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Overview

This paper proposed a new numerical framework to solve a prevalent class of
structural models: the heterogeneous agent models with aggregate shocks

In this context, the cross-sectional distribution of all individual states, which is an
infinite-dimensional object, becomes part of the agents’ state variable in the
recursive form of their utility-maximization problem

This leads to a severe computational challenge for researchers adopting structural
models for their problems of interest
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Overview

Advantages:

Computationally Efficient: In experiments on a Bewley-Huggett-Aiyagari type model
(Den Haan, Judd and Juillard, 2008), my proposed approach outperforms the
state-of-the-art alternative in the literature (Maliar, Maliar and Winant, 2021)

Generally Applicable: The application of my approach can be generalized to other
research fields such as labor, 10, and network (e.g., Khan and Thomas (2008))

The key insight is threefold:
Reformulation of the problem of solving the model into learning an operator
Parameterization of the operator by the neural operator (Li et al., 2020)

Implementation by a specific training scheme (policy function iteration)
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Setup

My approach focuses on the case where:

There is a continuum of agents i 1;::;; NpN 8¢, truncate toe.g. N 1;000

The information set of an agent includes not only her individual state vector S; P S,
but also the states of all other agents SN psy;::;snyqP SN (eqivalently a
distribution)

All agents share the same policy function g:S SN S such that st gpsi;sNg

The goal is to solve for the optimal policy function g
Considers an intuitive case: Sj  pKiQ; Ki P rkmin; KmaxS, the agent’s capital holding

Krusell-Smith Framework:

g psi; mg;m is a set of moments of sN: lose information, inner-outer loop algorithm

Neural Network Framework:

function approximator: gnnpsi;sSNG g psi;sNg: dimensionality N determines the
parameterization
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Introduction: Operator

An operator is a mapping between function spaces

1
Examples: hpxq Gpfapxq g—)f(pxq and hpxq  Gpfapxq fpxqdx
foptxy; i Xau; tys; i yaug and h:ptxa; i Xgu; tzg; i zaug
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Introduction: Operator (cont.)

Increasing J-grid gives higher approximation accuracy

The J-grid is not necessarily uniform

We can have Gpfq

phy; hag
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Introduction: The Bewley-Huggett-Aiyagari Model

Lowercase letters for individual variables, uppercase letters for aggregate variables
and bold letters for operations.

A continuum of infinitely lived and ex-ante identical agents, each period:
the time endowment |
earn the after-tax wage p1l  (qIWy if employed (1)
earn the unemployment benefit Wy if unemployed ( 0)

W;¢ is the per unit of time wage rate, ¢ is the tax rate, and is a model parameter
denoting the fraction of wage
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

Market is incomplete: non-zero capital holding ki ¥ 0

The net rate of return for capital: R¢ , Rt is market-determining interest rate
and is the fixed depreciation rate

Agents’ maximization problem

subject to

¢t ki1 Reke pl @l Pl g Wy pl  gke
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

Firms: Cobb-Douglas production function Yy ZiK; IL¢ !

Kt is the per capita capital, Lt is the employment rate, and P r0; 1s is the
capital sharing. Z; is a binary aggregate productivity shock: Z¢ P tZy; Zgu

Government: keep budget balanced by redistributing all taxation

Firms' first-order optimality + Government's budget constraint:

Kt ! Kt pl Ltq
— W 1 Zt — - 1
IL, t P 04t IL, t L (1)

Shocks: Z; is first-order Markovian, ¢ is first-order Markovian conditional on the
transition of Zt, and confront to the law of the large number

Rt Zy

P t; Ztq . the element 1771 denotes Ppp ;Zq p L Zlqg
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

Denote  the distribution of agents over capital holdings
Denote the law of motion of by H: ! Hp ;Z;Zlg

The agents’ problem can be therefore express recursively as

Vok; Z; g maxtUpeg  Ervpks 5Z; gl 5 Zsu (2)
C;
subject to
c k Rk 1 gl Pl gsW pl  gk; (3)
hZb o opiZg (4)
' Hp zZ:Zg; (5)
kK'¥0 (6)

Denote the solution to (2) subject to (3), (4), (5), (6) V p(q and corresponding
policy function g pq
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Contribution to the literature

Table 1: Comparison of Three Numerical Frameworks for the
Desirable Properties

Property Framework

KS!] NN?| Operator?
Full Information of Distribution v v
Discretization-Invariance v v
Permutation-Invariance v v
Sharing-Aggregation v v

! Krusell-Smith
2 Deep Learning with feed-forward neural network
3 Deep Learning with neural operator (This Paper)
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Permutation-Invariance

Let us start from ki  gpki; kNg

| propose using the empirical cumulative distribution function (ECDF)
PT : rKmin: KmaxS  r0:1s to characterize kN pky; i KNG

is represented by the interpolation of the tuple tpKy;:::; KnG; pﬁ; nn %qu, where
pR1; 5 RnQ is in ascending order
Permutation-Invariance:
In principle, kI gpki;kNgq  gpki; RNg, where KN is any permutation of kN

But in practice, a large amount of simulated data and computational time is required
to learn this property

The form ki  gpki; ¢ implicitly fulfills this property
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Sharing-Aggregation

| propose recasting the policy into an operator form:

ki gpki; ¢ Gp gpkig

G:T H such that h  Gp ¢: rKnin; KmaxS  Kmin; KmaxS is the " conditional
policy function”

Process the aggregation part  and individual part k; separately and sequentially
Sharing-Aggregation:
ki gpki; : repeat the processing of fori 1;::;N, the cost is OpN2q

ki Gp gpkiq: process once-for-all to obtain h  Gp g, then kI hpkig
fori  1;::; N, the cost is OpNg
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Discretization-Invariance

| propose parameterizing the operator G by the neural operator

In the case of gynpki; kN g, the neural network approximates the operation in
vector space through a series of matrix multiplications

In the case of G p ¢, the neural operator approximates the operation in function
space through a series of convolutions (Universal Approximation Theorem for
Operator)

Fourier Neural Operator: transforms the input function into the Fourier domain,
imposes a series of matrix multiplications, and then returns the output to the
spatial domain (The Convolution Theorem)

Discretization-Invariance: Parameterization in the Fourier domain is independent
of the discretization of the input and output function in spatial domain (choice of
N)
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Summary

Roadmap of the transformation:

ki opki;kNg  gpki; g Gp akia G p gpkig

That's all, thank you!
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Figure
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Figure 1: Training Loss vs. Time (seconds). My approach (blue) reached the 1% error (square

root of loss) in around 5 mins and the alterative approach (yellow) took more than 20 mins
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Figure
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Figure 2: An example Neural Network in the case of N
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Figure 3: An example Neural Network in the case of N
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Figure 4: Processing the transition in the case of policy function
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Figure 5: Processing the transition in the case of policy operator
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Figure 6: Fourier Neural Operator Architecture

21/22






	Overview
	References

