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Abstract:
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otherwise satisfies the usual discounted repeated game assumptions. Under certain restrictions on
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patient, however, payoffs converge to (though never attain) the efficient level. We also show that
a related model in which an irreversibility arises through players choosing an incremental
variable, such as investment, can be transformed into the base model with similar results.
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Non-Technical Summary

We consider a model in which in every period, there is a Prisoner's Dilemma structure; agents
have some mutual interest in cooperating, despite the fact that it is not in any agent's individual
interest to cooperate. We suppose that this situation is repeated over time, and, crucially, subject
to irreversibility, in the sense that an agent cannot reduce her level of cooperation once
increased. In this setting, irreversibility has two opposing effects. First, it aids cooperation,
through making deviations in the form of reduced cooperation impossible. Second, it limits the
ability of agentsto punish a deviator. We consider the complex interplay of these two forces.

The above model without reversibility isjust a repeated Prisoner's Dilemma, and in that case, it
is well-known that the most effective (credible) punishments take the form of "sticks', i.e.,
threats to reduce cooperation back to the stage-game Nash equilibrium. With irreversibility, such
punishments are no longer feasible; instead, deviators can only be punished by withdrawal of
"carrots’, i.e., threats to withdraw promised higher levels of cooperation in future. It follows
immediately from this that irreversibility causes gradualism, i.e., any equilibrium sequence of
actions involving partial cooperation cannot involve an immediate move to full cooperation.

Our first contribution is to refine and extend this basic insight. First, we show that any
equilibrium sequence of actions involving cooperation must have the level of cooperation rising
in every period, but that full cooperation is never reached in finite time. We focus on the
(symmetric) efficient equilibrium sequence i.e. the one that maximises the present value of
payoffs of either player. A key question then is: to what level of cooperation does this efficient
equilibrium sequence converge? It turns out that if payoffs are smooth (differentiable) functions
of actions, convergence will be to alevel strictly below the full cooperation level, no matter how
patient agents are.

Later sections of the paper then extend the basic model in several directions. First, we recognize
that our basic modedl is very stylized. In many economic applications, irreversibility arises more
naturally when the level of ““cooperation” is a stock variable which may benefit both players, and
it is incremental investment in cooperation that is costly and non-negative, implying the stock
variable is irreversible. Therefore, in Section 4, we present an "adjustment cost” model with
these features, and show that it can be reformulated so that it is a special case of our base model.
We then apply the adjustment cost model to study sequential public good contribution games
(Admati and Perry (1991), Marx and Matthews (1998)) and capacity reduction in a declining
industry (Ghemawat and Nalebuff(1990)). These applications illustrate the extent to which our
results are applicable to variety of disparate areas of economics.

A second key extension is to allow a small amount of irreversibility, so that any player can
reduce his cooperation level by some (small) fixed percentage. This has two countervailing
effects. The first is to make deviation more profitable; the deviator can lower his cooperation
level below last period's, rather than just keeping it constant. The second effect is to make
punishment more severe; the worst possible perfect equilibrium punishment of the deviator is for
the other player to reduce his cooperation over time, rather than just not increase it. A priori, it is
not clear which effect will dominate. Nevertheless, we are able to show that for a small amount
of reversibility it is the second effect , implying that reversibility is desirable in that it allows
more cooperative equilibria to be sustained. Other extensions studied are to the cases where the
two players do not have to take the same action in every period (asymmetry), and where players
move sequentially.



We see our model as being applicable to a wide variety of situations in addition to those already
mentioned above. Nuclear disarmament between two countries is one example - here cooperation
would be measured by the extent of disarmament. While it may be desirable to move
immediately to total disarmament, this is not an equilibrium because either country would prefer
to have the other destroy its stockpile while retaining its own. Disarmament must proceed
gradually, and our results give conditions under which the limit of the process is complete or
only partial disarmament.

Another example would be in trade negotiations. For example, GATT negotiations are known for
their gradualism, although there has been little theoretical work on this (see Bagwell and Staiger,
1997). If concessions are irreversible, or if irreversibilities arise in investment such that shifting
capital away from import competing technologies cannot easily be reversed, then a similar story
to the one we give can be told to explain gradualism. A formal treatment of arelated ideain the
negotiation context isin Comte and Jehiel (1998) who consider the impact of outside optionsin a
negotiation model where concessions by one party increase the payoff the other party getsin a
dispute resol ution phase.

A further fruitful application is to environmental problems. For example, environmental
cooperation may take the form of installation of costly abatement technology. Once installed,
this technology may be very expensive to replace with a "dirtier" technology, e.g., conversion of
automobiles to unleaded petrol would be expensive to reverse. Consequently it will again be
difficult to punish deviants by reversing the investment. Similarly, destruction of capital which
leads to over-exploitation of a common property resource (e.g., fishing boats) will also fit into
the general framework of the paper if it is difficult to reverse.



there is no non-trivial equilibrium. The path used in the proof of part (i), which satisfies
(5.2) up to its maximum value, is not the efficient path unless this maximum occurs at
t = 1, since each incentive constraint up to t* is slack, violating Lemma 5.1(ii). So the
efficient path also satisfies (5.2) so long as ¢; < ¢*, but ¢; is higher than in the construction

of the proof (otherwise Lemma 5.1(iii) is violated).

6. Asymmetric Cooperation

So far, we have only considered symmetric paths, i.e., where ¢1; = coy = ¢;. A natural
question is whether the agents could achieve higher (expected) equilibrium payoffs by
playing asymmetrically. A further related question concerns the characteristics of efficient
equilibria in a model where agents are constrained to move sequentially; as we shall see,

this is a closely related issue and will be considered below.

We shall consider these questions for the linear kinked case only. Let {14, co}%,
be an arbitrary (possibly asymmetric) path. Then, by a similar argument to that given
in Section 2, such a path is an equilibrium path if and only if for 7, 7 = 1, 2, 7 # 7,
t=1,2,...,

T1Ci—1 1 ToCjt

1-6
Let Cg be the set of equilibrium paths (i.e. sequences that satisfy (2.1) and (6.1)). Also,
let II;({c1, ot }321) be the normalized (multiplied through by (1 —§)) present discounted

< MiCip + T + 6 (11 + TaCjq1) + . . (6.1)

values of payoff to i associated with a path, and let IIg be the image of Cg in the space

of normalized present discounted values of payoffs,, i.e.,

Hp = {(IL;, Oy) |TL; = ILi({c1e, coetioy), {cnecoitimy € Cry i = 1,2}

Our focus in on the shape of the efficient frontier of I1. As far as symmetric equilibria
go, we know from Proposition 3.2 if 6 < 6= —m /7y, no cooperation is possible, whereas
if & > 5, completion equilibria exist. From the symmetry assumption on payoffs, Iy
is symmetric about the 45° line. One issue concerns the possibility that Iz may be a
non-convex set, in which case it may be optimal for the players to randomize between

two pure-strategy equilibria rather than play the efficient symmetric equilibrium. The
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following result, which characterizes Il when 6 > § , establishes that this is not the
case, and moreover shows that the efficient frontier of Iy is linear with slope -1 near the
45°line, so in terms of joint payoffs, a degree of asymmetry does not matter. This part of
the frontier consists of payoffs from sequences which satisfy the incentive constraints with

equality (this is no longer true for efficient paths with sufficiently asymmetric payofls).

Proposition 6.1. Assume that 6 > b=—m /7. Then, I is convex. Moreover, the effi-
cient frontier of Il has the following form. There exist points A = (IT' 11"), B =(11", I'),
on the efficient frontier of Iy, with II' > II"” > 0 such that between A and B, II; and Il
sum to a constant Y (1.e., the frontier of Il is linear between A and B with slope -1). For

any point on the frontier below A or above B, the sum of utilities is strictly less than 3.

Proof. See Appendix. [

The Proposition is illustrated in Figure 1 below,
Figure 1 in here

which shows the general shape of the frontier (although we have no results about the
shape of the frontier to the left of B or below A, except that it must be described by a

concave function). We can also say something about how the frontier shifts as § changes:

Proposition 6.2. The segment of the efficient frontier between A and B is increasing in
8 In the sense that both II'/II" and % are increasing in ¢, and converges to the first-best
frontier as § — 1 (Le., II"/II' — 0 and ¥ — 2(my + m3)c*). As 6 — 5 = —my /Ty from
above, A — B and ¥ — 0.

Proof. See Appendix. [

Proposition 4 is illustrated in Figure 2 below, where the solid line represents the

frontier at a lower 6 and the dotted line the frontier at a higher value of .

Figure 2 in here
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Note that as 6 — 1, the efficient frontier becomes linear everywhere with slope equal
to minus one -1, i.e., it converges to the first-best efficient frontier. So, Proposition 6.2
generalizes Corollary 3.3 to the case of asymmetric paths, at least in the linear kinked

case.

7. Sequential Moves

So far, we have assumed that players can move simultaneously. However, it may be that
players can only move sequentially, e.g., Admati-Perry (1991), Gale (1997). In certain
public good contribution games, the assumption made can affect the conclusions substan-
tially. In the Admati-Perry model, where players move sequentially, a no contribution
result holds when no player individually would want to complete the project, even though
it might be jointly optimal to do so, but this result may disappear if the players can move
simultaneously (see Marx and Matthews (1997) for a full discussion of this issue). By
contrast, we shall find that in our model, equilibria in the two cases are closely related;
indeed, the efficient symmetric equilibrium can “approximately” be implemented in the

sequential move game.

Suppose w.l.o.g. that player 1 can move at even periods and player 2 at odd periods.

Then, this move structure imposes the constraint that

C1t = C1t-1, t= 1,3,5 (7]_>

Cot = Co¢-1, = 2,4,6

Let the set of all paths that satisfy (7.1) be C*4. To be an equilibrium in the sequential
game, any path {c14,co,} must satisfy the following incentive constraints. When player

1 moves at t = 2,4, ..., he prefers to raise his level of cooperation from ¢; 5 to ¢; only if

7T(Cl,p2, Co5t—1 )

1-9¢

< 7T<Cl,t762,t71) + 67T<Cl,t7 C2,t+1) +..., 1 =246.. (7-2>
Similarly, when player 2 moves at ¢ = 3,5..., he prefers to raise his level of cooperation
from ¢y 9 to ¢yt only if

7T<02,t727 Cl,tfl)

1-9¢

S ﬂ_(CQ,t;Cl,tfl) + (ST(’(CQ’t, Cl,t+1) + ceey t= 3,5, 7... (73>
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When player 2 moves at period 1, (7.3) is modified by the fact that 2 can revert to ¢y = 0,
rather than ¢ 1, but otherwise the incentive constraint is the same, i.e.,

7(0,0)

R

Let the set of paths in C** that satisfy (7.2),(7.3) and (7.4) be Cg? C C*“.

S 7T<C2’1, 0) + (57'('((32’1, CLQ) + ... . (74>

However, note that a path is in C},? if and only if it is an (asymmetric) equilibrium
path satisfying (7.1) in the simultancous move game studied above. This is because in
the simultaneous move game, the incentive constraints in the periods where agents do not
have to move are automatically satisfied, as no agent likes to choose a higher ¢;, than
necessary (from 7 decreasing in its first argument). So, Cy s simply that subset of Cg
also in C*9, ie.,

Oyt = O N O,

So, the set of feasible present-value payoffs I1;;? is the image of C';; 7 in :? under the payoff
function , and consequently

TI57 C 1.

To say more than this, we shall go to the linear kinked case, in which case we have
the following. Define A := (IT',II") as in Proposition 6.1 above, and let IT be the present
value payoff from the efficient symmetric path in the simultaneous move game, so that

S = (f[, f[) is the equal utility point on the Pareto-frontier for that game.

Proposition 7.1. II3? is convex. Also, A is in 1137, and for any fixed ¢ > 0, there is

aé(s) <1, and a point B = (ﬂ‘;eq,ﬂgeq) € 137 such that f[feq >M—¢,i=12 for
6 > 6(g). Consequently, as 6 — 1, the Pareto frontier of II3? is asymptotically linear
between S and A.

Proof. See Appendix. [

This Proposition is illustrated in Figure 3 below. It shows that in the sequential
move game, for low discounting, we can approximate “half” the linear part of the Pareto-
frontier of the simultanecous move game, so sequential moves need not be a barrier to

efficiency.

Figure 3 in here
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8. Conclusions

This paper has studied a simple dynamic game where the level of cooperation chosen
by each player in any period is irreversible. We have shown that irreversibility causes
gradualism, i.e., any (subgame-perfect) sequence of actions involving partial cooperation
cannot involve an immediate move to full cooperation, and we have refined and extended
this basic insight in various ways. First, we showed that if payoffs are differentiable in
actions, then (for a fixed discount factor), the level of cooperation asymptotes to a limit
strictly below full cooperation, and this limit value is easily characterized. For the case
where payoffs are linear up to some joint cooperation level, and constant or decreasing
thereafter, the results are different — above some critical discount factor equilibrium
cooperation can converge asymptotically to the fully efficient level. Below this critical

discount factor, no cooperation is possible.

Later sections of the paper then extend the basic model in several directions. First,
we studied an “adjustment cost” model which is applicable to a variety of economic
situations, and showed that it can be reformulated so that it is a special case of our
base model. We then applied the adjustment cost model to study sequential public good

contribution games and capacity reduction in a declining industry.

Other extensions were to allow for irreversibility, asymmetry, and sequential moves.
However, in all these variants of the base case, we have continued to assume that the
underlying model is symmetric, i.e., both players have the same payoffs, given a permu-
tation of their action variables. This is somewhat restrictive; in many situations where
irreversibility arises naturally, e.g. Coasian bargaining without enforceable contracts but
where actions are irreversible, payofls will be asymmetric. Another limitation of the model
is that players only have a scalar action variable; in many applications, players have sev-
eral action variables, as in, for example, capacity reduction games, where firms control
both capacity and output. Extending the model in these directions is a project for the

future.
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A. Appendix

Proof of Lemma 4. Suppose to the contrary there exists a {c}}{°; in Csg with ¢, > ¢
for some t. Define for all ¢ > 0, ¢, = max{¢;,c;}. It is clear from Assumption Al and
Lemma 2.1 (i) that

(6, &) > (e, ), all ¢, (A.1)

with at least one strict inequality, so that {¢;}2°, gives both agents a higher payoff than
{¢:}724. So, if we can show that {¢:};°; is an equilibrium sequence, this will contradict

the assumed efficiency of {¢;:}52; and the result is then proved.

Say the sequences {¢;}7°,, {¢,};2, have a crossing point at T if ¢ < ¢y, ¢ > ¢
< ¢ with at least one strict
inequality. Also, define S; = m(cy, ¢;) 4+ 6m(Cey1,Cop1) + - .., so that Sy > S, S by (A.1).

with at least one strict inequality, or ¢ | > ¢ 1, ¢

There are then two possibilities at any time 7. The first is that there is no cross-
ing point at 7. Then, either (¢, 1,¢;) = (¢;_1,¢;) or (6, 1,¢;) = (d7-1,¢7). Without
loss of generality, assume the former. As {¢;}°, is an equilibrium sequence, we have
(e 1,6.)/(1 —68) < §T, so that (¢, 1,¢;) = (¢;_1,¢;) and S, > §T together imply
w(Cro1,6:)/(1—06) < 5}, L.e., the T—constraint is satisfied for {¢}3°;.

Now assume that {¢;}3°; and {c}}3°, have a crossing point at 7, and assume w.l.o.g.
that

ad <e oy, d>en (A.2)
Then as {¢,}°, is an equilibrium sequence, 7(¢, ,,c.)/(1 —68) < S.. Also, S; > S’ and
from (A.2), é. = ... Consequently,
w(c_y,6:) -
— T LS. A3
1-6 ~ (4.3)

Finally, again from (A.2), ¢/, < &_; = &_1. Using this fact, plus 7 decreasing in its
first argument, we have 7(¢;_1,¢;) < 7(c._,¢;), so from (A.3) the T—constraint holds
for {¢,}32,. Consequently all T—constraints hold for the sequence {¢;}°;, so it is an

equilibrium sequence, as required. [

Proof of Lemma 5.1. (i) Take an efficient path {¢;}3°,—such a sequence exists by a
similar argument to that of Lemma 2—and define 7 > 1 to be the first period such that
¢; > ¢* (if such a period does not exist, then (i) holds immediately). Define a new sequence
with ¢, := ¢, for t < 7,and ¢; := ¢* for t > 7. {¢}°,clearly yields as much utility as {¢;}2°,
at every point, and it will be shown that it also satisfies (5.1) for all ¢. First, (5.1) holds
at 7 since A(p; {¢; 1, }) > Ar(p; {¢:_1,¢:}) as ¢ < ¢, while ¢, = ¢, 1 (and using 7
increasing in its second argument); moreover the RHS of (5.1) is no smaller. Likewise, for
t' > 7, we have A(p; {cpy_1,c0}) < A(p; {er_1,¢:}) since ¢y = ¢;, and ¢y_1 > ¢, 1, while
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continuation path payoffs (RIS of (5.1)) are the same at 7 and t'. So (5.1) holds at #'; it
clearly holds at ¢ < 7 as the LHS is unchanged relative to the {¢;};°, sequence while the
RHS is no smaller. The proof of ¢;_; < ¢; is straightforward but tedious and is omitted.
(ii) The argument is similar to the proof of Lemma 2.2. (iii) Assume the contrary, so
there is an equilibrium sequence {c¢}}7°; yielding a higher payoff than {¢;}2°,, and both
sequences lie below or equal to ¢*. Hence the construction of Lemma 2.4 can be followed
to create a new sequence {¢; }$°, which yields a higher overall payofl. That it satisfies (5.1)

at each t follows from similar arguments. [

Proof of Proposition 5.2. (a) Let ¢ (1) = ¢ to ease notation. To prove part (i), it is
sufficient to show that we can find p such that

A([)vafl;aﬁ) < A(L@A,@})u t= 1727"'7 1> p > //\5 (A4>

For then, for 1 > p > p, {¢}°, satisfies the incentive constraints (5.1).

(b) Fix t; then

1
Aulp) = A1) = A1 + 2AL(DE +0E), (A5)
where € := 1—p, and to ease notation, we set A¢(p) := A(p; {¢;_1,¢}). Routine calculation
gives:
AY1) = A(1+25+38 448 +..) (A.6)
AV(1) = A(26 468" +128° +..) + B, (A7)

where A; = m¢;_1 + 6m9¢;, and B; is the sum of terms involving 71, 99, 719, and where
it is understood that all derivatives of 7 are evaluated at (¢, 1,¢). Also the series 1 +
26 + 362 +46° + ... and 26 + 662 + 126> + ....both converge (to s1, s2 > 0 respectively).
Useful properties of A;, By, proved in (c¢) below, are: A, > 0, By < 0, lim; ., A, = 0,
limy o By < 0.

Consequently, we can write
1
—Ay(1)e + 5A;’(1)52 = (T1Cr_1 + 6maCr) (=516 + 0.5892) + 0.5¢° B, (A.8)

Clearly there exists g; such that for £ satislying 0 < £ < &, the RIS of (A.8) is negative.
It follows from (A.5) that for e < ey, Ag(p) < Ay(1).

(¢) (Properties of Ay, By). First we show that A, > 0. We have ¢, > ¢ _1, so (as
79 > 0) we only need show that

1(Coo1,Ct) + 6me(Cr1, ¢) > 0. (A.9)
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Now, we know from Section 3 that provided the maximum attainable level of cooperation

¢ >0, then ¢; < ¢ all t, and thus v(¢;) = —m(¢;, &) /me(¢, &) < 8, which implies
71(Cr, &) + 6me(Cr, ) > 0. (A.10)

Also, from the assumptions on 7 that 717 < 0, 79 < 0, we have
T1(Cr1,¢) > m1(Cr, Cr), Ta(Coon,C) > To(Cr, Cr)- (A.11)
Consequently, (A.9) follows from (A.10) and (A.11). Also note

lim Ay = m1(G1,¢)C1 + 6m2(Ci1, C)

t—o00
= [m(c,¢) + éma(c,c)]e

= 0

where the term in the square brackets is zero by definition of ¢. The properties of B; follow
from the fact that By is the sum of terms involving 7y, a9, T2 With coefficients bounded

(in t) above zero.

(d) We now show that the sequence {p,}3°; := {1 — £}, can be chosen to be
bounded below 1; this would imply (A.4) with p := supp, < 1. If such a sequence does
not exist, then there must be a subsequence which w.l.o.g. we take to be {p,}32; itself,

converging to 1; i.e., p, — 1 and
Alpg o1, ¢) > A(L; 61, ¢), all ¢. (A.12)
But now as t — o0, ¢ — ¢, so from (A.5), we have
Aped) - ALEE) =~ lim A1)z + 5 A0)2)
= lim 0.55"B, = 0.5:"B < 0.
So, for some fixed 0 > 0, there exists p, < 1 such that

A(p;e,c) < A(L;e,¢) —30, 1> p > p,. (A.13)

Also, as t — oo, ¢ — ¢, and A.(p) is continuous in p and ¢ _1,¢, there exists a Ty such
that for all ¢t > T} :

A(p;e-1,6) < A(p;€,8)+0, 1> p > py;
A(Lice) < A(Lycen, ) + 0. (A.14)

Combining (A.13) and (A.14), we get
A(/)?é\tflué\t) <A<17a717a)_87 1 >p>p97 tZTG (A15>
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But (A.12) and (A.15) are in contradiction.
(e) To prove part (ii) of the Proposition, let

G = ag t<T9
Tl Gdn t>T,

Also, choose 1 < ¢* — € small enough so that (by continuity)
A(/)? 515*17515) < A(/)? aﬁ*l?a) + 8/27 1> P> Pas L=y (A16>

We show that {¢}°, is an equilibrium symmetric path in the p—reversible game, if
1> p > max{supp,, p,}. To see this, note first that ¢, < ¢*, so for any ¢ the continuation
payolfl from {¢}°, is strictly greater than that from {¢;}°,. Hence, it suffices to show
that the deviation payofl in the p—reversible game from {¢;}°, is no higher than the
deviation payoff from {¢}2°; in the irreversible case. But from (A.15) and (A.16), we
have

Ap;e1,6) < A(L;61,6) —0/2, 1> p > py, t > T,

as required; provided p > p = sup p;, (A.4) ensures (from (a)-(d) above) that (5.1) holds
for t < Ty. Thus setting p = max{sup p,, py} implies that (5.1) holds forall1 > p >7p, t >
1. Then from Lemma 5.1 (iii), ¢x(p) > €0 (1) + &.

(f) To prove part (iii), it follows immediately from the construction of {&;};°, that

o0

M= (1-6)) & 'n(&,é&) > T(1)

t=1

and as {¢}:°, is an equilibrium (but not necessarily the eflicient) path in the p—reversible

game, f[(p) > IT and so the result is proved. [

Proof of Proposition 5.3. Let p = 1, and suppose {c;}°, is an efficient path; assuming
a < 1, this path is increasing by earlier arguments. The derivative of Ay(p; {c:}:2,) =
(m1pee—1+mect) /(1 —pb) with respect to p has the sign of ¢;—ac;—1, which is positive for all
t>1lasa<1ande > ¢y > 0. Hence for any p € [0,1), {¢:}:°, remains an equilibrium
path as the deviation payoff A.(p; {c;}$2,) is smaller than at p = 1, while the continuation
payofl is unchanged. By Lemma 5.1(i) and (iii), there exists a non-decreasing efficient
path for p < 1, say {¢;};°,, which lies no lower than {¢;};°, and no higher than ¢* at each
point. Next, the above argument can be repeated for any p’ < p < 1, so that at p/, {¢;}52,
is an equilibrium path. Moreover, the incentive constraint at each ¢ is strictly looser, so
that by Lemma 5.1(ii) if the first-best is not attainable at p, i.e., if ¢, < ¢* for some ¢, ¢; is
not part of an efficient equilibrium path for p’. The conclusion is then that at p/, {¢;}52,
is equilibrium but not efficient, i.e., there is an equilibrium path yielding a higher payoff
than {¢;}°,. To prove that ¢* is attained in finite time, consider the path generated by

32



(5.2) for some choice of ¢;. Note that (p*~ ! +p'2a+...4+pa' 2 +a'"1) attains a maximum
at some t* > 1, and declines to zero. Choose ¢; = ¢; so that ¢ = ¢*. If (5.2) is followed
for all ¢, the same argument as in Lemma 2.4 establishes that the incentive constraint
holds for all ¢ as lim;_,», ¢, = 0 ( < 00). (It does not matter if this path violates ¢; > pcy_4
beyond t*.) Now change the path by setting ¢; = ¢* for ¢ > ¢*. Continuation payoffs are
increased at each date. Deviation payoffs are the same at each date up to t*, and since
the incentive constraint is thus satisfied at ¢* it must also be satisfied at all ¢ > ¢*. Thus
this path satisfies all incentive constraints and ¢* is attained in finite time. By Lemma
5.1(iil) there is an efficient path that attains ¢* by t* or earlier. (ii) If @ > 1, then consider

the incentive condition for a stationary path at c:

mpc+ Tac  mC+ Tac
1—pé — 1-96

(A.17)

Rearranging, this is equivalent to a < 1. Hence if a > 1, if ¢* is attained, the incentive
constraint is violated at ¢* (likewise if a higher efficient level is attained, should one exist);
if ¢; < ¢* for all ¢, then the path must satisfy (5.2) for all ¢, implying ¢; — oo if ¢; > 0,
, a contradiction; hence ¢; = 0, s0 ¢, =0 all t. If a = 1, (A.17) holds with equality; if
c* is attained at t, the incentive constraint at ¢ is stricter than (A.17), and so is violated;
hence ¢; < ¢* all ¢, in which case (5.2) applies, and setting ¢; = (1 — p)c* implies that
lim; o ¢t = ¢*, and because the limit is finite, all incentive constraints are satisfied (as

argued earlier).[]

Proof of Proposition 6.1. First, we show that Iy is a convex set. First, the constraints
in (6.1) are linear. Consequently, if {c},,c5,}£°; and {c],, ¢y, }22; satisfy (6.1), a convex
combination of the two must also satisfy (6.1) and so Cf is a convex set. Also, adapting
Lemma 2.1, any sequence in Cg must have ¢;; + ¢y < 2¢*, all 4, ¢, so payofls are linear in

any path in Cg. It follows immediately that Iy is a convex set also.

Let Crg € Cg be the set of all paths {c14, 2.7, which satisfy the incentive con-
straints (6.1) with equality at each t > 1, and IIgp C IIg the corresponding set of payofls.
Straightforward manipulation implies that these paths can be written as a system of two

linked first-order difference equations in differences Ac;y = ¢;p — ¢;4-1;

Acl,t = CLACQ’t,1 (A18>
ACQ’t = CLACLt,1 (A19>
where a = 73 as before. As § > 6, it follows that a < 1. Also, note that the initial

conditions

ACi’l = (i1 — G0 = Ci1, 7 = 1, 2
can be set freely. Routine manipulation of the system (A.18), (A.19) gives the solutions

o 17_1(12 [cin (1 —a™) +ac;; (1—a™ )], todd
e (1— ) +acy (1—a'].,  teven

i j=1,2 j#i.  (A.20)
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Taking limits in (A.20), we get two equations that give, as a < 1, the limit values of

C14t,Co¢ as functions of the initial values:

. 1
lim Clt = Clo = T 5 [61’1 + CLCQJ] s
t—oo 1—a
lim Cot = C200 = T 5 [C2’1 + CLCLl] .
t—o00 1—a
Inverting and solving, we get
C11 = Qo0 = €900, €21 = €200 — ACY co- (A-21>

Note that we can think of ¢;; and ¢y as being determined by c; o and cg o where the
latter can be freely chosen subject to the constraint that cj . + c200 < 2¢* and that
¢i1 > 0,7 =1,2. The latter requires

62700

> Clo0 2 (C00 - (A.22)

Cgr 1s characterized by sequences satisfying (A.20) and (A.22) since convergent sequences
satisfying (A.18) and (A.19) also satisfy (6.1) with equality as in Lemma 2.4.

Substituting (A.20) back in the payofls gives, after some rearrangement, for i,j =
1,2, j#1,

I, = (1-9) Z s (T1Cip + TaCj4)
t=1
1
= 1— a2 [ (Ci,l +ac;y) + (Cj,1 + aciyl)]
(1-9)
(1= )1 — a2
1—96
L 08
(1—a?)(1 — a%6)

1 [a(aciyl —I— Cj,l) —I— 6@2 (Ci,l —I— CLijl):|

o [CL(CLCj’l —|— Ci,l) —|— 6@2 (Cj,l —|— CLCZ"l)} .

Now, {rom (A.21), we have
ci1+aci; = (1 —a?)¢ . (A.23)

So, we get, after some manipulation,

I — ll_ (1 —6)(a+ aé)

1 (ﬂ_lci,oo —I— ﬂ_QCj,oo); Z = 1, 2

(1— a28%)
and so
Iy + Iy = ¢(6)(m1 + 72)(C1,00 + C2,00) (A.24)
where ¢(6) := [1 — %{%ﬁ .
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So as long as €10 + Co00 = 2¢*, Iy + Iy = ¢(6)(71 + m2)2¢*, no matter how the
SUIN €] o + Co,o0 15 distributed. This says that the frontier is linear between two endpoints
defined by the restrictions (A.22). Let A be one endpoint, defined by the condition that
Cloo = (C2,0, and B the other endpoint, defined by ¢g,0 = ac1 o (B is symmetric to
A) Combining this with ¢ o, + €90 = 2¢* implies that A is generated by the path with

endpoints
2ac* 2c*
ClOO — —7 CQOO — b
’ 14+a 7 1+4+a
and therefore with payoffs (IT', II") where
2¢* (1—6)(a+ af)
I = 1—
l+a [ (1 — a26?) matm.
2¢* (1—6)(a+ af)
n = 1-— T+ amy)].
1—|—CL[ (1—@262) [1 2]
So,
I /I = ma(é) + (A.25)
1 4 a(6)my

Now, it is easily checked that IT', TI” > 0 and that the RIIS of (A.25) is strictly greater
than 1, so IT' > I1” > 0 as claimed.

To complete the proof, we need to show that points A and B lie on the frontier of I1g;
the convexity of IIx then implies that the whole of line segment AB lies on this frontier.
First, note that the point S where the line segment AB crosses the 45%1ine is generated
by the symmetric path

c; = 0.5¢14 + 0.5¢9,,

where {c1¢,¢y,}i2; is the path supporting A, so every incentive constraint holds with
equality for {c;}32,. But then {c}}$°, is the symmetric efficient path characterized in
Sections 2 and 3. So, S must be on the frontier since otherwise there is an asymmetric
path which Pareto-dominates S and by symmetry another path with the player indices
switched which also Pareto dominates S; a convex combination of these two paths is a

symmetric path which Pareto dominates S, a contradiction of the definition of S.

Suppose finally that points A, B are not on the frontier of IIz. Then, there must be
points C, D where C' (resp. D) Pareto-dominates A (resp. B) which are on the {rontier
of Ilg. But if S, C, D are all on the frontier of I, it must be non-convex, contrary to the
result already established. []

Proof of Proposition 6.2. From the proof of Proposition 6.1, we have

m1a(6) + 7y

H/ H// —
/ 1 4 a(6)my

(A.26)
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As a is decreasing in 6, and the right-hand side of (A.26) is decreasing in a, II'/II" is
increasing in 6. Moreover, as § — 1, IT'/II" — 0, and as § — 5+, IT'/TI" — 1, as required.
Likewise from (A.24) in the proof of Proposition 6.1, on the line segment AB,

Y= H1 + H2 = ¢<6)<7T1 + 7T2)2(3*
where ¢(6) = |1 — %{%2 . Rearrangement gives ¢(6) = [1 — %11:—;%] It is then
clear that ¢(5) =0,¢(1) =1,and ¢'(6) > 0, § € (5, 1), and so ¥ has the desired properties
on the line segment AB. [J

Proof of Proposition 7.1. To prove convexity of II3;?, note that since Cr, C*? are both
convex, so Oy, ! = CpNC®1is also convex. Consequently, IT7;? is also convex, by linearity

of payoffs.

To prove A in II},?, we proceed as follows. Point A is generated by a path described
in (A.20) with ¢;7 = 0. All we have to do is show that this path is in C**? as this path
is already in Cg by construction. Now setting ¢1; = 0 in (A.20), we see that the path

generating A satisfies:

A _ 1,1a2 laca (1 — atfl)] , todd
e T ﬁ [aC2,1 (1 — at)] , teven

A —= [co1 (1 —a™)] todd
‘2 ﬁ [coq (1 —a®)], teven

So, by inspection, {cﬁt, C?,t}fi 1 has the property that player 1 only changes her level

of cooperation in even periods, and player 2 in odd periods.

Next, let {¢;}3°, be the (unique) symmetric eflicient path in the simultaneous move

game. Now define the asymmetric path {¢14, 2. }50, in C°? as follows:

Ciy = Cigp1 =20, t=0,246..;
Cot = Cot41 = Cy, = 1,3,5

This is simply the path where an agent whose turn it is to move at ¢t chooses ¢;. Next, we
show that {¢1,,¢54}7°, is incentive-compatible, ie., in O 7 in the sequential move game.
Define as before Ay := ¢, — ¢; 1, and recall A, = al\; 1 on the efficient path. For the
player who moves at ¢ > 2, and writing A for A, ; the constraints (7.2) and (7.3) can be

written as:
_ _ A
¢y 2—|—17Ti(f; 1+4) < Ti(cs+ A+ al) + malc 1 + A) (A.27)

+ 8(mi(cr g+ A4 al) +my(ce 1 + A+ aA + a?A))
+ P(mler o+ A+ ... +aPA) + (e + A+ al +a®A)) +. ..
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or

DYAY < (1+a)mA + (1 —6%a% + da + Sa®)mA

1=67 (1 —6)(1 — 6%a?) ’
which holds with equality as a = —my/(6my). Thus {14, o, }i°, satisfies equilibrium
conditions from ¢ = 2 onwards; at ¢ = 1 the constraint would hold with equality if player

2’s inherited ¢ was —Aj/a; since it is higher, the constraint will be slack (as 71 < 0).

The payoffs from the path {¢y, ¢y} are;

ﬂieq _ (1 _ 6){[%2/6\1] + 6[%152 + 7261] + 682 [7T1/C\2 + 7T263] + ...
ﬂ;eq = (1 =) {[mac1] + 6[mcy + maca] + 8% (18 + o) + ...

Now since the payoffs from the efficient symmetric path in the simultaneous move game
are
H = (1 — 6){[7{'161 + 7T261] + (5[7'('162 + 7T262] + (52[7'('163 + 7T263] + ceey
we get
f[ - ﬂieq (1 - 6){7'('2(31 + (57'('1((32 - Cl) + (S 7T2< C3 — CQ) + (S 7T1< Cqp — C3) +. }
= (1= 8)e {mc, + bmacy + 8 mya’cy + 6°mia’cy...}
= (1-9¢)e
A-da

1—68)¢ [ma(1 4 6% + 6*a* + ..) + Sami (1 + §%a® + §*a* + )]

1-— (S)Cl
617'('2
< (1=-6)——————
( )1 — (m1/72)?

So, rearranging, I — (1—-16)0 < H‘;eq, 0 > 0. Consequently, for any £ > 0, IMI—e< Hseq
for all § > 6(2) =1 — /0, as required. (A similar argument applies for i = 2). O
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