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Overview

� This paper proposed a new numerical framework to solve a prevalent class of
structural models: the heterogeneous agent models with aggregate shocks

� In this context, the cross-sectional distribution of all individual states, which is an
infinite-dimensional object, becomes part of the agents’ state variable in the
recursive form of their utility-maximization problem

� This leads to a severe computational challenge for researchers adopting structural
models for their problems of interest
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Overview

� Advantages:

� Computationally Efficient: In experiments on a Bewley-Huggett-Aiyagari type model
(Den Haan, Judd and Juillard, 2008), my proposed approach outperforms the
state-of-the-art alternative in the literature (Maliar, Maliar and Winant, 2021) Figure

� Generally Applicable: The application of my approach can be generalized to other
research fields such as labor, IO, and network (e.g., Khan and Thomas (2008))

� The key insight is threefold:

� Reformulation of the problem of solving the model into learning an operator

� Parameterization of the operator by the neural operator (Li et al., 2020)

� Implementation by a specific training scheme (policy function iteration)
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Setup
� My approach focuses on the case where:

� There is a continuum of agents i � 1; :::; NpN Ñ8q, truncate to e.g. N � 1; 000

� The information set of an agent includes not only her individual state vector si P S,
but also the states of all other agents sN � ps1; :::; sN q P SN (eqivalently a
distribution)

� All agents share the same policy function g : S � SN Ñ S such that s1i � gpsi; s
N q

� The goal is to solve for the optimal policy function g�

� Considers an intuitive case: si � pkiq; ki P rkmin; kmaxs, the agent’s capital holding

� Krusell-Smith Framework:

� g�psi;mq;m is a set of moments of sN : lose information, inner-outer loop algorithm

� Neural Network Framework:

� function approximator: gNNpsi; s
N q � g�psi; s

N q: dimensionality N determines the
parameterization Figure
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Introduction: Operator

� An operator is a mapping between function spaces

� Examples: hpxq � Gpfqpxq � df
dxpxq and hpxq � Gpfqpxq �

‡

fpxqdx

� f : ptx1; :::; xJu; ty1; :::; yJuq and h : ptx1; :::; xJu; tz1; :::; zJuq
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Introduction: Operator (cont.)

� Increasing J-grid gives higher approximation accuracy

� The J-grid is not necessarily uniform

� We can have Gpfq � ph1;h2q
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Introduction: The Bewley-Huggett-Aiyagari Model

� Lowercase letters for individual variables, uppercase letters for aggregate variables
and bold letters for operations.

� A continuum of infinitely lived and ex-ante identical agents, each period:

� the time endowment �l

� earn the after-tax wage p1� �tq�lWt if employed (� � 1)

� earn the unemployment benefit �Wt if unemployed (� � 0)

� Wt is the per unit of time wage rate, �t is the tax rate, and � is a model parameter
denoting the fraction of wage
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

� Market is incomplete: non-zero capital holding kt ¥ 0

� The net rate of return for capital: Rt � �, Rt is market-determining interest rate
and � is the fixed depreciation rate

� Agents’ maximization problem

E
8
‚

t�0

�t
pctq

1� � 1

1� 

subject to

ct � kt�1 � Rtkt �
�

p1� �tq �l�t � � p1� �tq
�

Wt � p1� �qkt
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

� Firms: Cobb-Douglas production function Yt � ZtK
�
t

�

�lLt
�1��

� Kt is the per capita capital, Lt is the employment rate, and � P r0; 1s is the
capital sharing. Zt is a binary aggregate productivity shock: Zt P tZb; Zgu

� Government: keep budget balanced by redistributing all taxation

� Firms’ first-order optimality + Government’s budget constraint:

Rt � �Zt

�

Kt

�lLt


��1

; Wt � p1� �qZt

�

Kt

�lLt


�

; �t �
�p1� Ltq

�lLt
(1)

� Shocks: Zt is first-order Markovian, �t is first-order Markovian conditional on the
transition of Zt, and confront to the law of the large number

� p�t; Ztq � �: the element ���1ZZ1 denotes Ppp�; Zq Ñ p�1; Z 1qq
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)
� Denote � the distribution of agents over capital holdings

� Denote the law of motion of � by H : �1 � Hp�; Z; Z 1q

� The agents’ problem can be therefore express recursively as

Vpk; �;Z;�q � max
c;k1
tUpcq � �ErVpk1; �1;Z;�1q | �; Zsu (2)

subject to

c� k1 � Rk � rp1� �q�l�� �p1� �qsW � p1� �qk; (3)

�1; Z 1 � �p�; Zq; (4)

�1 � Hp�; Z; Z 1q; (5)

k1 ¥ 0 (6)

� Denote the solution to (2) subject to (3), (4), (5), (6) V�p�q and corresponding
policy function g�p�q
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Contribution to the literature

Table 1: Comparison of Three Numerical Frameworks for the
Desirable Properties

Property
Framework

KS1 NN2 Operator3

Full Information of Distribution � ✓ ✓
Discretization-Invariance ✓ � ✓
Permutation-Invariance ✓ � ✓
Sharing-Aggregation ✓ � ✓
1 Krusell-Smith
2 Deep Learning with feed-forward neural network
3 Deep Learning with neural operator (This Paper)
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Permutation-Invariance

� Let us start from k1i � gpki; k
N q

� I propose using the empirical cumulative distribution function (ECDF)
� P T : rkmin; kmaxs Ñ r0; 1s to characterize kN � pk1; :::; kN q

� � is represented by the interpolation of the tuple tp~k1; :::; ~kN q; p
1
N ; :::;

N
N qu, where

p~k1; :::; ~kN q is in ascending order

� Permutation-Invariance:

� In principle, k1i � gpki; k
N q � gpki; k̂

N q, where k̂N is any permutation of kN

� But in practice, a large amount of simulated data and computational time is required
to learn this property

� The form ki � gpki;�q implicitly fulfills this property
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Sharing-Aggregation

� I propose recasting the policy into an operator form:

k1i � gpki;�q � Gp�qpkiq

� G : T Ñ H such that h � Gp�q : rkmin; kmaxs Ñ rkmin; kmaxs is the ”conditional
policy function”

� Process the aggregation part � and individual part ki separately and sequentially

� Sharing-Aggregation:

� k1i � gpki;�q: repeat the processing of � for i � 1; :::; N , the cost is OpN2q Figure

� k1i � Gp�qpkiq: process � once-for-all to obtain h � Gp�q, then k1i � hpkiq

fori � 1; :::; N , the cost is OpNq Figure

13 / 22



Discretization-Invariance

� I propose parameterizing the operator G by the neural operator �

� In the case of gNNpki; k
N q, the neural network approximates the operation in

vector space through a series of matrix multiplications

� In the case of G�p�q, the neural operator approximates the operation in function
space through a series of convolutions (Universal Approximation Theorem for
Operator)

� Fourier Neural Operator: transforms the input function into the Fourier domain,
imposes a series of matrix multiplications, and then returns the output to the
spatial domain (The Convolution Theorem) Figure

� Discretization-Invariance: Parameterization in the Fourier domain is independent
of the discretization of the input and output function in spatial domain (choice of
N)
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Summary

� Roadmap of the transformation:

ki � gpki; k
N q Ñ gpki;�q Ñ Gp�qpkiq Ñ G�p�qpkiq

That’s all, thank you!
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Figure
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Figure 1: Training Loss vs. Time (seconds). My approach (blue) reached the 1% error (square
root of loss) in around 5 mins and the alterative approach (yellow) took more than 20 mins

Return
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Figure

Figure

Figure 2: An example Neural Network in the case of N � 5 agents
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Figure

Return

Figure 3: An example Neural Network in the case of N � 10 agents
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Figure
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Figure 4: Processing the transition in the case of policy function
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Figure
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Figure 5: Processing the transition in the case of policy operator
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Figure
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Figure 6: Fourier Neural Operator Architecture
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