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Overview

§ This paper proposed a new numerical framework to solve a prevalent class of
structural models: the heterogeneous agent models with aggregate shocks

§ In this context, the cross-sectional distribution of all individual states, which is an
infinite-dimensional object, becomes part of the agents’ state variable in the
recursive form of their utility-maximization problem

§ This leads to a severe computational challenge for researchers adopting structural
models for their problems of interest
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Overview

§ Advantages:

§ Computationally Efficient: In experiments on a Bewley-Huggett-Aiyagari type model
(Den Haan, Judd and Juillard, 2008), my proposed approach outperforms the
state-of-the-art alternative in the literature (Maliar, Maliar and Winant, 2021) Figure

§ Generally Applicable: The application of my approach can be generalized to other
research fields such as labor, IO, and network (e.g., Khan and Thomas (2008))

§ The key insight is threefold:

§ Reformulation of the problem of solving the model into learning an operator

§ Parameterization of the operator by the neural operator (Li et al., 2020)

§ Implementation by a specific training scheme (policy function iteration)
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Setup
§ My approach focuses on the case where:

§ There is a continuum of agents i “ 1, ..., NpN Ñ 8q, truncate to e.g. N “ 1, 000

§ The information set of an agent includes not only her individual state vector si P S,
but also the states of all other agents sN “ ps1, ..., sN q P SN (eqivalently a
distribution)

§ All agents share the same policy function g : S ˆ SN Ñ S such that s1
i “ gpsi, s

N q

§ The goal is to solve for the optimal policy function g˚

§ Considers an intuitive case: si “ pkiq, ki P rkmin, kmaxs, the agent’s capital holding

§ Krusell-Smith Framework:

§ g˚psi,mq,m is a set of moments of sN : lose information, inner-outer loop algorithm

§ Neural Network Framework:

§ function approximator: gNNpsi, s
N q « g˚psi, s

N q: dimensionality N determines the
parameterization Figure
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Introduction: Operator

§ An operator is a mapping between function spaces

§ Examples: hpxq “ Gpfqpxq “ df
dxpxq and hpxq “ Gpfqpxq “

ş

fpxqdx

§ f : ptx1, ..., xJu, ty1, ..., yJuq and h : ptx1, ..., xJu, tz1, ..., zJuq
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Introduction: Operator (cont.)

§ Increasing J-grid gives higher approximation accuracy

§ The J-grid is not necessarily uniform

§ We can have Gpfq “ ph1,h2q
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Introduction: The Bewley-Huggett-Aiyagari Model

§ Lowercase letters for individual variables, uppercase letters for aggregate variables
and bold letters for operations.

§ A continuum of infinitely lived and ex-ante identical agents, each period:

§ the time endowment l̄

§ earn the after-tax wage p1 ´ τtql̄Wt if employed (ϵ “ 1)

§ earn the unemployment benefit µWt if unemployed (ϵ “ 0)

§ Wt is the per unit of time wage rate, τt is the tax rate, and µ is a model parameter
denoting the fraction of wage
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

§ Market is incomplete: non-zero capital holding kt ě 0

§ The net rate of return for capital: Rt ´ δ, Rt is market-determining interest rate
and δ is the fixed depreciation rate

§ Agents’ maximization problem

E
8
ÿ

t“0

βt pctq
1´γ ´ 1

1 ´ γ

subject to

ct ` kt`1 “ Rtkt `
“

p1 ´ τtq l̄ϵt ` µ p1 ´ ϵtq
‰

Wt ` p1 ´ δqkt
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

§ Firms: Cobb-Douglas production function Yt “ ZtK
α
t

`

l̄Lt

˘1´α

§ Kt is the per capita capital, Lt is the employment rate, and α P r0, 1s is the
capital sharing. Zt is a binary aggregate productivity shock: Zt P tZb, Zgu

§ Government: keep budget balanced by redistributing all taxation

§ Firms’ first-order optimality + Government’s budget constraint:

Rt “ αZt

ˆ

Kt

l̄Lt

˙α´1

, Wt “ p1 ´ αqZt

ˆ

Kt

l̄Lt

˙α

, τt “
µp1 ´ Ltq

l̄Lt
(1)

§ Shocks: Zt is first-order Markovian, ϵt is first-order Markovian conditional on the
transition of Zt, and confront to the law of the large number

§ pϵt, Ztq „ Π: the element πϵϵ1ZZ1 denotes Pppϵ, Zq Ñ pϵ1, Z 1qq
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Introduction: The Bewley-Huggett-Aiyagari Model (cont.)
§ Denote Γ the distribution of agents over capital holdings

§ Denote the law of motion of Γ by H : Γ1 “ HpΓ, Z, Z 1q

§ The agents’ problem can be therefore express recursively as

Vpk, ϵ;Z,Γq “ max
c,k1

tUpcq ` βErVpk1, ϵ1;Z,Γ1q | ϵ, Zsu (2)

subject to

c ` k1 “ Rk ` rp1 ´ τql̄ϵ ` µp1 ´ ϵqsW ` p1 ´ δqk, (3)

ϵ1, Z 1 „ Πpϵ, Zq, (4)

Γ1 “ HpΓ, Z, Z 1q, (5)

k1 ě 0 (6)

§ Denote the solution to (2) subject to (3), (4), (5), (6) V˚p¨q and corresponding
policy function g˚p¨q
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Contribution to the literature

Table 1: Comparison of Three Numerical Frameworks for the
Desirable Properties

Property
Framework

KS1 NN2 Operator3

Full Information of Distribution ˆ ✓ ✓
Discretization-Invariance ✓ ˆ ✓
Permutation-Invariance ✓ ˆ ✓
Sharing-Aggregation ✓ ˆ ✓
1 Krusell-Smith
2 Deep Learning with feed-forward neural network
3 Deep Learning with neural operator (This Paper)
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Permutation-Invariance

§ Let us start from k1
i “ gpki, k

N q

§ I propose using the empirical cumulative distribution function (ECDF)
Γ P T : rkmin, kmaxs Ñ r0, 1s to characterize kN “ pk1, ..., kN q

§ Γ is represented by the interpolation of the tuple tpk̃1, ..., k̃N q, p 1
N , ..., NN qu, where

pk̃1, ..., k̃N q is in ascending order

§ Permutation-Invariance:

§ In principle, k1
i “ gpki, k

N q “ gpki, k̂
N q, where k̂N is any permutation of kN

§ But in practice, a large amount of simulated data and computational time is required
to learn this property

§ The form ki “ gpki,Γq implicitly fulfills this property
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Sharing-Aggregation

§ I propose recasting the policy into an operator form:

k1
i “ gpki,Γq “ GpΓqpkiq

§ G : T Ñ H such that h “ GpΓq : rkmin, kmaxs Ñ rkmin, kmaxs is the ”conditional
policy function”

§ Process the aggregation part Γ and individual part ki separately and sequentially

§ Sharing-Aggregation:

§ k1
i “ gpki,Γq: repeat the processing of Γ for i “ 1, ..., N , the cost is OpN2q Figure

§ k1
i “ GpΓqpkiq: process Γ once-for-all to obtain h “ GpΓq, then k1

i “ hpkiq
fori “ 1, ..., N , the cost is OpNq Figure
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Discretization-Invariance

§ I propose parameterizing the operator G by the neural operator θ

§ In the case of gNNpki, k
N q, the neural network approximates the operation in

vector space through a series of matrix multiplications

§ In the case of GθpΓq, the neural operator approximates the operation in function
space through a series of convolutions (Universal Approximation Theorem for
Operator)

§ Fourier Neural Operator: transforms the input function into the Fourier domain,
imposes a series of matrix multiplications, and then returns the output to the
spatial domain (The Convolution Theorem) Figure

§ Discretization-Invariance: Parameterization in the Fourier domain is independent
of the discretization of the input and output function in spatial domain (choice of
N)
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Summary

§ Roadmap of the transformation:

ki “ gpki, k
N q Ñ gpki,Γq Ñ GpΓqpkiq Ñ GθpΓqpkiq

That’s all, thank you!
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Figure
Return

Figure 1: Training Loss vs. Time (seconds). My approach (blue) reached the 1% error (square
root of loss) in around 5 mins and the alterative approach (yellow) took more than 20 mins

Return
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Figure

Figure

Figure 2: An example Neural Network in the case of N “ 5 agents
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Figure
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Figure 3: An example Neural Network in the case of N “ 10 agents
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Figure
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Figure 4: Processing the transition in the case of policy function
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Figure
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Figure 5: Processing the transition in the case of policy operator
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Figure

Layer

Figure 6: Fourier Neural Operator Architecture
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Figure
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Figure 7: A Typical Fourier Layer l
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