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No head injury is too trivial to ignore

Therefore:

Patients with minor head injuries 
should not be examined.

Argument 4
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Students who attend 75% or more of 
seminars pass the exam.

Hussain never failed to miss a seminar.

Therefore:

Hussain will pass the exam.

Argument 4*



Indicative conditionals are truth functional
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capable of truth?
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‘if A, B’
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“the term ‘true’
 

has no 
clear ordinary sense as 
applied to conditionals”

(Adams 1965: 169)

conditionals are not “part 
of fact stating discourse.”

(Edgington 1995:280)



Indicatives vs. counterfactuals



If
 

Syrian agents didn’t assasinate Rafik 
Hariri, someone else did.

If Syrian agents hadn’t assasinated 
Rafik Hariri, someone else would have.

Indicative, true

Counterfactual, 
probably false



The ‘Paradoxes’
 

of Material Implication
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“the term 'true' has no clear ordinary sense as applied 
to conditionals, particularly to those whose 
antecedents prove to be false”

“This is to say that conditional statements with false 
antecedents […] there are no clear criteria for the 
applications of those terms [‘true’

 
and ‘false’] in such 

cases.”

“This is, of course, an assertion about the ordinary 
usage of the terms 'true' and 'false', and it can be 
verified, if at all, only by examining that usage. 

“We shall …
 

leave it to the reader to verify by 
observation of how people dispute about the 
correctness of conditional statements whose 
antecedents prove false, that precise criteria are 
lacking.”

(Adams 1965:169)



Why ‘if A, B’
 

has to be logically 
equivalent to ‘not A or B’

(1) If A, B entails ¬(A∧¬B)

(2) ¬A or B entails if A, B

Gordon Brown is the P.M

Either Gordon Brown is the P.M. or 
Ken Livingstone is

 
the P.M.

If Gordon Brown is not the P.M., 
Ken Livingstone is.

1.
 

¬A

2.
 

¬A or B

3.
 

if A, B

∨Intro

by (2) below



Why ‘if A, B’
 

has to be logically 
equivalent to ‘not A or B’

(1) If A, B entails ¬(A∧¬B)

(2) ¬A or B entails if A, B

Gordon Brown is the P.M

Either Gordon Brown is the P.M. or 
Ken Livingstone is

 
the P.M.

If Gordon Brown is not the P.M., 
Ken Livingstone is.

1.
 

¬A

2.
 

¬A or B

3.
 

if A, B

∨Intro

by (2) below

It is not the case that if John passes 
history, he will graduate.  

Therefore:

John will pass history. 



Why ‘if A, B’
 

has to be logically 
equivalent to ‘not A or B’

(1) If A, B entails ¬(A∧¬B)

(2) ¬A or B entails if A, B

Gordon Brown is the P.M

Either Gordon Brown is the P.M. or 
Ken Livingstone is

 
the P.M.

If Gordon Brown is not the P.M., 
Ken Livingstone is.

1.
 

¬A

2.
 

¬A or B

3.
 

if A, B

∨Intro

by (2) below

It is not the case that if John passes 
history, he will graduate.  

Therefore:

John will pass history. 

No head injury is too trivial to ignore

Therefore:

Patients with minor head injuries 
should not be examined.



Wason and Reich (1979)



The Real Argument
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Ramsey Test  “If two people are arguing ‘If p
 

will 
q?’

 
and are both in doubt as to p, they are adding p

 hypothetically to their stock of knowledge and 
arguing on that basis about q.”

 
(Ramsey 1931: 247)



Conditionals and Conditional Probabilities



Q1. Does
 

‘if A, B’
 

mean the same as not-A or B?

Q2. Are
 

sentences of the form ‘if A, B’
 

capable of truth?
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degree that P(B|A) 

Therefore:

(2) P(If
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is no connective ‘*’
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(ii) P(A*B)=P(B|A).



Why conditionals lack truth conditions …

(1) ‘The Thesis’: It
 

is reasonable to accept ‘If A, B’
 

to the 
degree that P(B|A) 

From (1) we infer that:

(2) P(If
 

A, B) = P(B|A)

But:

(3) There
 

is no connective ‘*’
 

such that, for all propositions 
A and B and all probability distributions P, 

(i) A*B has truth conditions; and 
(ii) P(A*B)=P(B|A).

Therefore:

(4) ‘If A, B’
 

does not have truth conditions



A loose end



Why ‘if A, B’
 

has to be logically equivalent to ‘not A or B’

(1) If A, B entails ¬(A∧¬B)

(2) A or B entails If ¬A, B

“If you don't care for your scalp, you get rabies”

“Either you care for your scalp or you’ll get rabies.”



A or B

A
(x)

B
(1-x)

If we are certain that A or B, then
P(B | ¬A) = 1

Why ‘if A, B’
 

has to be logically equivalent to ‘not A or B’

(1) If A, B entails ¬(A∧¬B)

(2) A or B entails If ¬A, B



general 
election

A = Gordon Brown is PM
(.99)

B = John McDonnell is PM
(.001)

Why ‘if A, B’
 

has to be logically equivalent to ‘not A or B’

(1) If A, B entails ¬(A∧¬B)

(2) A or B entails If ¬A, B

C = some Tory is PM
(.009)

P(A∨B) = .991

P(B|¬A) = .1

P(¬B| ¬A) = .9



Why the inference from A or B to If ¬A, B seemed 
compelling but is not correct …

If we are certain that A or B, then it is reasonable to 
hold If ¬A, B
(because P(B | ¬A) = 1 )

If we are at all uncertain that A or B, then it may not be 
reasonable to hold If ¬A, B 
(because P(A∨B) can be high while P(B|¬A) is low)
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