Logic (PH133) Lecture 6

Stephen Butterfill, Philosophy/Warwick

What not to confuse

What not to confuse

$\exists x($ Square $(x) \wedge \operatorname{Blue}(x))$
 "Some square is blue"

$4 \longdiv { \exists x } \operatorname { S q u a r e } (x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

$2 \longdiv { \exists x (\text { Square } (x) \wedge \text { Blue } (x)) }$
"Some square is blue"
$4 \longdiv { \exists x \text { Square } (x) \wedge \exists x \text { Blue (x) } }$
"Some object is square and some object is blue"

How are (2) and (4) different?

1) $\forall x$ (Square $(x) \rightarrow$ Blue $(x))$
"All squares are blue"

2 $\exists x($ Square $(x) \wedge$ Blue $(x))$
"Some square is blue"
$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

How are (2) and (4) different?

1
2 ix (Squar en) \wedge Blue $(x))$
"Some square is blue"
"All squares are blue"
4 ix Square (x) $\wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

- is scope
(4) different?
$2 \exists x($ Square $(x) \wedge$ Blue $(x))$
"Some square is blue"
4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

How are (2) and (4) different?

2 $\exists x($ Square $(x) \wedge$ Blue $(x))$
"Some square is blue"
4) $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

How are (2) and (4) different?

2 is FALSE

2 $\exists x($ Square $(x) \wedge$ Blue $(x))$
"Some square is blue"
$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

How are (2) and (4) different?

2 is FALSE
4 is TRUE

2 $\exists x($ Square $(x) \wedge$ Blue $(x))$ "Some square is blue"

4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

How are (2) and (4) different?

2 is FALSE

4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

The difference is scope

How a (2) and scope

CHow are (2) and (4) different?
(4) afferent?

(2) is FALSE

4 is TRUE
$\forall x($ Square $(x) \rightarrow$ Blue $(x))$
"All squares are blue"

4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

The difference is scope

How are (2) and (4) different?

4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

The difference

How are (2) and (4) different?
$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

- is scope

(4) different?

The different is scope

How are (2) and
Cos is I
$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

- is scope

(4) different?

The different is scope

How are (2) and
Cos es is FALS

1) $\forall x($ Square $(x) \rightarrow$ Blue $(x))$
 "All squares are blue"

4 据 Square $(x) \wedge \exists x$ Blue (x) "Som! ${ }^{\top}$ object is square and some object is blue"

is scope
 The difference

How are (2) and (4) different?
(4) is TRUE

2) $\exists x(\operatorname{Square}(x) \wedge \operatorname{Blue}(x))$
"Some square is blue"
4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x) "Som ${ }^{T}$ Jbject is square and some object is blue"

How a (2) and scope

How are (2) and (4) different?

The difference

 is scope2) $\exists x(\operatorname{Square}(x) \wedge \operatorname{Blue}(x))$
"Some square is blue"
4 $\exists x \operatorname{Square}(x) \wedge \exists x$ Blue (x) "Som ${ }^{T}$ Object is square and some object is blue"

The difference

 is scope(How are (2) and $\begin{aligned} & \text { (4) different? }\end{aligned}$ (4) different?

0

(2) is FALSE
(4) is TRUE

4 $\exists x \operatorname{Square}(x) \wedge \exists x \operatorname{Blue}(x)$ "Sombject is square"
and some object is blue" "Sombject is square"
and some object is blue"

The difference

(4) different?

2) $\exists x(\operatorname{Square}(x) \wedge \operatorname{Blue}(x))$
"Some square is blue"
4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x) "SonTJbject is square and some object is blue"

How is scope

(4) different?

The different is scope

How are (2) and

4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x) "Son ${ }^{T}$ object is st T^{T} are and some object is blue"

How is scope

(4) different?

The different is scope

How are (2) and

2) $\exists x(\operatorname{Square}(x) \wedge \operatorname{Blue}(x))$
"Some square is blue"
4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x) "Som! ${ }^{T}$ object is ${ }^{T}{ }^{T}$ are and some object is blue"

How (2) and

How are (2) and
(4) different?

The difference is scope

(2) is FALSE
$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x) "Som ${ }^{T}$ Jbject is T^{T} are and some object is blue"

How are (2) and
(4) different?

The difference is scope

4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

How (2) and

are (2) and
(4) different?

(2) is FALSE

$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

The difference

How are (2) and (4) different?

2 is FALSE

$2 \exists x($ Square $(x) \wedge$ Blue $(x))$
 "Some square is blue"

$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

- is scope

are (2) and

$2 \exists x($ Square $(x) \wedge$ Blue $(x))$
 "Some square is blue"

4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

- is scope

(4) different?

(2) $\exists x($ Square $(x) \wedge \operatorname{Blue}(x))$. F me square is blue"
$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

2 $\exists x($ Square $(x) \wedge$ Blue $(x))$
"Some square is blue"
$4 \exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

How are (2) and
(4) different?

The difference is scope

2 is FALSE

(4) is TRUE

(1) $\forall x($ Square $(x) \rightarrow$ Blue $(x))$
 "All squares are blue"

$2 \longdiv { \exists x (\text { Square } (x) \wedge \text { Blue } (x)) }$
"Some square is blue"
4) $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

How are (2) and (4) different?

These 'x's are in the scope of the same quantifier
 is scope
How are (2) and (4) different?

$\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

These ' x 's are in the scope of the same quantifier

How are (2) and (4) different?
"Some object is square and some object is blue"

2 is FALSE
4 is TRUE

2) $\exists x($ Square $(x) \wedge \operatorname{Blue}(x))$
"Some square is blue"
4 $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

2 $\exists x($ Square $(x) \wedge$ Blue $(x))$
"Some square is blue"
4) $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

$\forall x$ (Square $(x) \rightarrow$ Blue $(x))$
"All squares are blue"
2) $\exists x($ Square $(x) \wedge \operatorname{Blue}(x))$ "Some square is blue"

4) $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

$\forall x$ (Square $(x) \rightarrow$ Blue $(x))$
"All squares are blue"

4) $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

$\forall x$ (Square $(x) \rightarrow$ Blue (x))
"All squares are blue"
2 $\exists x($ Square $(x) \wedge$ Blue $(x))$
"Some square is blue"
4) $\exists x$ Square $(x) \wedge \exists x$ Blue (x)
"Some object is square and some object is blue"

Ex. Explain why 1 is true and 3 is false in this world by appeal to the meaning of ${ }^{\prime} \forall^{\prime}$

What not to confuse

Thenegation of a disfunction

What is the scope of \vee in this formula?

Adisfunction oftwo negations

Thenegation of a disfunction

What is the scope of \vee in this formula?

Adisfunction oftwo negations

Thenegation of a disfunction

Adisfunction oftwo negations

P	Q	$\mathrm{P} \vee \mathrm{Q}$	$\neg(\mathrm{P} \vee \mathrm{Q})$	$\neg \mathrm{P}$	$\neg \mathrm{Q}$	$\neg \mathrm{P} \vee \neg \mathrm{Q}$
T	T					
T	F	T	F	F	T	T
F	T					
F	F					

$$
\left\lvert\, \begin{aligned}
& \neg(\mathrm{P} \vee \mathrm{Q}) \\
& \neg \mathrm{P}
\end{aligned}\right.
$$

$$
\left\lvert\, \begin{aligned}
& \neg \mathrm{P} \vee \neg \mathrm{Q} \\
& \neg \mathrm{P}
\end{aligned}\right.
$$

P Q is a counterexample to T F this argument

P Q is a counterexample to
T F this argument

This is a logically valid argument

P Q is a counterexample to this argument

Things not to confuse
$\neg(P \vee Q) \quad$ vs. $\quad \neg P \vee \neg Q$

Things not to confuse

$$
\begin{array}{lll}
\neg(\mathrm{P} \vee \mathrm{Q}) & \text { vs. } & \neg \mathrm{P} \vee \neg \mathrm{Q} \\
\neg(\mathrm{P} \wedge \mathrm{Q}) & \text { vs. } & \neg \mathrm{P} \wedge \neg \mathrm{Q}
\end{array}
$$

Things not to confuse

$$
\begin{array}{lll}
\neg(P \vee Q) & \text { vs. } & \neg P \vee \neg Q \\
\neg(P \wedge Q) & \text { vs. } & \neg P \wedge \neg Q \\
\neg(P \rightarrow Q) & \text { vs. } & P \rightarrow \neg Q
\end{array}
$$

my happy ending.
Her problems
have become mines

THE PART OF THE DAY I LOOK FORWARD
THE MOST, IS WHEN I GET TO PEE IN THE SHOWER

State the following rules:

vIntro
\rightarrow Intro

State the following rules:

vintro
\rightarrow Intro

State the following rules:
vIntro
\rightarrow Intro

vIntro:

1. $R \vee S$		Pi
	vIntro: 2	$\cdots \mathrm{P}$. ${ }^{\text {P }}$ P2
4. S		vElim: $\mid \mathrm{P} 1 \vee \mathrm{P} 2$
5. $\quad S \vee R$	VIntro: 4	LP1
6. $S \vee R$ 7. $R \wedge S$	$\begin{aligned} & \text { VElim: 1,2-3,4-5 } \\ & \text { } \text { Intro:2,4 } \end{aligned}$	
\wedge Elim:	\wedge Intro:	...
$P 1 \wedge P 2$	\|P1	Q
\ldots	P2	...
	\ldots	Q


```
1. R\veeS
    2. 
    4. S
    5. S\veeR \veeIntro:4
6. S vR vElim: 1,2-3,4-5
7. R^S ^Intro:2,4
```

\wedge Elim:	\wedge Intro:
$\|$$\mathrm{P} 1 \wedge \mathrm{P} 2$ \ldots Pi P 1 P 2 \ldots $\mathrm{P} 1 \wedge \mathrm{P} 2$	

VIntro:

VElim:

$\mathrm{P} 1 \vee \mathrm{P} 2$
-P1
...
Q
\|P2
..
Q
\ldots
Q


```
T O.RvS
2. 
    4. S
    5. S\veeR \veeIntro:4
```

6. $S \vee R$
7. $R \wedge S$
```
\begin{tabular}{c|c|c}
\(R\) & \(S\) & \(R \vee S\) \\
\hline\(T\) & \(R \wedge S\) \\
\hline & \(T\) & \(F\)
\end{tabular}
```

VIntro:
Pi

P1 \vee P2
\checkmark Elim:

$\mathrm{P} 1 \vee \mathrm{P} 2$
\|P1
...
Q
-P2
.
Q
\ldots
Q

VIntro:

VIntro: 2
5. $\quad S \vee R \quad \vee$ intro: 4
6. $S \vee R \quad \vee$ Elim: 1,2-3,4-5

F V. Ras \quad Intro: 2,4
\wedge Elim:

$|$| $\mathrm{P} 1 \wedge \mathrm{P} 2$ |
| :--- |
| \ldots |
| Pi |

\wedge Intro:

$|$| P 1 |
| :--- |
| P 2 |
| \ldots |
| $\mathrm{P} 1 \wedge \mathrm{P} 2$ |

vElim:

$\mathrm{P} 1 \vee \mathrm{P} 2$
\|P1
...
Q
-P2
\cdots
Q
\ldots
Q

VIntro:
Pi

P1 \vee P2

\checkmark Elim:

VIntro:

VElim:

Rules of Proof for Quantifiers
"Everything's coming to a grinding halt"
"Everything's coming to a grinding halt"

"Everything's coming to a grinding halt"
"Everything's coming to a grinding halt"
$\forall x$ ComingToAGrindingHalt (x)
"Everything's coming to a grinding halt"
$\forall x$ ComingToAGrindingHalt (x)
"This lecture is coming to a grinding halt"
"Everything's coming to a grinding halt" $\forall x$ ComingToAGrindingHalt(x)
"This lecture is coming to a grinding halt" ComingToAGrinơingHalt(a)

"Everything's coming to a grinding halt" $\forall x$ ComingToAGrindingHalt(x)

"This lecture is coming to a grinding halt" ComingToAGrindingHalt(a)

"This lecture is coming to a grinding halt" ComingToAGrinding ${ }^{\text {alt }}$ (a)

$$
\begin{aligned}
& \forall E \lim \\
& \qquad \begin{array}{l}
\forall x S(x) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
\end{aligned}
$$

$\forall x$ ComingToAGrindingHalt(x)

ComingToAGrindingHalt(a)

$$
\begin{aligned}
& \forall E \lim \\
& \qquad \begin{array}{l}
\forall x S(x) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
\end{aligned}
$$

$\forall x$ ComingToAGrindingHalt(x)

ComingToAGrindingHalt(a)

$$
\begin{aligned}
& \forall E \lim \\
& \qquad \begin{array}{l}
\forall x S(x) \\
\ldots \\
S(c)
\end{array}
\end{aligned}
$$

$\forall x$ ComingToAGrinding Halt (x)

ComingToAGrindingHalt(a)

$$
\begin{aligned}
& \forall E \lim \\
& \qquad \begin{array}{l}
\forall x S(x) \\
\ldots \\
S(c)
\end{array}
\end{aligned}
$$

$\forall x$ ComingToAGrinding Halt(x)

ComingToAGrindingHalt(a)

$$
\begin{aligned}
& \forall E \lim \\
& \qquad \begin{array}{l}
\forall \mathrm{x} S(\mathrm{x}) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
\end{aligned}
$$

1. $\forall x$ ComingToAGrindinghalt (x)
2. ComingToAGrindingHalt(a)

$$
\begin{aligned}
& \forall E \lim \\
& \qquad \begin{array}{l}
\forall x S(x) \\
\ldots \\
S(c)
\end{array}
\end{aligned}
$$

1. $\forall x$ ComingToAGrindinghalt(x)

2. ComingToAGrindingHalt(a)

VElim: 1

$$
\begin{aligned}
& \forall E \lim \\
& \qquad \begin{array}{l}
\forall x S(x) \\
\ldots \\
S(c)
\end{array}
\end{aligned}
$$

All puffins have yellow beaks
Ayesha is a puffin
Ayesha has a yellow beak

5

2
2
2

All puffins have yellow beaks
Ayesha is a puffin
Ayesha has a yellow beak

a:Ayesha
YelBk(x) : x has a yellow beak

a:Ayesha
YelBk(x) : x has a yellow beak

Ayesha has a yellow beak

YelBk(a)

P	Q	R
T	T	F

There is a counterexample to this argument

a:Ayesha
YelBk(x) : x has a yellow beak

Ayesha has a yellow beak

There is a counterexample to this argument

a:Ayesha
YelBk(x) : x has a yellow beak
Puf (x) : x is a puffin

a:Ayesha
YelBk(x) : x has a yellow beak
Puf(x): x is a puffin

All puffins have yellow beaks
Ayesha is a puffin
Ayesha has a yellow beak

Puf(a)
YelBk(a)

T T F

There is a counterexample to this argument

YelBk(x) :x has a yellow beak
Puf(x): x is a puffin
from last lecture
In most cases we will need to use the form

$$
\forall \mathrm{x}(\mathrm{~F}(\mathrm{x}) \rightarrow \mathrm{G}(\mathrm{x}))
$$

"All Fs are Gs"

All puffins have yellow beaks
Ayesha is a puffin
Ayesha has a yellow beak

P $\quad \forall x(\operatorname{Puf}(x) \rightarrow \operatorname{YelBk}(x))$
Puf(a)
YelBk(a)

P	Q	R
T	T	F

There is a counterexample to this argument

a:Ayesha
YelBk(x) : x has a yellow beak
Puf $(x): x$ is a puffin
from last lecture
In most cases we will need to use the form

$$
\forall \mathrm{x}(\mathrm{~F}(\mathrm{x}) \rightarrow \mathrm{G}(\mathrm{x}))
$$

"All Fs are Gs"

a:Ayesha
YelBk(x) : x has a yellow beak
Puf(x): x is a puffin

from last lecture

In most cases we will need to use the form

$$
\begin{aligned}
& \forall x(F(x) \rightarrow G(x)) \\
& \text { "All Fs are Gs" }
\end{aligned}
$$

All puffins have yellow beaks 1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \mathrm{YelBk}(\mathrm{x}))$
Ayesha is a puffin
2. \quad Puf(a)

Ayesha has a yellow beak
x. $\quad \operatorname{YelBk}(a)$

All puffins have yellow beaks 1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \mathrm{YelBk}(\mathrm{x}))$
Ayesha is a puffin
2. Puf(a)

Ayesha has a yellow beak
x. $\quad \operatorname{YelBk}(\mathrm{a})$
\forall Elim

$$
\begin{array}{|l}
\forall x S(x) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
$$

All puffins have yellow beaks 1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \mathrm{YelBk}(\mathrm{x}))$
Ayesha is a puffin
2. Puf(a)
3. \quad Puf(a) \rightarrow YelBk(a)

Ayesha has a yellow beak
x. \quad YelBk(a)
\forall Elim

$$
\begin{array}{|l}
\forall x S(x) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
$$

All puffins have yellow beaks 1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \mathrm{YelBk}(\mathrm{x}))$
Ayesha is a puffin
If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak
x. $\quad \operatorname{YelBk}(\mathrm{a})$
\forall Elim

$$
\begin{array}{|l}
\forall x S(x) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
$$

All puffins have yellow beaks 1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \mathrm{YelBk}(\mathrm{x}))$
Ayesha is a puffin
If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak
x. \quad YelBk(a)
\forall Elim

$$
\begin{array}{|l}
\forall x S(x) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
$$

All puffins have yellow beaks 1. Ayesha is a puffin If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak
\forall Elim

$\forall x S(x)$	
\ldots	
	$\mathrm{S}(\mathrm{c})$

All puffins have yellow beaks 1.
Ayesha is a puffin
If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak
\forall Elim

$$
\begin{aligned}
& \forall x S(x) \\
& \ldots \\
& S(c)
\end{aligned}
$$

All puffins have yellow beaks
Ayesha is a puffin
If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak
\forall Elim
$\forall x S(x)$
...
S(c)

All puffins have yellow beaks 1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \mathrm{YelBk}(\mathrm{x}))$
Ayesha is a puffin
If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak
x. \quad YelBk(a)
\forall Elim

$$
\begin{array}{|l}
\forall x S(x) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
$$

All puffins have yellow beaks 1. $\quad \forall x(\operatorname{Puf}(x) \rightarrow \operatorname{YelBk}(x))$
Ayesha is a puffin
If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak
x. \quad YelBk(a)
\forall Elim

$$
\begin{array}{|l}
\forall \mathrm{xS}(\mathrm{x}) \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
$$

All puffins have yellow beaks
Ayesha is a puffin
If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak

$$
\begin{aligned}
& \forall \text { Elim } \\
& \begin{array}{|l}
\forall x S \\
\ldots \\
S(c)
\end{array}
\end{aligned}
$$

All puffins have yellow beaks 1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \mathrm{YelBk}(\mathrm{x}))$
Ayesha is a puffin
If A is a puff' n, she has a Y.B.

Ayesha has a yellow beak

$$
\begin{aligned}
& \forall \text { Elim } \\
& \left\lvert\, \begin{array}{l}
\forall x S \\
\ldots \\
S(c)
\end{array}\right.
\end{aligned}
$$

another rule, another argument

Ayesha has a yellow beak
Something has a yellow beak

$$
\begin{aligned}
& \forall \text { Elim } \\
& \begin{array}{|l}
\forall \mathrm{x} \text { S } \\
\ldots \\
\mathrm{S}(\mathrm{c})
\end{array}
\end{aligned}
$$

Ayesha has a yellow beak
4. YelBk(a)

Something has a yellow beak $5 . \quad$???

\forall Elim
 $\forall x S(x)$
 S(c)

Ayesha has a yellow beak

| Something has a yellow beak 5. | $\exists \mathrm{x}$ YelBk(x) |
| :--- | :--- | :--- |

\forall Elim

$$
\begin{array}{|l}
\forall x S \\
\ldots \\
\mathrm{~S}(\mathrm{c})
\end{array}
$$

Ayesha has a yellow beak
4.

Something has a yellow beak 5.	$\exists \mathrm{x}$ YelBk(x)

\exists Intro
S(a)
...
$\exists x S(x)$

Ayesha has a yellow beak
4

Something has a yellow beak 5.	$\exists \mathrm{x} \operatorname{YelBk}(\mathrm{x})$

ヨlntro
S(a)
-••
$\exists \mathrm{x}(\mathrm{x})$

Ayesha has a yellow beak
Something has a yellow beak

\forall Elim
 $\forall \mathrm{xS}(\mathrm{x})$ \ldots $\mathrm{C}(\mathrm{c})$

ヨintro
S(a)
...
$\exists x S(x)$

Ayesha has a yellow beak
Something has a yellow beak

\forall Elim
 $\forall \mathrm{xS}(\mathrm{x})$ \ldots $\mathrm{C}(\mathrm{c})$

ヨintro
S(a)
$\exists x S(x)$

Ayesha has a yellow beak
4.

Something has a yellow beak
5. $\exists \mathrm{x} \mathrm{YelBk}(\mathrm{x})$

ヨIntro: 4

\section*{\forall Elim
 | $\forall \mathrm{xS}(\mathrm{x})$ |
| :--- |
| \ldots |
| $\mathrm{S}(\mathrm{c})$ |}

ヨintro
S(a)
$\exists x S(x)$

All puffins have yellow beaks
Ayesha is a puffin
If A is a puff' n, she has a Y.B.
Ayesha has a yellow beak

Ayesha has a yellow beak
Something has a yellow beak

1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \operatorname{YelBk}(\mathrm{x}))$
2. Puf(a)
3. Puf(a) \rightarrow YelBk(a) $\quad \forall$ Elim:1
4. YelBk(a) \rightarrow Elim: 3,2
5. YelBk(a)
6. $\exists \mathrm{xYelBk}(\mathrm{x}) \quad \exists \mathrm{lntro:4}$

\forall Elim
 $\forall \mathrm{xS}(\mathrm{x})$ \ldots $\ldots \mathrm{S}(\mathrm{c})$

\exists Intro

| $S(a)$ |
| :--- | :--- |
| \ldots |
| $\exists x S(x)$ |

All puffins have yellow beaks 1.
Ayesha is a puffin
If A is a puff' n, she has a Y.B.
Ayesha has a yellow beak

Something has a yellow beak
5. $\exists \mathrm{x} \operatorname{YelBk}(\mathrm{x})$

ヨintro: 4

\forall Elim
 $\forall \mathrm{xS}(\mathrm{x})$ \ldots $\mathrm{C}(\mathrm{c})$

\exists Intro
S(a)
$\exists x S(x)$

All puffins have yellow beaks 1. $\forall \mathrm{x}(\operatorname{Puf}(\mathrm{x}) \rightarrow \mathrm{YelBk}(\mathrm{x}))$ Ayesha is a puffin
2. Puf(a)

Something has a yellow beak
5. $\exists x \operatorname{YelBk}(x)$

ヨIntro: 4

\section*{\forall Elim
 | $\forall \mathrm{xS}(\mathrm{x})$ |
| :--- |
| \ldots |
| $\mathrm{S}(\mathrm{c})$ |}

\exists Intro
S(a)
$\exists x S(x)$

All puffins have yellow beaks 1.
Ayesha is a puffin
If A is a puff' n, she has a Y.B.
Ayesha has a yellow beak

Something has a yellow beak
5. $\exists \mathrm{x} \operatorname{YelBk}(\mathrm{x})$

ヨintro: 4

\forall Elim
 $\forall \mathrm{xS}(\mathrm{x})$ \ldots $\mathrm{C}(\mathrm{c})$

\exists Intro
S(a)
$\exists x S(x)$

