Operator Learning in Macroeconomics

Yaolang Zhong

University of Warwick

Overview

- This paper proposed a new numerical framework to solve a prevalent class of structural models: the heterogeneous agent models with aggregate shocks
- In this context, the cross-sectional distribution of all individual states, which is an infinite-dimensional object, becomes part of the agents' state variable in the recursive form of their utility-maximization problem
- This leads to a severe computational challenge for researchers adopting structural models for their problems of interest

Overview

- Advantages:
 - Computationally Efficient: In experiments on a Bewley-Huggett-Aiyagari type model (Den Haan, Judd and Juillard, 2008), my proposed approach outperforms the state-of-the-art alternative in the literature (Maliar, Maliar and Winant, 2021) Figure
 - Generally Applicable: The application of my approach can be generalized to other research fields such as labor, IO, and network (e.g., Khan and Thomas (2008))
- The key insight is threefold:
 - Reformulation of the problem of solving the model into learning an operator
 - Parameterization of the operator by the neural operator (Li et al., 2020)
 - Implementation by a specific training scheme (policy function iteration)

Setup

- My approach focuses on the case where:
 - There is a continuum of agents $i = 1, ..., N(N \rightarrow \infty)$, truncate to e.g. N = 1,000
 - ▶ The information set of an agent includes not only her individual state vector $s_i \in S$, but also the states of all other agents $s^N = (s_1, ..., s_N) \in S^N$ (eqivalently a distribution)
 - All agents share the same policy function $\mathbf{g}: S \times S^N \to S$ such that $s'_i = \mathbf{g}(s_i, s^N)$
- ${\sc \ }$ The goal is to solve for the optimal policy function g^*
- Considers an intuitive case: $s_i = (k_i), k_i \in [k_{\min}, k_{\max}]$, the agent's capital holding
- Krusell-Smith Framework:

• $g^*(s_i, m), m$ is a set of moments of s^N : lose information, inner-outer loop algorithm

- Neural Network Framework:
 - function approximator: $\mathbf{g}_{NN}(s_i, s^N) \approx \mathbf{g}^*(s_i, s^N)$: dimensionality N determines the parameterization Figure

Introduction: Operator

- An operator is a mapping between function spaces
- Examples: $\mathbf{h}(x) = \mathbf{G}(\mathbf{f})(x) = \frac{d\mathbf{f}}{dx}(x)$ and $\mathbf{h}(x) = \mathbf{G}(\mathbf{f})(x) = \int \mathbf{f}(x) dx$
- $\mathbf{f}: (\{x_1, ..., x_J\}, \{y_1, ..., y_J\}) \text{ and } \mathbf{h}: (\{x_1, ..., x_J\}, \{z_1, ..., z_J\})$

Introduction: Operator (cont.)

- Increasing J-grid gives higher approximation accuracy
- ▶ The *J*-grid is not necessarily uniform
- \blacktriangleright We can have $\mathbf{G}(\mathbf{f})=(\mathbf{h_1},\mathbf{h_2})$

Introduction: The Bewley-Huggett-Aiyagari Model

- Lowercase letters for individual variables, uppercase letters for aggregate variables and bold letters for operations.
- A continuum of infinitely lived and ex-ante identical agents, each period:
 - the time endowment \overline{l}
 - earn the after-tax wage $(1 \tau_t) \bar{l} W_t$ if employed ($\epsilon = 1$)
 - earn the unemployment benefit μW_t if unemployed ($\epsilon = 0$)
 - W_t is the per unit of time wage rate, τ_t is the tax rate, and μ is a model parameter denoting the fraction of wage

Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

- Market is incomplete: non-zero capital holding $k_t \ge 0$
- The net rate of return for capital: $R_t \delta$, R_t is market-determining interest rate and δ is the fixed depreciation rate
- Agents' maximization problem

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}\frac{(c_{t})^{1-\gamma}-1}{1-\gamma}$$

subject to

$$c_{t} + k_{t+1} = R_{t}k_{t} + \left[(1 - \tau_{t}) \,\overline{l}\epsilon_{t} + \mu \,(1 - \epsilon_{t}) \right] W_{t} + (1 - \delta)k_{t}$$

Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

- Firms: Cobb-Douglas production function $Y_t = Z_t K_t^{\alpha} \left(\overline{l} L_t \right)^{1-\alpha}$
- K_t is the per capita capital, L_t is the employment rate, and $\alpha \in [0, 1]$ is the capital sharing. Z_t is a binary aggregate productivity shock: $Z_t \in \{Z_b, Z_g\}$
- Government: keep budget balanced by redistributing all taxation
- Firms' first-order optimality + Government's budget constraint:

$$R_t = \alpha Z_t \left(\frac{K_t}{\bar{l}L_t}\right)^{\alpha - 1}, \quad W_t = (1 - \alpha) Z_t \left(\frac{K_t}{\bar{l}L_t}\right)^{\alpha}, \quad \tau_t = \frac{\mu(1 - L_t)}{\bar{l}L_t} \quad (1)$$

- Shocks: Z_t is first-order Markovian, ϵ_t is first-order Markovian conditional on the transition of Z_t , and confront to the law of the large number
- $(\epsilon_t, Z_t) \sim \Pi$: the element $\pi_{\epsilon \epsilon' Z Z'}$ denotes $\mathsf{P}((\epsilon, Z) \to (\epsilon', Z'))$

Introduction: The Bewley-Huggett-Aiyagari Model (cont.)

- \blacktriangleright Denote Γ the distribution of agents over capital holdings
- Denote the law of motion of Γ by $\mathbf{H}: \Gamma' = \mathbf{H}(\Gamma, Z, Z')$
- The agents' problem can be therefore express recursively as

$$\mathbf{V}(k,\epsilon;Z,\mathbf{\Gamma}) = \max_{c,k'} \{ \mathbf{U}(c) + \beta \mathbb{E}[\mathbf{V}(k',\epsilon';Z,\mathbf{\Gamma}') \mid \epsilon, Z] \}$$
(2)

subject to

$$c + k' = Rk + [(1 - \tau)\bar{l}\epsilon + \mu(1 - \epsilon)]W + (1 - \delta)k,$$
(3)

$$\epsilon', Z' \sim \Pi(\epsilon, Z),$$
(4)

$$\Gamma' = \mathbf{H}(\Gamma, Z, Z'),\tag{5}$$

$$k' \ge 0 \tag{6}$$

• Denote the solution to (2) subject to (3), (4), (5), (6) $V^*(\cdot)$ and corresponding policy function $g^*(\cdot)$

Contribution to the literature

Table 1: Comparison of Three Numerical Frameworks for theDesirable Properties

Property	Framework		
	KS1	NN^2	Operator ³
Full Information of Distribution	×	\checkmark	\checkmark
Discretization-Invariance	\checkmark	×	\checkmark
Permutation-Invariance	\checkmark	×	\checkmark
Sharing-Aggregation	\checkmark	×	\checkmark

¹ Krusell-Smith

- ² Deep Learning with feed-forward neural network
- ³ Deep Learning with neural operator (This Paper)

Permutation-Invariance

• Let us start from $k'_i = \mathbf{g}(k_i, k^N)$

- ▶ I propose using the empirical cumulative distribution function (ECDF) $\Gamma \in \mathcal{T} : [k_{\min}, k_{\max}] \rightarrow [0, 1]$ to characterize $k^N = (k_1, ..., k_N)$
- Γ is represented by the interpolation of the tuple $\{(\tilde{k}_1, ..., \tilde{k}_N), (\frac{1}{N}, ..., \frac{N}{N})\}$, where $(\tilde{k}_1, ..., \tilde{k}_N)$ is in ascending order
- Permutation-Invariance:
 - In principle, $k_i' = \mathbf{g}(k_i,k^N) = \mathbf{g}(k_i,\hat{k}^N)$, where \hat{k}^N is any permutation of k^N
 - But in practice, a large amount of simulated data and computational time is required to learn this property
- The form $k_i = \mathbf{g}(k_i, \mathbf{\Gamma})$ implicitly fulfills this property

Sharing-Aggregation

I propose recasting the policy into an operator form:

 $k'_i = \mathbf{g}(k_i, \mathbf{\Gamma}) = \mathbf{G}(\mathbf{\Gamma})(k_i)$

- $\mathbf{G} : \mathcal{T} \to \mathcal{H}$ such that $\mathbf{h} = \mathbf{G}(\mathbf{\Gamma}) : [k_{\min}, k_{\max}] \to [k_{\min}, k_{\max}]$ is the "conditional policy function"
- Process the aggregation part Γ and individual part k_i separately and sequentially
- Sharing-Aggregation:
 - $k'_i = \mathbf{g}(k_i, \mathbf{\Gamma})$: repeat the processing of $\mathbf{\Gamma}$ for i = 1, ..., N, the cost is $\mathcal{O}(N^2)$ Figure
 - ▶ $k'_i = \mathbf{G}(\mathbf{\Gamma})(k_i)$: process $\mathbf{\Gamma}$ once-for-all to obtain $\mathbf{h} = \mathbf{G}(\mathbf{\Gamma})$, then $k'_i = \mathbf{h}(k_i)$ for i = 1, ..., N, the cost is $\mathcal{O}(N)$ ▶ Figure

Discretization-Invariance

- \blacktriangleright l propose parameterizing the operator G by the neural operator θ
- In the case of $g_{NN}(k_i, k^N)$, the neural network approximates the operation in vector space through a series of matrix multiplications
- In the case of $G_{\theta}(\Gamma)$, the neural operator approximates the operation in function space through a series of convolutions (*Universal Approximation Theorem for Operator*)
- Fourier Neural Operator: transforms the input function into the Fourier domain, imposes a series of matrix multiplications, and then returns the output to the spatial domain (*The Convolution Theorem*)
- Discretization-Invariance: Parameterization in the Fourier domain is independent of the discretization of the input and output function in spatial domain (choice of N)

Summary

Roadmap of the transformation:

$$\mathbf{k}_i = \mathbf{g}(k_i, k^N) \to \mathbf{g}(k_i, \Gamma) \to \mathbf{G}(\Gamma)(k_i) \to \mathbf{G}_{\theta}(\Gamma)(k_i)$$

That's all, thank you!

Figure 1: Training Loss vs. Time (seconds). My approach (blue) reached the 1% error (square root of loss) in around 5 mins and the alterative approach (yellow) took more than 20 mins

Figure

► Figure

Figure 2: An example Neural Network in the case of N = 5 agents

Figure

▶ Return

Figure 3: An example Neural Network in the case of N = 10 agents

Return

Figure 4: Processing the transition in the case of policy function

▶ Return

Figure 5: Processing the transition in the case of policy operator

► Layer

Figure 6: Fourier Neural Operator Architecture

Figure 7: A Typical Fourier Layer *l*

- Haan, Wouter J Den, Kenneth L Judd, and Michel Juillard, "Computational suite of models with heterogeneous agents: model specifications," *Journal of Economic Dynamics and Control, this issue,* 2008.
- Khan, Aubhik and Julia K Thomas, "Idiosyncratic shocks and the role of nonconvexities in plant and aggregate investment dynamics," *Econometrica*, 2008, 76 (2), 395–436.
- Li, Zongyi, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar, "Fourier neural operator for parametric partial differential equations," *arXiv preprint arXiv:2010.08895*, 2020.
- Maliar, Lilia, Serguei Maliar, and Pablo Winant, "Deep learning for solving dynamic economic models.," *Journal of Monetary Economics*, 2021, *122*, 76–101.