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Overview

§ This paper proposed a new numerical framework to solve a prevalent class of
structural models: the heterogeneous agent (HA) models with aggregate shocks

§ In this context, the cross-sectional distribution of all individual states, which is an
infinite-dimensional object, becomes part of the agents’ state variable

§ My approach demonstrated computational efficiency in experiments on a
Bewley-Huggett-Aiyagari type model (Den Haan, Judd and Juillard, 2008),
compared to alternatives in the current literature (Maliar, Maliar and Winant,
2021) Figure

§ Three parts:

§ Reformulation of the problem of solving the model into learning an operator

§ Parameterization of the operator by the neural operator (Li et al., 2020)

§ Implementation by a specific training scheme (policy function iteration)
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Introduction: Operator

§ An operator G is a mapping between function spaces

§ Examples: hpxq “ Gpfqpxq “ df
dxpxq and hpxq “ Gpfqpxq “

ş

fpxqdx

§ f : ptx1, ..., xJu, ty1, ..., yJuq and h : ptx1, ..., xJu, tz1, ..., zJuq

§ We call tx1, ..., xJu the ”sensors”
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Introduction: Operator (cont.)

§ Increasing J-grid gives higher approximation accuracy

§ The J-grid is not necessarily uniform

§ We can have Gpfq “ ph1,h2q
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The Bewley-Huggett-Aiyagari Model

§ lowercase letters for individual variables, UPPERCASE letters for aggregate
variables and bold letters for functions and operators

§ A continuum of infinitely lived and ex-ante identical agents, each period:

§ the time endowment l̄

§ earn the after-tax wage p1 ´ τtql̄Wt if employed (ϵ “ 1)

§ earn the unemployment benefit µWt if unemployed (ϵ “ 0)

§ Wt is the per unit of time wage rate, τt is the tax rate, and µ is a model parameter
denoting the fraction of wage

§ Market is incomplete: non-zero capital holding kt ě 0

§ The net rate of return for capital: Rt ´ δ, Rt is market-determining interest rate
and δ is the fixed depreciation rate
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The Bewley-Huggett-Aiyagari Model

§ Firms: Cobb-Douglas production function Yt “ ZtK
α
t

`

l̄Lt

˘1´α

§ Kt is the per capita capital, Lt is the employment rate, and α P r0, 1s is the
capital sharing. Zt is a binary aggregate productivity shock: Zt P tZb, Zgu

§ Government: keep budget balanced by redistributing all taxation

§ Firms’ first-order optimality + Government’s budget constraint:

Rt “ αZt

ˆ

Kt

l̄Lt

˙α´1

, Wt “ p1 ´ αqZt

ˆ

Kt

l̄Lt

˙α

, τt “
µp1 ´ Ltq

l̄Lt
(1)

§ Shocks: Zt is first-order Markovian, ϵt is first-order Markovian conditional on the
transition of Zt, and confront to the law of the large number

§ pϵt, Ztq „ Π: the element πϵϵ1ZZ1 denotes Pppϵ, Zq Ñ pϵ1, Z 1qq
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The Bewley-Huggett-Aiyagari Model
§ Denote Γ the distribution of agents over capital holdings

§ Denote the law of motion of Γ by H : Γ1 “ HpΓ, Z, Z 1q

§ The agents’ problem can be therefore express recursively as

Vpk, ϵ;Z,Γq “ max
c,k1

tUpcq ` βErVpk1, ϵ1;Z,Γ1q | ϵ, Zsu (2)

subject to

c ` k1 “ Rk ` rp1 ´ τql̄ϵ ` µp1 ´ ϵqsW ` p1 ´ δqk, (3)

ϵ1, Z 1 „ Πpϵ, Zq, (4)

Γ1 “ HpΓ, Z, Z 1q, (5)

k1 ě 0 (6)

§ Denote the solution to (2) subject to (3), (4), (5), (6) V˚p¨q and corresponding
policy function g˚p¨q
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Comparing the Computational Strategies

§ The goal is to solve for the optimal policy function gpk, ϵ;Z,Γq with
Γ1 “ HpΓ, Z, Z 1q

§ Krusell-Smith (KS) Framework: gpk, ϵ;Z,mq, m is a set of moments of Γ

§ Lack: Full Information of Distribution - how to approximate H?

§ Neural Network (NN) Framework: gNNpk, ϵ;Z, kN q « gpk, ϵ;Z, kN q

§ Lack: Discretization-Invariance - N determines the parameterization Figure

§ Lack: Permutation-Invariance - gNNpk, ϵ;Z, kN q “ gNNpk, ϵ;Z, k̂N q (Han and Yang,
2021)

§ Lack: Sharing-Aggregation - k1
i “ gNNpki, ϵ;Z, k

N q for i “ 1, ..., N Figure
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Comparing the Computational Strategies

Table 1: Comparison of Three Numerical Frameworks for the
Desirable Properties

Property
Framework

KS1 NN2 Operator3

Full Information of Distribution ˆ ✓ ✓
Discretization-Invariance ✓ ˆ ✓
Permutation-Invariance ✓ ˆ ✓
Sharing-Aggregation ✓ ˆ ✓
1 Krusell-Smith
2 Deep Learning with feed-forward neural network
3 Deep Learning with neural operator (This Paper)
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Reformulation into Operator

§ Goal is gpk, ϵ;Z,Γq

§ Permutation-Invariance: gpk, ϵ;Z, Γ̃q with kN

§ use the empirical cumulative distribution function (ECDF)
Γ̃ P T : rkmin, kmaxs Ñ r0, 1s to characterize kN “ pk1, ..., kN q

§ Γ̃ is represented by the interpolation of the tuple pk̃1, ..., k̃N q, p 1
N , ..., N

N qu, where

pk̃1, ..., k̃N q is in ascending order

§ In practice, a large N but a small number of sensors J

§ Sharing-Aggregation: gpk, ϵ;Z, Γ̃q “ GpΓ̃qpk, ϵ, Zq

§ G : T Ñ H such that hΓ̃ “ GpΓ̃q is the ”conditional policy function”

§ Process the high-dimensional part Γ̃ once-for-all Figure
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Parameterization of the Operator

§ Parameterize the operator G by the neural operator θ

§ In the case of gNNpk, ϵ, Z, kN q, the neural network approximates the operation in
vector space through a series of matrix multiplications

§ In the case of GθpΓq, the neural operator approximates the operation in function
space through a series of convolutions (Universal Approximation Theorem for
Operator)

§ Fourier Neural Operator: transforms the input function into the Fourier domain,
imposes a series of matrix multiplications, and then returns the output to the
spatial domain (The Convolution Theorem) Figure

§ Discretization-Invariance: Parameterization in the Fourier domain is independent
of the discretization of the input and output function in spatial domain (choice of
N)
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Implementation

§ A version of Policy Function Iteration

§ Semi-stochastic simulation: grids on k and simulation for the ergodic set Γ (Judd
et al., 2011)

§ Initialization:

§ Solve for gstatic in the model without aggregated shock (Aiyagari, 1994)

§ Supervised Learning: gθ « gstatic (Transfer Learning)

§ Updating gθ using the ergodic set generated by gstatic (Off-policy Learning)

§ Fine-Tuning: not deliberately

12 / 20



Conclusion

§ This paper introduces a novel numerical framework for solving the heterogeneous
agent model

§ The framework achieves computational efficiency by leveraging three key
properties: Discretization-Invariance, Permutation-Invariance, and
Sharing-Aggregation

§ It offers a fresh perspective on handling the distribution function numerically
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Figure 1: Training Loss vs. Time (seconds). My approach (blue) reached the 1% error (square
root of loss) in around 5 mins and the alterative approach (yellow) took more than 20 mins

Return
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Figure

Figure

Figure 2: An example Neural Network in the case of N “ 5 agents
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Return

Figure 3: An example Neural Network in the case of N “ 10 agents
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Figure 4: Processing the transition in the case of policy function
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Figure 5: Processing the transition in the case of policy operator
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Figure
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Figure 6: Fourier Neural Operator Architecture
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Return

Figure 7: A Typical Fourier Layer l
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