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Overview

> This paper proposed a new numerical framework to solve a prevalent class of
structural models: the heterogeneous agent (HA) models with aggregate shocks

> |n this context, the cross-sectional distribution of all individual states, which is an
infinite-dimensional object, becomes part of the agents’ state variable

» My approach demonstrated computational efficiency in experiments on a
Bewley-Huggett-Aiyagari type model (Den Haan, Judd and Juillard, 2008),
compared to alternatives in the current literature (Maliar, Maliar and Winant,

2021)
» Three parts:
> Reformulation of the problem of solving the model into learning an operator
> Parameterization of the operator by the neural operator (Li et al., 2020)

> Implementation by a specific training scheme (policy function iteration)
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Introduction: Operator
» An operator G is a mapping between function spaces
» Examples: h(z) = G(f)(z) = %(m) and h(z) = G(f)(z) = (f(z)dz

» £ ({1, 20t {y1, - ys)) and b {21, . 20}, {21, -, 20))

» We call {x1,...,x;} the "sensors”

Iz P A

s al
24
1 @
2
¥ )

3/20



Introduction: Operator (cont.)

» Increasing J-grid gives higher approximation accuracy

» The J-grid is not necessarily uniform

» We can have G(f) = (hy, ha)
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The Bewley-Huggett-Aiyagari Model

> |lowercase letters for individual variables, UPPERCASE letters for aggregate
variables and bold letters for functions and operators

» A continuum of infinitely lived and ex-ante identical agents, each period:
> the time endowment [
> earn the after-tax wage (1 — 7)IW; if employed (e = 1)
> earn the unemployment benefit uW; if unemployed (e = 0)

> W, is the per unit of time wage rate, 7; is the tax rate, and p is a model parameter
denoting the fraction of wage

» Market is incomplete: non-zero capital holding k; > 0

» The net rate of return for capital: R; — d, R; is market-determining interest rate
and ¢ is the fixed depreciation rate
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The Bewley-Huggett-Aiyagari Model

» Firms: Cobb-Douglas production function Y; = Z; K (l_Lt)lfa

» K is the per capita capital, L; is the employment rate, and « € [0, 1] is the
capital sharing. Z; is a binary aggregate productivity shock: Z; € {Z;, Z,}

» Government: keep budget balanced by redistributing all taxation
» Firms’ first-order optimality + Government’s budget constraint:
Kt a-l Kt @ ,u(l — Lt)
Ry =aZ | — , Wi=1—-a)Z; | — ] , =— 1
L o <lLt> 1= 1=z <lLt mt IL, (1)

» Shocks: Z; is first-order Markovian, ¢; is first-order Markovian conditional on the
transition of Z;, and confront to the law of the large number

v

(€1, Z;) ~ II: the element 7.z denotes P((e, Z) — (€', Z"))
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The Bewley-Huggett-Aiyagari Model

» Denote T the distribution of agents over capital holdings
» Denote the law of motion of T' by H: IV = H(T', Z, Z")

» The agents’ problem can be therefore express recursively as

V(k,e; Z,T) = IE%IX{U(C) + BE[V(K',€; Z, 1) | e, Z]} (2)
subject to
c+k =Rk+[(1—-7)le+p(l—e)]W+ (1-0)k, (3)
e, 7' ~e, 2), (4)
' = H(T. 2,7, (5)
K >0 (6)

» Denote the solution to (2) subject to (3), (4), (5), (6) V*(-) and corresponding
policy function g*(-)
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Comparing the Computational Strategies

» The goal is to solve for the optimal policy function g(k,€; Z,T') with
I = H(T, 2,7

» Krusell-Smith (KS) Framework: g(k,¢; Z,m), m is a set of moments of I'
> Lack: Full Information of Distribution - how to approximate H?

» Neural Network (NN) Framework: gnn(k,€; Z,kN) ~ g(k,¢; Z, kN)
> Lack: Discretization-Invariance - N determines the parameterization

> Lack: Permutation-Invariance - gnn(k, €; Z, kYY) = gan(k, € Z, l%N) (Han and Yang,
2021)

» Lack: Sharing-Aggregation - k! = gnn(ki, €; Z, k™) fori=1,..,N
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Comparing the Computational Strategies

Table 1: Comparison of Three Numerical Frameworks for the
Desirable Properties

Framework

Property KS!] NN?| Operator?

Full Information of Distribution
Discretization-Invariance
Permutation-Invariance

X x| x|

SNENENEX
ANENENEN

Sharing-Aggregation

! Krusell-Smith
2 Deep Learning with feed-forward neural network
3 Deep Learning with neural operator (This Paper)
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Reformulation into Operator

» Goal is g(k,e; Z,T)
» Permutation-Invariance: g(k,¢€; Z, f‘) with &V

> use the empirical cumulative distribution function (ECDF)
T €T : [kmins kmax] — [0, 1] to characterize k¥ = (kyq, ..., kn)

» T is represented by the interpolation of the tuple (ki, ..., kx), (%, X)), where
(1, ...,kn) is in ascending order

> In practice, a large N but a small number of sensors J
> Sharing-Aggregation: g(k,e; Z,T) = G(T')(k, ¢, Z)
» G : T — H such that hg = G(T) is the "conditional policy function”

> Process the high-dimensional part T once-for-all
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Parameterization of the Operator

» Parameterize the operator G by the neural operator 6

> In the case of gnn(k, €, Z, k), the neural network approximates the operation in
vector space through a series of matrix multiplications

» In the case of Gy(T"), the neural operator approximates the operation in function
space through a series of convolutions (Universal Approximation Theorem for
Operator)

» Fourier Neural Operator: transforms the input function into the Fourier domain,
imposes a series of matrix multiplications, and then returns the output to the
spatial domain ( The Convolution Theorem)

» Discretization-Invariance: Parameterization in the Fourier domain is independent
of the discretization of the input and output function in spatial domain (choice of
N)
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Implementation

v

A version of Policy Function lteration

v

Semi-stochastic simulation: grids on k and simulation for the ergodic set I" (Judd
et al., 2011)

v

Initialization:
> Solve for ggatic in the model without aggregated shock (Aiyagari, 1994)
> Supervised Learning: gy ~ gtatic (Transfer Learning)
> Updating gy using the ergodic set generated by ggatic (Off-policy Learning)

» Fine-Tuning: not deliberately
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Conclusion

» This paper introduces a novel numerical framework for solving the heterogeneous
agent model

» The framework achieves computational efficiency by leveraging three key
properties: Discretization-Invariance, Permutation-Invariance, and
Sharing-Aggregation

> It offers a fresh perspective on handling the distribution function numerically

13/20



Figure
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Figure 1: Training Loss vs. Time (seconds). My approach (blue) reached the 1% error (square

root of loss) in around 5 mins and the alterative approach (yellow) took more than 20 mins
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Figure 2: An example Neural Network in the case of N = 5 agents
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Figure 3: An example Neural Network in the case of N = 10 agents
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Figure 4: Processing the transition in the case of policy function
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Figure 5: Processing the transition in the case of policy operator
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Figure 6: Fourier Neural Operator Architecture
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Figure 7: A Typical Fourier Layer [
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