Logic (PH133) Lecture 6

Stephen Butterfill, Philosophy/Warwick

What not to confuse

What not to confuse

"Some square is blue"

4 $\exists x \ Square(x) \land \exists x \ Blue(x)$

How are (2) and

(4) different?

0

2 $\exists x (Square(x) \land Blue(x))$

"Some square is blue"

4 $\exists x \text{ Square}(x) \land \exists x \text{ Blue}(x)$

"Some square is blue"

4 $\exists x Square(x) \land \exists x Blue(x)$

 $\forall x (Square(x) \rightarrow Blue(x))$

"All squares are blue"

 $\forall x \text{ Square}(x) \rightarrow \forall x \text{ Blue}(x)$

3

"If everything is square, everything is blue"

"Some square is blue"

$$4$$
 $\exists x Square(x) \land \exists x Blue(x)$

 $\forall x (Square(x) \rightarrow Blue(x))$

"All squares are blue"

 $\forall x$ Square(x) $\rightarrow \forall x$ Blue(x)

3

"If everything is square, everything is blue"

"Some square is blue"

$$4$$
 $\exists x Square(x) \land \exists x Blue(x)$

 $\forall x (Square(x) \rightarrow Blue(x))$

"All squares are blue"

 $\forall x \text{ Square}(x) \rightarrow \forall x \text{ Blue}(x)$

3

"If everything is square, everything is blue"

"Some square is blue"

$$4$$
 $\exists x Square(x) \land \exists x Blue(x)$

"Some object is square and some object is blue"

 $\forall x (Square(x) \rightarrow Blue(x))$

"All squares are blue"

 $\forall x$ Square(x) $\rightarrow \forall x$ Blue(x)

3

"If everything is square, everything is blue"

"Some square is blue"

$$4$$
 $\exists x Square(x) \land \exists x Blue(x)$

"Some object is square and some object is blue"

 $\forall x (Square(x) \rightarrow Blue(x))$

"All squares are blue"

 $\forall x \text{ Square}(x) \rightarrow \forall x \text{ Blue}(x)$

3

"If everything is square, everything is blue"

"Some square is blue"

$$4$$
 $\exists x \text{ Square}(x) \land \exists x \text{ Blue}(x)$

"Some object is square and some object is blue"

Ex. Explain why 1 is true and 3 is false in this world by appeal to the meaning of ' \forall '

What not to confuse

A disjunction of two negations

$$-P \lor \neg Q$$
$$-P$$

Ρ	Q	P∨Q	\neg (P \lor Q)	¬Ρ	$\neg Q$	$\neg P \lor \neg Q$
Т	Т					
Т	F	Т	F	F	Т	Т
F	Т					
F	F					

ΡQ	is a counterexample to
TF	this argument

This is a logically valid argument

Things not to confuse

$$\neg(\mathsf{P}\lor\mathsf{Q})$$
 vs. $\neg\mathsf{P}\lor\neg\mathsf{Q}$

Things not to confuse

 $\neg(P \lor Q)$ vs. $\neg P \lor \neg Q$ $\neg(P \land Q)$ vs. $\neg P \land \neg Q$

Things not to confuse

 $\neg (P \lor Q)$ vs. $\neg P \lor \neg Q$ $\neg (P \land Q)$ vs. $\neg P \land \neg Q$ $\neg (P \rightarrow Q)$ vs. $P \rightarrow \neg Q$

my happy ending.

Her problems

have become mine

On

Cor

WHEN MIN

THE PART OF THE DAY I LOOK FORWARD TO * *

THE MOST, IS WHEN I GET TO PEE IN THE SHOWER

I FEEL SECRETLY SU.

State the following rules: √Intro →Intro

State the following rules: vIntro

→Intro

State the following rules:

∨Intro

→Intro

∨Intro: Pi . . . $P1 \lor P2$ ∨Elim: $P1 \lor P2$ **P1** . . . P2 O

Rules of Proof for Quantifiers

"Everything's coming to a grinding halt"

"Everything's coming to a grinding halt"

"Everything's coming to a grinding halt"

"This lecture is coming to a grinding halt"

"This lecture is coming to a grinding halt" ComingToAGrindingHalt(a)

"This lecture is coming to a grinding halt" ComingToAGrindingHalt(a)

"This lecture is coming to a grinding halt" ComingToAGrindingHalt(a)

 \forall Elim: 1

All puffins have yellow beaks

Ayesha is a puffin

Ayesha has a yellow beak

All puffins have yellow beaks

Ayesha is a puffin

Ayesha has a yellow beak

All puffins have yellow beaksPAyesha is a puffinQAyesha has a yellow beakR

All puffins have yellow beaks

Ayesha is a puffin

Ayesha has a yellow beak

P Q R

There is a counterexample to this argument

YelBk(x) : x has a yellow beak

YelBk(x) : x has a yellow beak

YelBk(x) : x has a yellow beak

YelBk(x) : x has a yellow beak

Puf(x) : x is a puffin

YelBk(x) : x has a yellow beak

Puf(x) : x is a puffin

YelBk(x) : x has a yellow beak

Puf(x) : x is a puffin

YelBk(x) : x has a yellow beak Puf(x) : x is a puffin In most cases we will need to use the form

 $\forall x (F(x) \rightarrow G(x))$

```
"All Fs are Gs"
```


All puffins have yellow beaks Ayesha is a puffin	1. 2.	$\forall x (Puf(x) \rightarrow YelBk(x))$ Puf(a)
Ayesha has a yellow beak	x.	YelBk(a)

All puffins have yellow beaks	1.	$orall \mathbf{x}$ (Puf(x) $ ightarrow$ YelBk(x))
Ayesha is a puffin	2.	Puf(a)
Ayesha has a yellow beak	x.	YelBk(a)

All puffins have yellow beaks			
Ayesha is a puffin			
Ayesha has a yellow beak			

 $\forall x (Puf(x) \rightarrow YelBk(x))$

2. Puf(a)

1.

Х.

3. $Puf(a) \rightarrow YelBk(a)$

YelBk(a)

∀Elim ∀x S(x) … S(c)

Ayesha has a yellow beak

х.

1.

3.

```
\forall x ( Puf(x) \rightarrow YelBk(x) )
```

2. Puf(a)

 $Puf(a) \rightarrow YelBk(a)$

YelBk(a)

∀Elim | ∀x S(x) ... S(c)

Ayesha has a yellow beak

 $\forall x (Puf(x) \rightarrow YelBk(x))$ 1. Puf(a) 2. $Puf(a) \rightarrow YelBk(a)$ 3. ∀Elim:1 YelBk(a) Χ.

∀Elim | ∀x S(x) ... S(c) All puffins have yellow beaks Ayesha is a puffin

If A is a puff' n, she has a Y.B.

 $\forall x (Puf(x) \rightarrow YelBk(x))$ 1. 2. Puf(a) $Puf(a) \rightarrow YelBk(a)$ 3. ∀Elim:1 YelBk(a)

Χ.

Ayesha has a yellow beak

All puffins have yellow beaks Ayesha is a puffin

If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak

1. $\forall x (Puf(x) \rightarrow YelBk(x))$ 2. Puf(a) 3. Puf(a) \rightarrow YelBk(a) \forall Elim:1 x. YelBk(a)

Ayesha has a yellow beak

 $\forall x (Puf(x) \rightarrow YelBk(x))$ 1. Puf(a) 2. $Puf(a) \rightarrow YelBk(a)$ 3. ∀Elim:1 YelBk(a) Χ.

Ayesha has a yellow beak

 $\forall x (Puf(x) \rightarrow YelBk(x))$ 1. Puf(a) 2. $Puf(a) \rightarrow YelBk(a)$ 3. ∀Elim:1 YelBk(a) Χ.

∀Elim | ∀x S(x) ... S(c)

Ayesha has a yellow beak

1. $\forall x (Puf(x) \rightarrow YelBk(x))$ 2.Puf(a)3.Puf(a) \rightarrow YelBk(a) \forall Elim:1x.YelBk(a)

∀Elim ∀x S(x) ... S(c) All puffins have yellow beaks1.∀x (Puf(x) → YelBk(x))Ayesha is a puffin2.Puf(a)If A is a puff' n, she has a Y.B.3.Puf(a) → YelBk(a) ∀Elim:1

Ayesha has a yellow beak

x. YelBk(a)

 \rightarrow Elim: 3,2

∀Elim ∀x S(x) … S(c)

All puffins have yellow beaks	1.	$orall \mathbf{x}$ (Puf(x) $ ightarrow$ Ye	Bk(x))
Ayesha is a puffin	2.	Puf(a)	
If A is a puff' n, she has a Y.B.	3.	$Puf(a) \rightarrow YelBk(a)$) ∀Elim:1
Ayesha has a yellow beak	Х.	YelBk(a)	\rightarrow Elim: 3,2

another rule, another argument

Ayesha has a yellow beak

Something has a yellow beak

```
\forall Elim \\ \forall x S(x) \\ \dots \\ S(c)
```

4

5.

Ayesha has a yellow beak4.YelBk(a)Something has a yellow beak5. $\exists x YelBk(x)$

∀Elim		∃Intro
	∀x S(x)	S(a)
	S(c)	∃x S(x)

4

5

4.YelBk(a)5.
$$\exists x YelBk(x)$$
 $\exists Intro: 4$

Ayesha has a yellow beak4.YelBk(a)Something has a yellow beak5. $\exists x YelBk(x)$ $\exists lntro: 4$

All puffins have yellow beaks	1.	$\forall x (Puf(x) \rightarrow YelBk(x))$
Ayesha is a puffin	2.	Puf(a)
If A is a puff' n, she has a Y.B.	3.	$Puf(a) \rightarrow YelBk(a) \forall Elim:1$
Ayesha has a yellow beak	4.	YelBk(a) \rightarrow Elim: 3,2
Ayesha has a yellow beak	4.	YelBk(a)
Something has a yellow beak	5.	$\exists x YelBk(x) \exists Intro: 4$
∀Elim		∃Intro

∀Elim	∃Intro
∀x S(x)	S(a)
• • •	•••
S(c)	∃x S(x)

All puffins have yellow beaks Ayesha is a puffin If A is a puff' n, she has a Y.B. Ayesha has a yellow beak	1. 2. 3. 4.	$\begin{array}{l} \forall x (Puf(x) \rightarrow YelBk(x)) \\ Puf(a) \\ Puf(a) \rightarrow YelBk(a) \forall Elim:1 \\ YelBk(a) \rightarrow Elim:3,2 \end{array}$
Something has a yellow beak	5.	∃x YelBk(x) ∃Intro: 4
∀Elim │ ∀x S(x)		∃lntro S(a)

... S(c)

… ∃x S(x)

All puffins have yellow beaks Ayesha is a puffin	1. 2.	$\forall x (Puf(x) \rightarrow Y$ Puf(a)	'elBk(x))
Something has a yellow beak	5.	∃x YelBk(x)	∃Intro:4
∀Elim ∀x S(x)		∃lntro S(a)	
 S(c)		… ∃x S(x)	

All puffins have yellow beaks Ayesha is a puffin If A is a puff' n, she has a Y.B. Ayesha has a yellow beak	1. 2. 3. 4.	$\begin{array}{l} \forall x (Puf(x) \rightarrow YelBk(x)) \\ Puf(a) \\ Puf(a) \rightarrow YelBk(a) \forall Elim:1 \\ YelBk(a) \rightarrow Elim:3,2 \end{array}$
Something has a yellow beak	5.	∃x YelBk(x) ∃Intro: 4
∀Elim │ ∀x S(x)		∃lntro S(a)

... S(c)

… ∃x S(x)