Operator Learning in Macroeconomics

Yaolang Zhong

University of Tokyo

The CREPE Conference Day

December 25, 2024

Background

Since around 2020, the Computational Economics Literature...

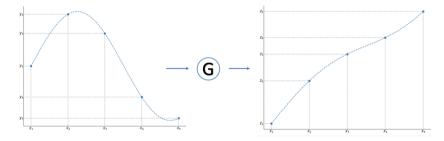
- Economics + Computer Science + Engineering (programming)
- Thanks to the power of neural network in overcoming the curse of dimensionality:
 - Feature Representation and Hierarchical Learning
 - Non-Linear Approximation
 - Shared Parameters and Regularization
 - Efficient Optimization

Overview

- This paper proposed a new numerical framework to solve a prevalent class of structural models: the heterogeneous agent (HA) models with aggregate shocks
 - In this context, the cross-sectional distribution of all individual states, which is an infinite-dimensional object, becomes part of the agents' state variable
- My approach demonstrated computational efficiency in experiments on a Bewley-Huggett-Aiyagari type model (Den Haan, Judd and Juillard, 2008), compared to alternatives in the current literature (Maliar, Maliar and Winant, 2021) Figure
- Three parts:
 - Reformulation of the problem of solving the model into learning an operator
 - Parameterization of the operator by the neural operator (Li et al., 2020)
 - Implementation by a specific training scheme

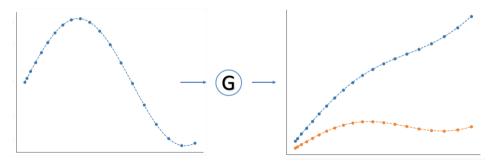
Introduction: Operator

- \blacktriangleright An operator ${\bf G}$ is a mapping between function spaces
- Examples: $\mathbf{h}(x) = \mathbf{G}(\mathbf{f})(x) = \frac{d\mathbf{f}}{dx}(x)$ and $\mathbf{h}(x) = \mathbf{G}(\mathbf{f})(x) = \int \mathbf{f}(x) dx$
- $\mathbf{f}: (\{x_1, ..., x_J\}, \{y_1, ..., y_J\}) \text{ and } \mathbf{h}: (\{x_1, ..., x_J\}, \{z_1, ..., z_J\})$
- We call $\{x_1, ..., x_J\}$ the "sensors"



Introduction: Operator (cont.)

- Increasing J-grid gives higher approximation accuracy
- ▶ The *J*-grid is not necessarily uniform
- \blacktriangleright We can have $\mathbf{G}(\mathbf{f})=(\mathbf{h_1},\mathbf{h_2})$



The Bewley-Huggett-Aiyagari Model

- Iowercase letters for individual variables, UPPERCASE letters for aggregate variables and **bold** letters for functions and operators
- A continuum of infinitely lived and ex-ante identical agents, each period:
 - the time endowment \overline{l}
 - earn the after-tax wage $(1 \tau_t) \overline{l} W_t$ if employed ($\epsilon = 1$)
 - earn the unemployment benefit μW_t if unemployed ($\epsilon = 0$)
 - \blacktriangleright W_t is the per unit of time wage rate, τ_t is the tax rate, and μ is a model parameter denoting the fraction of wage
- Market is incomplete: non-zero capital holding $k_t \ge 0$
- The net rate of return for capital: $R_t \delta$, R_t is market-determining interest rate and δ is the fixed depreciation rate

The Bewley-Huggett-Aiyagari Model

- Firms: Cobb-Douglas production function $Y_t = Z_t K_t^{\alpha} \left(\overline{l} L_t \right)^{1-\alpha}$
- K_t is the per capita capital, L_t is the employment rate, and $\alpha \in [0, 1]$ is the capital sharing. Z_t is a binary aggregate productivity shock: $Z_t \in \{Z_b, Z_g\}$
- Government: keep budget balanced by redistributing all taxation
- Firms' first-order optimality + Government's budget constraint:

$$R_t = \alpha Z_t \left(\frac{K_t}{\bar{l}L_t}\right)^{\alpha - 1}, \quad W_t = (1 - \alpha) Z_t \left(\frac{K_t}{\bar{l}L_t}\right)^{\alpha}, \quad \tau_t = \frac{\mu(1 - L_t)}{\bar{l}L_t} \quad (1)$$

- Shocks: Z_t is first-order Markovian, ϵ_t is first-order Markovian conditional on the transition of Z_t , and confront to the law of the large number
- $(\epsilon_t, Z_t) \sim \Pi$: the element $\pi_{\epsilon \epsilon' Z Z'}$ denotes $\mathsf{P}((\epsilon, Z) \to (\epsilon', Z'))$

The Bewley-Huggett-Aiyagari Model

- \blacktriangleright Denote Γ the distribution of agents over capital holdings
- Denote the law of motion of Γ by $\mathbf{H}: \Gamma' = \mathbf{H}(\Gamma, Z, Z')$
- The agents' problem can be therefore express recursively as

$$\mathbf{V}(k,\epsilon;Z,\mathbf{\Gamma}) = \max_{c,k'} \{ \mathbf{U}(c) + \beta \mathbb{E}[\mathbf{V}(k',\epsilon';Z,\mathbf{\Gamma}') \mid \epsilon, Z] \}$$
(2)

subject to

$$c + k' = Rk + [(1 - \tau)\bar{l}\epsilon + \mu(1 - \epsilon)]W + (1 - \delta)k,$$
(3)

$$\epsilon', Z' \sim \Pi(\epsilon, Z),$$
(4)

$$\Gamma' = \mathbf{H}(\Gamma, Z, Z'),\tag{5}$$

$$k' \ge 0 \tag{6}$$

• Denote the solution to (2) subject to (3), (4), (5), (6) $V^*(\cdot)$ and corresponding policy function $g^*(\cdot)$

Technical Remarks

 \blacktriangleright In principle working on either $\mathbf{V}^{*}(\cdot)$ or $\mathbf{g}^{*}(\cdot)$ is fine:

$$\mathbf{g}^{*}(s) = \arg \max_{a \in \mathcal{A}} \left[R(s, a) + \beta \mathbb{E}_{s'} \mathbf{V}^{*}(s') \right],$$
$$\mathbf{V}^{*}(s) = \sum_{t=0}^{\infty} \beta^{t} R(s_{t}, \mathbf{g}(s_{t}))$$

Solving for V*: value function iteration (VFI)

$$V(s) = \max_{a \in \mathcal{A}(s)} \left\{ u(s, a) + \beta \mathbb{E} \big[V(s') \mid s, a \big] \right\}$$

Solving for g*: time iteration

$$u'(c_t) = \beta \mathbb{E} \big[u'(c_{t+1}) f'(k_{t+1}) \big]$$

where c is implicitly represented by ${\bf g}$

In practice, prefer \mathbf{g}^* over \mathbf{V}^*

- ${\scriptstyle \blacktriangleright}$ Ultimately we are interested in ${\bf g}^{*}$
- ▶ There is a maximization operation in Bellman equation that is hard to deal with
- ${\scriptstyle \blacktriangleright}$ Approximation error is more informative in the case of ${\bf g}$

▶

Comparing the Computational Strategies

- The goal is to solve for the optimal policy function $g(k,\epsilon;Z,\Gamma)$ with $\Gamma' = H(\Gamma,Z,Z')$
- Krusell-Smith (KS) Framework: $\mathbf{g}(k,\epsilon;Z,m)$, m is a set of moments of $\mathbf{\Gamma}$
 - Lack: Full Information of Distribution how to approximate H?
- ▶ Neural Network (NN) Framework: $\mathbf{g}_{NN}(k,\epsilon;Z,k^N) \approx \mathbf{g}(k,\epsilon;Z,k^N)$
 - Lack: Discretization-Invariance N determines the parameterization Figure
 - Lack: Permutation-Invariance $\mathbf{g}_{NN}(k,\epsilon;Z,k^N) = \mathbf{g}_{NN}(k,\epsilon;Z,\hat{k}^N)$ (Han and Yang, 2021)
 - Lack: Sharing-Aggregation $k'_i = \mathbf{g}_{NN}(k_i,\epsilon;Z,k^N)$ for i = 1,...,N Figure

Comparing the Computational Strategies

Table 1: Comparison of Three Numerical Frameworks for theDesirable Properties

Property	Framework		
	KS1	NN^2	Operator ³
Full Information of Distribution	×	\checkmark	\checkmark
Discretization-Invariance	\checkmark	×	\checkmark
Permutation-Invariance	\checkmark	×	\checkmark
Sharing-Aggregation	\checkmark	×	\checkmark

¹ Krusell-Smith

- ² Deep Learning with feed-forward neural network
- ³ Deep Learning with neural operator (This Paper)

Reformulation into Operator

- Goal is $\mathbf{g}(k,\epsilon;Z,\mathbf{\Gamma})$
- Permutation-Invariance: $\mathbf{g}(k,\epsilon;Z,\mathbf{ ilde{\Gamma}})$ with k^N
 - use the empirical cumulative distribution function (ECDF) $\tilde{\Gamma} \in \mathcal{T} : [k_{\min}, k_{\max}] \rightarrow [0, 1]$ to characterize $k^N = (k_1, ..., k_N)$
 - $\tilde{\Gamma}$ is represented by the interpolation of the tuple $(\tilde{k}_1, ..., \tilde{k}_N), (\frac{1}{N}, ..., \frac{N}{N})$ }, where $(\tilde{k}_1, ..., \tilde{k}_N)$ is in ascending order
 - \blacktriangleright In practice, a large N but a small number of sensors J
- Sharing-Aggregation: $\mathbf{g}(k,\epsilon;Z,\tilde{\mathbf{\Gamma}}) = \mathbf{G}(\tilde{\mathbf{\Gamma}})(k,\epsilon,Z)$
 - $G:\mathcal{T}\to\mathcal{H}$ such that $\mathbf{h}_{\tilde{\Gamma}}=G(\tilde{\Gamma})$ is the "conditional policy function"
 - Process the high-dimensional part \$\tilde{\Gamma}\$ once-for-all \$\blacksymbol{Figure}\$

Parameterization of the Operator

- \blacktriangleright Parameterize the operator ${\bf G}$ by the neural operator θ
- In the case of $g_{NN}(k, \epsilon, Z, k^N)$, the neural network approximates the operation in vector space through a series of matrix multiplications
- In the case of $\mathbf{G}_{\theta}(\mathbf{\Gamma})$, the neural operator approximates the operation in function space through a series of convolutions (*Universal Approximation Theorem for Operator*)
- Fourier Neural Operator: transforms the input function into the Fourier domain, imposes a series of matrix multiplications, and then returns the output to the spatial domain (*The Convolution Theorem*)
- Discretization-Invariance: Parameterization in the Fourier domain is independent of the discretization of the input and output function in spatial domain (choice of N)

Implementation

- A version of Time Iteration
- Semi-stochastic simulation: grids on k and simulation for the ergodic set Γ (Judd et al., 2011)
- Initialization:
 - \blacktriangleright Solve for $\mathbf{g}_{\text{static}}$ in the model without aggregated shock (Aiyagari, 1994)
 - Supervised Learning: $\mathbf{g}_{\theta} \approx \mathbf{g}_{static}$ (Transfer Learning)
 - Updating g_{θ} using the ergodic set generated by g_{static} (Off-policy Learning)
- Fine-Tuning: not deliberately

Conclusion

- This paper introduces a novel numerical framework for solving the heterogeneous agent model
- The framework achieves computational efficiency by leveraging three key properties: Discretization-Invariance, Permutation-Invariance, and Sharing-Aggregation
- ▶ It offers a fresh perspective on handling the distribution function numerically

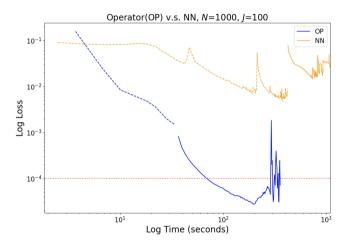


Figure 1: Training Loss vs. Time (seconds). My approach (blue) reached the 1% error (square root of loss) in around 5 mins and the alterative approach (yellow) took more than 20 mins

Figure

→ Figure

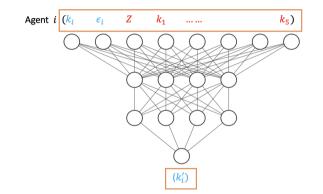


Figure 2: An example Neural Network in the case of N = 5 agents

Figure

▶ Return

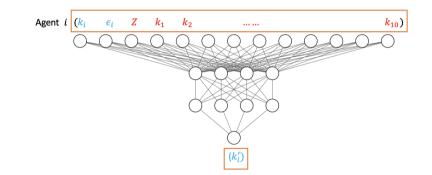


Figure 3: An example Neural Network in the case of N = 10 agents

Return

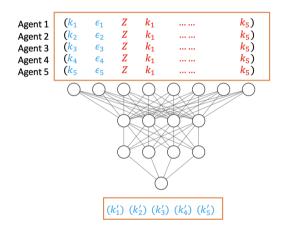


Figure 4: Processing the transition in the case of policy function

▶ Return

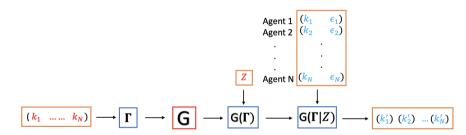


Figure 5: Processing the transition in the case of policy operator

► Layer

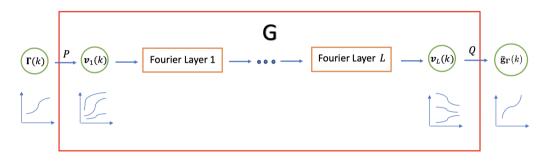


Figure 6: Fourier Neural Operator Architecture

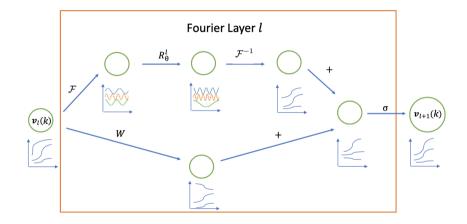


Figure 7: A Typical Fourier Layer *l*

- Aiyagari, S Rao, "Uninsured idiosyncratic risk and aggregate saving," *The Quarterly Journal of Economics*, 1994, *109* (3), 659–684.
- Haan, Wouter J Den, Kenneth L Judd, and Michel Juillard, "Computational suite of models with heterogeneous agents: model specifications," *Journal of Economic Dynamics and Control, this issue,* 2008.
- Han, Jiequn and Yucheng Yang, "Deepham: A global solution method for heterogeneous agent models with aggregate shocks," *arXiv preprint arXiv:2112.14377*, 2021.
- Judd, Kenneth L, Lilia Maliar, and Serguei Maliar, "Numerically stable and accurate stochastic simulation approaches for solving dynamic economic models," *Quantitative Economics*, 2011, *2* (2), 173–210.
- Li, Zongyi, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar, "Fourier neural operator for parametric partial differential equations," *arXiv preprint arXiv:2010.08895*, 2020.
- Maliar, Lilia, Serguei Maliar, and Pablo Winant, "Deep learning for solving dynamic economic models.," *Journal of Monetary Economics*, 2021, *122*, 76–101.