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Panel Data Models 

1. Introduction 

• Pure cross-section:  Sample of individuals/firms/industries/households. 

• Pure time-series:  Sample over time. 

• Panel follows the same sample of individuals/ firms/ industries/ 

households etc. over time. 

• i.e. have multiple observations per cross-section unit. 

i.e.   Has two dimensions:  cross-section and a time-series. 
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Other similar setups: 

• Information on twins or siblings in families 

• Employees in different firms. 

 

Benefits 

•  Can model more complicated individual behaviour.  Can control for 

 individual heterogeneity unlike pure TS.  No aggregation bias. 

•  Can study dynamics (given sufficient length over time). 

•  The sequencing of events enables us to study causal effects.  
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•  Unobservable individual specific or time specific effects can be 

 allowed for. 

 Consider   wi = β1 + β2 Si + β3 Ai + error 

 Bias in   for ββ2 2 = β3 [coeff. reg of Ai on Si] = [+ve ] [+ve] = +ve. 

•  More informative data, more variability, more df, less multicoll. 

 problems. 

 

Limitations  

•  Very expensive to collect. 
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•  Problems of attrition in long panels.  Final sample may not be 

 representative.   Beware of endogenous attrition! 

•  Recall problems with retrospective panels. 

•  Measurement error problems - interpretation of questions; recall; 

 (in some cases the bias due to measurement errors might be more 

 compared to pure c-s analysis). 

 

Types of longitudinal data 

• pseudo panel 

• retrospective survey 
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• prospective survey (limited/unlimited duration) 

• admin data 

Other considerations 

Incomplete panels: why is it incomplete? Issues of non-randomly 

missing data, attrition issues, selection bias…. 

Unbalanced panels:  same as above…. 

Rotating panels:  generally no problems…. 
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GENERAL MODEL 

yit =  ci + β1 x1it + β2 x2it +….+ βk xkit + uit   i=1,..,N;   t=1,..,T 

yit = ci + xit β + uit            (1) 

 

[Wooldridge notation!]  

      

• xit  (1 x k) will include time varying as well as time invariant variables.   

• ci    unobserved (heterogeneity, indiv effect, etc. for ability, motivation,.) 

  [no mention of random vs fixed effects yet! Just unobserved effects] 

•  can have a δt (use dummies when T is small) 
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• Assume we have a balanced panel.  If it is unbalanced, we will need to 

make sure that it is not because of some kind of selection! 

• Assume random sampling (independently drawn) in the cross-section 

dimension (what if c is geographical regions?) 

• Typically, we will deal with large N and small T panels.  Asymptotics 

handled via fixed T and as N→∞.  Time series properties not relevant 

(can have non-stationarity) 

 

Example:  yit - log earnings of individual i in time t.  (i) Number of 

unemployment spells in each time period;  (ii) Education, sex, ethnicity;  

(iii) Unemployment rate at the aggregate level. 
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GENERAL  NOTATION 

yit = xitβ + ci + uit             [xit is 1xK vector;   β is Kx1 vector] 

yi = Xiβ + ci + ui   [yi is T x 1;  Xi is T x K] 

So Xi’Xi will be  K x K. 

[l.c bold is a vector; u.c bold is a matrix] 

ISSUES OF EXOGENEITY OF THE Xs 

3 components:   xit, ci, uit

timing is important here. 
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All conditional on ci  

[can make assumptions without conditioning on c but: does it make 

sense?] 

Strict exogeneity:  [very strong assumption] 

E(uit | xi1, xi2, …., xiT, ci) = 0   ∀ t   [note future values] 

E(yit| xi1, xi2, …., xiT, ci)= E(yit| xit, ci) = xitβ + ci

Note: once you control for xit and ci:  xis (s≠t) has no partial effect on yit. 

 
We say that {xit: t=1,..,T} are strictly exog conditional on ci. 

Assumption will fail in LDV models!  [more later!] 

     



Wiji. Arulampalam, May 2006 10 

Weak exogeneity or sequential exogeneity (predetermined regressors) 
E(uit | xi1, xi2,…, xit, ci) = 0    ∀ t   [no future values of x] 

E(yit| xi1, xi2, …., xit, ci)= E(yit| xit, ci) = xitβ + ci

 

Ok in LDV models but will fail in models with endogenous regressors. 

 

Contemporaneous exogeneity:   

E(uit | xit, ci) = 0   ∀ t            [xit = (xi1, xi2,…., xik)] 

 E(yit| xit, ci)= xitβ + ci 
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Unconditionally on c 

question is what is E(ci | xi1, xi2, …., xiT) 

This is in general     ≠ E(ci )   [this is what we have to bear in mind] 

 

NOTES 

The above zero conditional expectations imply the following: 

Strict exogeneity:     E(xit’uis)=0,  ∀ t,s   [Uncorr across all t and s.] 

Weak exogeneity:  E(xis’uit)=0  s=1,….,t  [Uncorr with past x.] 

Contemporaneous exogeneity:    E(xit’uit)=0  ∀ t    [Contemp uncorr] 
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IMPORTANT QUESTIONS TO ASK 

What is the most reasonable assumption to make?  This has implications 

for the estimation technique one uses. 

1. In general   E(ci | xi1, xi2, …., xiT) ≠ E(ci );  [ LDV.]  

2. The most restrictive strict exogeneity (conditional on c) assumption 

 will not hold if there is correlation between  uit and perhaps one of the 

 future values of one of the xis.  [LDV model or endogenous 

 regressor (programme participation).]  
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