## Meaning \& Communication (PH130)

 Lecture 10 Stephen Butterfill, Philosophy Wanwick
## Argument 4

No head injury is too trivial to ignore
Therefore:
Patients with minor head injuries should not be examined.

## Argument 4

No head injury is too trivial to ignore
Therefore:
Patients with minor head injuries should not be examined.

## Argument 4*

Students who attend 75\% or more of seminars pass the exam.

Hussain never failed to miss a seminar.
Therefore:
Hussain will pass the exam.


Q1. Does 'if A, B' mean the same as 'not-A or B'?
Q2. Are sentences of the form 'if A, B' capable of truth?

Q1. Does 'if $A, B^{\prime}$ mean the same as 'not-A or B'?
Q2. Are sentences of the form 'if A, B' capable of truth?
E.g.
"If you don't care for your scalp, you get rabies"
"Either you care for your scalp or you'll get rabies."

Q1. Does 'if A, B' mean the same as 'not-A or B'?
Q2. Are sentences of the form 'if A, B' capable of truth?
E.g.
"If you don't care for your scalp, you get rabies"
"Either you care for your scalp or you'll get rabies."

If $A, B$
$\neg A$ or B

A = You don't care for your scalp
$B=$ You get rabies

Q1. Does 'if A, B' mean the same as 'not-A or B'?
Q2. Are sentences of the form 'if A, B' capable of truth?
E.g.
"If you don't care for your scalp, you get rabies"
"Either you care for your scalp or you'll get rabies."

If $A, B$
$\neg A$ or B

A = You don't care for your scalp
$B=$ You get rabies

Why 'if A, B' has to be logically equivalent to 'not A or B'
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

Q1. Does 'if A, B' mean the same as 'not-A or B'?
Q2. Are sentences of the form 'if A, B' capable of truth?
E.g.
"If you don't care for your scalp, you get rabies"
"Either you care for your scalp or you'll get rabies."

If $A, B$
$\neg A$ or B

A $=$ You don't care for your scalp
$B=$ You get rabies

Why 'if A, B' has to be logically
equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

Q1. Does 'if A, B' mean the same as 'not-A or B'?
Q2. Are sentences of the form 'if A, B' capable of truth?

## E.g.

"If you don't care for your scalp, you get rabies"
"Either you care for your scalp or you'll get rabies."

If $A, B$
$\neg A$ or B

A $=$ You don't care for your scalp
$B=$ You get rabies

Why 'if A, B' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

Q1. Does 'if A, B' mean the same as 'not-A or B'?
Q2. Are sentences of the form 'if A, B' capable of truth?
E.g.
"If you don't care for your scalp, you get rabies"
"Either you care for your scalp or you'll get rabies."

If $A, B$
$\neg A$ or B

A = You don't care for your scalp
$B=$ You get rabies

Why 'if $A, B$ ' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$
"the term 'true' has no clear ordinary sense as applied to conditionals"
(Adams 1965: 169)
conditionals are not "part of fact stating discourse."
(Edgington 1995:280)


If Syrian agents didn't assasinate Rafik Hariri, someone else did.

If Syrian agents hadn't assasinated Rafik Hariri, someone else would have.

Indicative, true

Counterfactual, probably false

## The 'Paradoxes' of Material Implication

Why 'if A, B' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

Gordon Brown is the P.M
Either Gordon Brown is the P.M. or Ken Livingstone is the P.M.

If Gordon Brown is not the P.M., Ken Livingstone is.

Why 'if A, B' has to be logically equivalent to 'not A or B'
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

1. $\neg \mathrm{A}$
2. $\neg \mathrm{A}$ or B
3. if $A, B$

Gordon Brown is the P.M
Either Gordon Brown is the P.M. or Ken Livingstone is the P.M.

If Gordon Brown is not the P.M., Ken Livingstone is.

Why 'if A, B' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

1. $\neg \mathrm{A}$
2. $\neg \mathrm{A}$ or B
3. if $A, B$

Gordon Brown is the P.M
Either Gordon Brown is the P.M. or Ken Livingstone is the P.M.

If Gordon Brown is not the P.M., Ken Livingstone is.

Why 'if A, B' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

> 1. $\neg \mathrm{A}$
> 2. $\neg \mathrm{A}$ or $B$

Gordon Brown is the P.M
Either Gordon Brown is the P.M. or Ken Livingstone is the P.M.

If Gordon Brown is not the P.M., Ken Livingstone is.

Why 'if A, B' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$
"the term 'true' has no clear ordinary sense as applied to conditionals, particularly to those whose antecedents prove to be false"
"This is to say that conditional statements with false antecedents [...] there are no clear criteria for the applications of those terms ['true' and 'false'] in such cases."
"This is, of course, an assertion about the ordinary usage of the terms 'true' and 'false', and it can be verified, if at all, only by examining that usage.
"We shall ... leave it to the reader to verify by observation of how people dispute about the correctness of conditional statements whose antecedents prove false, that precise criteria are lacking."

> 1. $\neg \mathrm{A}$
> 2. $\neg \mathrm{A}$ or $B$

Gordon Brown is the P.M
Either Gordon Brown is the P.M. or Ken Livingstone is the P.M.

If Gordon Brown is not the P.M., Ken Livingstone is.

Why 'if A, B' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

1. $\neg \mathrm{A}$
2. $\neg \mathrm{A}$ or B

## vintro

3. if $A, B$ by (2) below

Gordon Brown is the P.M

## Either Gordon Brown is the P.M. or Ken Livingstone is the P.M.

If Gordon Brown is not the P.M., Ken Livingstone is.

It is not the case that if John passes history, he will graduate.

Therefore:
John will pass history.

Why 'if $A, B$ ' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $\neg A$ or $B$ entails if $A, B$

1. $\neg \mathrm{A}$
2. $\neg \mathrm{A}$ or B
3. if $A, B$ by (2) below

Gordon Brown is the P.M

## Either Gordon Brown is the P.M. or Ken Livingstone is the P.M.

If Gordon Brown is not the P.M., Ken Livingstone is.

It is not the case that if John passes history, he will graduate.

Therefore:
John will pass history.

No head injury is too trivial to ignore
Therefore:
Patients with minor head injuries should not be examined.

## Table I

Frequency with which each pragmatic sentence is paraphrased correctly and incorrectly

| Sentence No. | No. 1 | No. 2 | No. 3 | No. 4 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Correct | 16 | 16 | 11 | 8 | 51 |
| Incorrect | 0 | 0 | 5 | 8 | 13 |

No. r No missile is too small to be banned.
No. 2 No government is too secure to be overthrown.
No. 3 No dictatorship is too benevolent to be condemned.
No. 4 No weather forecast is too plausible to be mistrusted.

## Table II

Frequency with which each non-pragmatic sentence is paraphrased correctly and incorrectly

| Sentence No. | No. 5 | No. 6 | No. 7 | No. 8 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Correct | 3 | 4 | 9 | II | 27 |
| Incorrect | 13 | 12 | 7 | 5 | 37 |

No. 5 No error is too gross to be overlooked.
No. 6 No message is too urgent to be ignored.
No. 7 No film is too good to be missed.
No. 8 No book is too interesting to be put down.

## The Real Argument



## draw from Monica's bag

## draw from Joey's bag





a. Supposing the coin lands on its side, the ball will be white.

a. Supposing the coin lands on its side, the ball will be white.
b. The coin will not land on its side.

a. Supposing the coin lands on its side, the ball will be white.
b. The coin will not land on its side.
c. Either the coin will not land on its side or the ball will be white.

a. Supposing the coin lands on its side, the ball will be white.
b. The coin will not land on its side.
c. Either the coin will not land on its side or the ball will be white.
d. If the coin lands on its side the ball will be white.

$\qquad$
a. Supposing the coin lands on its side, the ball will be white.
b. The coin will not land on its side.
c. Either the coin will not land on its side or the ball will be white.
d. If the coin lands on its side the ball will be white.


a. Supposing the coin lands on its side, the ball will be white.
b. The coin will not land on its side.
c. Either the coin will not land on its side black or the ball will be white.
d. If the coin lands on its side the ball will be white.

Ramsey Test "If two people are arguing 'If $p$ will $q$ ?' and are both in doubt as to $p$, they are adding $p$
hypothetically to their stock of knowledge and arguing on that basis about q." (Ramsey 1931: 247)



Q1. Does 'if A, B' mean the same as not-A or B?
Q2. Are sentences of the form 'if A, B' capable of truth?

## $\mathrm{P}($ white ball drawn | coin lands on its side $)=.1$

$\mathrm{P}($ white ball drawn | coin lands on its side $)=.1$

$\mathrm{P}($ white ball drawn | coin lands on its side $)=.1$

$\mathrm{P}($ white ball drawn | coin lands on its side $)=.1$

$\mathrm{P}($ white ball drawn | coin lands on its side $)=.1$

$\mathrm{P}($ white ball drawn | coin lands on its side $)=.1$
P(black ball drawn) $\approx .1$
$\mathrm{P}($ not land side or white ball drawn) $\approx .9$
black
(.1)
white
(.9)
white
(.1)
black
(.9)

Why conditionals lack truth conditions ...

Why conditionals lack truth conditions ...
(1) 'The Thesis': It is reasonable to accept 'If $A, B$ ' to the degree that $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

Why conditionals lack truth conditions ...
(1) 'The Thesis': It is reasonable to accept 'If $A, B$ ' to the degree that $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

Therefore:
(2) $P($ If $A, B)=P(B \mid A)$

Why conditionals lack truth conditions ...
(1) 'The Thesis': It is reasonable to accept 'If A, B' to the degree that $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

Therefore:
(2) $P($ If $A, B)=P(B \mid A)$

But:
(3) There is no connective ${ }^{\prime * \prime}$ such that, for all propositions $A$ and $B$ and all probability distributions $P$,
(i) $A * B$ has truth conditions; and
(ii) $P(A * B)=P(B \mid A)$.

Why conditionals lack truth conditions ...
(1) 'The Thesis': It is reasonable to accept 'If $A, B$ ' to the degree that $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

From (1) we infer that:
(2) $P($ If $A, B)=P(B \mid A)$

But:
(3) There is no connective ${ }^{\prime * \prime}$ such that, for all propositions $A$ and $B$ and all probability distributions $P$,
(i) $A * B$ has truth conditions; and
(ii) $P(A * B)=P(B \mid A)$.

Therefore:
(4) 'If A, B' does not have truth conditions

## A loose end

Why 'if $A, B^{\prime}$ has to be logically equivalent to 'not $A$ or $B^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) A or B entails If $\neg A, B$
"If you don't care for your scalp, you get rabies"
"Either you care for your scalp or you'll get rabies."

Why 'if A, B' has to be logically equivalent to 'not A or B'
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) A or B entails If $\neg A, B$

A
(x)


B
(1-x)

Why 'if $\mathrm{A}, \mathrm{B}$ ' has to be logically equivalent to 'not A or $\mathrm{B}^{\prime}$
(1) If $A, B$ entails $\neg(A \wedge \neg B)$
(2) $A$ or $B$ entails If $\neg A, B$


Why the inference from $A$ or $B$ to If $\neg A, B$ seemed compelling but is not correct ...

If we are certain that A or B , then it is reasonable to hold If $\neg \mathrm{A}, \mathrm{B}$
(because $\mathrm{P}(\mathrm{B} \mid \neg \mathrm{A})=1$ )

If we are at all uncertain that $A$ or $B$, then it may not be reasonable to hold If $\neg \mathrm{A}$, B (because $P(A \vee B)$ can be high while $P(B \mid \neg A)$ is low)

