Präsentation des Projektes
im französischen Ministerium
Project intentions – 1
Why did you decide to test ECVET?

- Out of a first reserved opinion about the proposed device: wanting to confront it
- The British experience with the first NVQs
- A privileged starting position: a prior joint project AERO-Net

Project intentions – 2
Why did you decide to test ECVET?

- Results of first project: joint profile of “expert worker” in the European aeronautic industry
- Thanks to 22 professional tasks
- In the manufacturing sector of the industry (Airbus but not only)

Project objectives

- Test the ECVET specifications in a well known area of qualified expert work
- Moving from the manufacturing to the maintenance activities
- Also because those are regulated at European level (EASA Unit)

Partnerships – 1

- Team members: the same countries as in the first joint project and the same researchers
- Enterprises: Airbus not involved in the same way as in the first project (France); but very much leader in Germany and partly in the UK (apprenticeship
- Enterprises: airlines in Germany and the UK (Lufthansa, British Airways..)
- VET schools and their own local enterprise networks (France)

Partnerships – 2

- The particular context in Germany: all partners of the manufacturing and maintenance sector in aeronautics have been involved
- I.e. employers’ associations, trade unions, all those in charge of qualification design (reform of the curricula)
- In a training perspective towards a qualification
Results – 1
Methods

- Identification of common typical professional tasks
- The different curricula and VET-traditions are not suited for common units: need to go to professional tasks
- But those are too large for mobility periods. Also, they are not learnt all at once and need anyway to be repeated several times during the learning period

Results – 2
Methods

1. Production of metallic components for aircraft or ground support equipment
2. Production of components of plastics or composite materials for aircraft or ground support equipment
3. Operating and monitoring of automated systems in the aircraft production
4. Joining and dissolving of structural components and aircraft airframes
5. Assembly and disassembly of equipment and systems in/at the aircraft airframe
6. Functional checks and tuning of the aircraft
7. Maintenance and inspection of the aircraft
8. Analysis and recondition of malfunctions at system components
9. Analysis and reconditioning of damage on structure components
10. Reconditioning of accessory equipment
11. Independent quality inspections

Results – 3
Methods

- Therefore each task has been divided in so-called mobility units
- That meant to determine parts of the TPT that would remain coherent and meaningful
- This was done thanks to a parallel analysis: of the learning station and of the curricula

Results – 4
Fields covered

- Mobility units are defined as learning outcomes expressed with an active verb
- Examples for Unit 3: Equipping the respective automated system; Setting and starting the respective automated system; Running the respective automated system and controlling the production; Recognising damages, assessing the quality of the products
- To each of the mobility units belong a list of the respective KSC necessary to deliver the tasks corresponding to one unit

Results – 5
Fields covered

- For example: Reading and understanding work orders, providing and preparing the material, approving order...
- the transfer process has been organised, in the project, thanks to two tools: the assessment grid and the mobility pass
- Unhappily no real mobility has been taking place at this stage and making use of the instruments

Results – 6
Tools

The assessment grid
qualitative-performance-oriented

The person in charge estimates whether the apprentice has supported the work on worked under instruction on worked under surveillance on worked independently on

the respective Mobility Unit (MU).
Results – 7
Tools

The mobility pass

- It is a combination of the exhaustive list of all Units of the qualification,
- Divided up in their different Mobility Units foreseen with their KSC
- And cross-tabled with the evaluation grid

Results – 8
Tools

TPT 12
Production of bunched circuits

<table>
<thead>
<tr>
<th>Mobility unit</th>
<th>Assessment</th>
<th>Place</th>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of copper bunched circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production of fibre glass bunched circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results – 9
Political positions

- Coherent set of KSC
- Mobility
- Transparency
- Comparable content
- Mutual trust

Results – 10
Political positions

- English experience
- Bureaucracy
- Credit Points
- National regulations (assessment)
- Pedagogic evidence

Limits

- The AeroVet project has worked only about "learning units" (teaching units) and not about "qualification units" (certification) then national systems are differently ready to accept the latter. It is feared it would bring the risk of fragmenting existing qualifications and might lead to collateral damage, including focusing only on learning for the test.
- Regarding permeability the potential of recognising LO from IVET at HE level in aeronautics are rather low (as in all technical subjects)
- Credit points

Recommendations

- The approach of having learning-place independent curricula should be revisited then impossible to be accepted by certain countries
- Talking seriously about recognising LO from abroad in the complex sector of aeronautics should be reserved for mobility periods lasting one month or longer.
- Regarding the implementation of ECVET we do have the same concerns as written in the statement of the UK expert group: “However, if ECVET is overly bureaucratic and difficult for learners to use, it could act as a potential barrier to mobility.”