Panel Data Models

1. Introduction

- Pure cross-section: Sample of individuals/firms/industries/households.
- Pure time-series: Sample over time.
- Panel follows the same sample of individuals/ firms/ industries/ households etc. over time.
- i.e. have multiple observations per cross-section unit.
- i.e. Has two dimensions: cross-section and a time-series.

Other similar setups:

• Information on twins or siblings in families

• Employees in different firms.

Benefits

- Can model more complicated individual behaviour. Can control for individual heterogeneity unlike pure TS. No aggregation bias.
- Can study dynamics (given sufficient length over time).
- The <u>sequencing</u> of events enables us to study causal effects.

• Unobservable individual specific or time specific effects can be allowed for.

Consider $w_i = \beta_1 + \beta_2 S_i + \beta_3 A_i + error$

Bias in $\hat{\beta}_2$ for $\beta_2 = \beta_3$ [coeff. reg of A_i on S_i] = [+ve] [+ve] = +ve.

More informative data, more variability, more df, less multicoll.
 problems.

Limitations

• Very expensive to collect.

 Problems of attrition in long panels. Final sample may not be representative. Beware of endogenous attrition!

- Recall problems with retrospective panels.
- Measurement error problems interpretation of questions; recall;
 (in some cases the bias due to measurement errors might be more compared to pure c-s analysis).

Types of longitudinal data

- pseudo panel
- retrospective survey

• prospective survey (limited/unlimited duration)

• admin data

Other considerations

Incomplete panels: why is it incomplete? Issues of non-randomly missing data, attrition issues, selection bias....

Unbalanced panels: same as above....

Rotating panels: generally no problems....

GENERAL MODEL

$$y_{it} = c_i + \beta_1 x_{1it} + \beta_2 x_{2it} + + \beta_k x_{kit} + u_{it}$$
 i=1,...,N; t=1,...,T
$$y_{it} = c_i + \mathbf{x}_{it} \beta + u_{it}$$
 (1)

[Wooldridge notation!]

- $\bullet \mathbf{x}_{it}$ (1 x k) will include time varying as well as time invariant variables.
- c_i unobserved (heterogeneity, indiv effect, etc. for ability, motivation,.)

 [no mention of random vs fixed effects yet! Just unobserved effects]
- can have a δ_t (use dummies when T is small)

• <u>Assume</u> we have a balanced panel. If it is unbalanced, we will need to make sure that it is not because of some kind of selection!

- <u>Assume</u> random sampling (**independently drawn**) in the cross-section dimension (what if c is geographical regions?)
- Typically, we will deal with large N and small T panels. Asymptotics handled via fixed T and as $N\rightarrow\infty$. Time series properties not relevant (can have non-stationarity)

Example: y_{it} - log earnings of individual i in time t. (i) Number of unemployment spells in each time period; (ii) Education, sex, ethnicity; (iii) Unemployment rate at the aggregate level.

GENERAL NOTATION

 $\mathbf{y}_{it} = \mathbf{x}_{it}\mathbf{\beta} + \mathbf{c}_i + \mathbf{u}_{it}$

[\mathbf{x}_{it} is 1xK vector; β is Kx1 vector]

 $\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{c}_i + \mathbf{u}_i$

[\mathbf{y}_i is T x 1; \mathbf{X}_i is T x K]

So X_i ' X_i will be $K \times K$.

[l.c bold is a vector; u.c bold is a matrix]

ISSUES OF EXOGENEITY OF THE Xs

3 components:

 $\mathbf{x_{it}}, \mathbf{c_i}, \mathbf{u_{it}}$

timing is important here.

All conditional on ci

[can make assumptions without conditioning on c but: does it make sense?]

Strict exogeneity: [very strong assumption]

$$E(u_{it} | \mathbf{x_{i1}}, \mathbf{x_{i2}}, ..., \mathbf{x_{iT}}, c_i) = 0$$

 \forall t [note future values]

$$E(y_{it}| x_{i1}, x_{i2},, x_{iT}, c_i) = E(y_{it}| x_{it}, c_i) = x_{it}\beta + c_i$$

Note: once you control for \mathbf{x}_{it} and \mathbf{c}_i : \mathbf{x}_{is} ($\mathbf{s} \neq \mathbf{t}$) has no partial effect on \mathbf{y}_{it} .

We say that $\{x_{it}: t=1,...,T\}$ are strictly exog conditional on c_i .

Assumption will fail in **LDV** models! [more later!]

Weak exogeneity or sequential exogeneity (predetermined regressors)

$$E(u_{it} | \mathbf{x_{i1}}, \mathbf{x_{i2}}, ..., \mathbf{x_{it}}, c_i) = 0$$

 $\forall t$

[no future values of **x**]

$$E(y_{it}| x_{i1}, x_{i2}, ..., x_{it}, c_i) = E(y_{it}| x_{it}, c_i) = x_{it}\beta + c_i$$

Ok in LDV models but will fail in models with endogenous regressors.

Contemporaneous exogeneity:

$$E(u_{it} | \mathbf{x_{it}}, c_i) = 0$$

$$\forall t$$

$$[\mathbf{x_{it}} = (x_{i1}, x_{i2},, x_{ik})]$$

$$E(y_{it}| \mathbf{x_{it}}, c_i) = \mathbf{x_{it}}\boldsymbol{\beta} + c_i$$

Unconditionally on c

question is what is $E(c_i | \mathbf{x_{i1}}, \mathbf{x_{i2}},, \mathbf{x_{iT}})$

This is in general $\neq E(c_i)$ [this is what we have to bear in mind]

NOTES

The above zero conditional expectations imply the following:

Strict exogeneity: $E(\mathbf{x_{it}}, \mathbf{u_{is}}) = 0$, \forall t,s [Uncorr across all t and s.]

Weak exogeneity: $E(\mathbf{x_{is}'u_{it}})=0$ s=1,...,t [Uncorr with past $\mathbf{x_{\cdot}}$]

Contemporaneous exogeneity: $E(\mathbf{x_{it}}, \mathbf{u_{it}}) = 0 \quad \forall t \quad [Contemp uncorr]$

IMPORTANT QUESTIONS TO ASK

What is the most reasonable assumption to make? This has implications for the estimation technique one uses.

- 1. In general $E(c_i | \mathbf{x_{i1}}, \mathbf{x_{i2}},, \mathbf{x_{iT}}) \neq E(c_i)$; [LDV.]
- 2. The most restrictive strict exogeneity (conditional on c) assumption will **not** hold if there is correlation between u_{it} and perhaps one of the future values of one of the **x**_i**s**. [**LDV model or endogenous regressor (programme participation).**]