i
)
 > 0. (54)

Lemma 17 doesn’t directly imply j ≻j i because we only have ∇sRj
(
V

i
)

instead of ∇sRj
(
V

j
)
,

and it is possible that V
j ̸= V

i. However, it turns out that there always exists some ε-perfection
in which V

j
= V

i, which is stated as a lemma below. Denote by U the set of feasible utility
functions, i.e., utility functions u such that satisfy Assumptions 1 and 4 are satisfied. We have the
following lemma.

Lemma 18. There exists ε such that if εj ∈ (0, ε), then for all δ > 0, there exists some uj ∈ U

with ||uj − ui|| < δ satisfies V
j
= V

i, where || · || denotes the sup-norm over some compact set C.

Proof. Construct the following utility function

uj (x) ≡ ui (x) + β
[
Ri
(
V

i
)
−Rj

(
V

i
)]

.

Notice that Cj ≡ R
(
V

i
)
− Rj

(
V

i
)
→ 0 as εj → 0. So, when εj is sufficiently small, we have

||uj − ui|| < δ. It is easy to verify that uj ∈ U when εj is sufficiently small (because uj is equal to
some constant plus ui ∈ U , and when εj is sufficiently small, Cj is also small, so we can guarantee
that uj (0) > 0 as well). Notice that for all s ∈ S, we have

V
i
s = ui (e (s)) + β ×Ri

(
V

i
)
= uj (e (s))− β

[
Ri
(
V

i
)
−Rj

(
V

i
)]

+ β ×Ri
(
V

i
)

= uj (e (s)) + βRj
(
V

i
)
,

so V
i solves V = F

(
e,Rj (V )

)
. By definition, we also have V

j
= F

(
e,Rj

(
V

j
))

. Under our
assumptions, F

(
c,Rj (V )

)
has a unique fixed point (see Marinacci and Montrucchio (2010)), so

V
j
= V

i.

Combining Lemmas 17 and 18, we can construct some preference Rj such that j ≻j i in some
ε-perfected economy where ε can be arbitrarily small. Suppose that we choose other consumers’
preferences sufficiently close to i, we will have j ≻j k for all k ̸= j, so consumer j dominates
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the market with a strictly positive probability, which establishes that Ri can’t locally robustly
dominate.

A.14 Proof of Theorem 7

The proof follows directly from Theorem 6. We consider the following two cases.

Case 1: E log
[
∇sRi

(
V

i
)]

< E log
[
∇sRi

(
V i
)]

.

From (51), there exists ϵ > 0 such that for all Rj ,Rk ∈ Bϵ

(
Ri
)
≡
{
R ∈ R : D

(
R,Ri

)
< ϵ
}
, we

have
E log

[
∇sRj

(
V

j
)]

< E log
[
∇sRk

(
V k
)]

. (55)

That is, for all Rj ∈ Bϵ

(
Ri
)
, we have k ≻j j for all Rk ∈ Bϵ

(
Ri
)
, so every consumer j is locally

dominated by all other consumers, i.e., as in Figure 6 (b). Suppose |I| = 2, then both consumers
co-exist almost surely from Theorem 2, so Ri locally robustly survives.

Case 2: E log
[
∇sRi

(
V

i
)]

> E log
[
∇sRi

(
V i
)]

.

From the case 2 in the proof of Theorem 6, every consumer j locally dominates by all other
consumers, i.e., as in Figure 6 (a), so consumer i survives with a positive probability, and hence
Ri locally robustly survives.
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