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Overview

» This paper proposed a new numerical framework to solve a prevalent class of
structural models: the heterogeneous agent models with aggregate shocks

» In this context, the cross-sectional distribution of all individual states, which is an
infinite-dimensional object, becomes part of the agents’ state variable in the
recursive form of their utility-maximization problem

» This leads to a severe computational challenge for researchers adopting structural
models for their problems of interest
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Overview

» Advantages:

» Computationally Efficient: In experiments on a Bewley-Huggett-Aiyagari type model
(Den Haan, Judd and Juillard, 2008), my proposed approach outperforms the
state-of-the-art alternative in the literature (Maliar, Maliar and Winant, 2021)

> Generally Applicable: The application of my approach can be generalized to other
research fields such as labor, 10, and network (e.g., Khan and Thomas (2008))

» The key insight is threefold:
> Reformulation of the problem of solving the model into learning an operator
> Parameterization of the operator by the neural operator (Li et al., 2020)

> Implementation by a specific training scheme (policy function iteration)
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Setup

» My approach focuses on the case where:
> There is a continuum of agents ¢ = 1, ..., N(N — ), truncate to e.g. N = 1,000

> The information set of an agent includes not only her individual state vector s; € S,
but also the states of all other agents sV = (s1,...,5x) € SV (eqivalently a
distribution)

> All agents share the same policy function g : S x SV — S such that s, = g(s;, sV)

v

The goal is to solve for the optimal policy function g*

v

Considers an intuitive case: s; = (k;), ki € [kmin, kmax|, the agent’s capital holding

v

Krusell-Smith Framework:

> g*(s;,m), m is a set of moments of s"V: lose information, inner-outer loop algorithm

v

Neural Network Framework:

» function approximator: gnn(s:,s"") ~ g*(s;, s™V): dimensionality N determines the
parameterization
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Introduction: Operator

» An operator is a mapping between function spaces
» Examples: h(z) = G(f)(z) = %(aj) and h(z) = G(f)(z) = (f(z)dz
» £ ({1, xg) {y1, - ys)) and b ({21, .20}, {21, -0, 20))
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Introduction: Operator (cont.)

» Increasing J-grid gives higher approximation accuracy

» The J-grid is not necessarily uniform

» We can have G(f) = (hy, ha)
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Introduction: The Bewley-Huggett-Aiyagari Model

> Lowercase letters for individual variables, uppercase letters for aggregate variables
and bold letters for operations.

» A continuum of infinitely lived and ex-ante identical agents, each period:

>

>

>

the time endowment [
earn the after-tax wage (1 — 7;){W; if employed (e = 1)
earn the unemployment benefit pW; if unemployed (e = 0)

Wy is the per unit of time wage rate, 7 is the tax rate, and p is a model parameter
denoting the fraction of wage
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

» Market is incomplete: non-zero capital holding k;, > 0

» The net rate of return for capital: R; — d, R; is market-determining interest rate
and ¢ is the fixed depreciation rate

» Agents’ maximization problem

py gl =1
t=0 1—x

subject to

ct + kt+1 = Rik; + [(1 — Tt) Z_Et + 1 (1 — Gt)] Wy + (1 — (5>kt
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

» Firms: Cobb-Douglas production function Y; = Z; K (l_Lt)lfa

» K is the per capita capital, L, is the employment rate, and « € [0, 1] is the
capital sharing. Z; is a binary aggregate productivity shock: Z; € {Z;, Z,}

» Government: keep budget balanced by redistributing all taxation
» Firms’ first-order optimality + Government’s budget constraint:
Kt a-l Kt @ ,u(l — Lt)
Ry =aZ | — , Wi=1—-a)Z; | — ] , =— 1
L o <lLt> 1= 1=z <lLt mt IL, (1)

» Shocks: Z; is first-order Markovian, ¢; is first-order Markovian conditional on the
transition of Z;, and confront to the law of the large number

v

(€1, Z;) ~ II: the element 7.z denotes P((e, Z) — (€', Z"))
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

» Denote T the distribution of agents over capital holdings
» Denote the law of motion of T' by H: IV = H(T', Z, Z")

» The agents’ problem can be therefore express recursively as

V(k,e; Z,T) = IE%IX{U(C) + BE[V(K',€; Z, 1) | e, Z]} (2)
subject to
c+k =Rk+[(1—-7)le+p(l—e)]W+ (1-0)k, (3)
e, 7' ~e, 2), (4)
' = H(T. 2,7, (5)
K >0 (6)

» Denote the solution to (2) subject to (3), (4), (5), (6) V*(-) and corresponding
policy function g*(-)
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Contribution to the literature

Table 1: Comparison of Three Numerical Frameworks for the
Desirable Properties

Property Framework

KS!] NN?| Operator?
Full Information of Distribution | x v v
Discretization-Invariance v X v
Permutation-Invariance v X v
Sharing-Aggregation v X v

! Krusell-Smith
2 Deep Learning with feed-forward neural network
3 Deep Learning with neural operator (This Paper)
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Permutation-Invariance

v

Let us start from k! = g(k;, k)

» | propose using the empirical cumulative distribution function (ECDF)
T e T : [kmin, kmax] — [0, 1] to characterize kY = (kq, ..., kn)

» T is represented by the interpolation of the tuple {(k1, ..., ky), (%, %)} where

(l;;l, - /%N) is in ascending order

v

Permutation-Invariance:
> In principle, & = g(k;, kN) = g(ks, k™), where kY is any permutation of k™

> But in practice, a large amount of simulated data and computational time is required
to learn this property

v

The form k; = g(k;,T") implicitly fulfills this property
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Sharing-Aggregation

» | propose recasting the policy into an operator form:

ki = g(ki,T) = G(T)(k;)

G : T — H such that h = G(T) : [Emin, kmax] — [Kmin, kmax] is the " conditional
policy function”

v

v

Process the aggregation part I' and individual part k; separately and sequentially
» Sharing-Aggregation:
» k! = g(k;,T): repeat the processing of I for i = 1, ..., N, the cost is O(N?)

> k} = G(I')(k;): process T once-for-all to obtain h = G(T'), then &} = h(k;)
fori = 1,..., N, the cost is O(N)
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Discretization-Invariance

>

>

| propose parameterizing the operator G by the neural operator ¢

In the case of gnn(ki, k), the neural network approximates the operation in
vector space through a series of matrix multiplications

In the case of Gy(I'), the neural operator approximates the operation in function
space through a series of convolutions (Universal Approximation Theorem for
Operator)

Fourier Neural Operator: transforms the input function into the Fourier domain,
imposes a series of matrix multiplications, and then returns the output to the
spatial domain ( The Convolution Theorem)

Discretization-Invariance: Parameterization in the Fourier domain is independent
of the discretization of the input and output function in spatial domain (choice of
N)
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Summary

» Roadmap of the transformation:

ki = g(ki, k) — g(ki,T) — G(T)(k;) — Go(T)(k;)

That's all, thank you!
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Figure
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Figure 1: Training Loss vs. Time (seconds). My approach (blue) reached the 1% error (square

root of loss) in around 5 mins and the alterative approach (yellow) took more than 20 mins
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Figure 2: An example Neural Network in the case of N = 5 agents

17/22



Figure

» Return

o) |

ka

ky

Figure 3: An example Neural Network in the case of N = 10 agents
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Figure 4: Processing the transition in the case of policy function
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Figure 5: Processing the transition in the case of policy operator
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Figure 6: Fourier Neural Operator Architecture
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Figure 7: A Typical Fourier Layer [
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