
SOLUTION TO A GENERALIZATION OF THE BUSY BEAVER PROBLEM∗

Let ϕ be a fixed numerical function. If the k-state Turing machine M with input string
ϕ(k) (that is, started in its initial state scanning the leftmost 1 of a single string of ϕ(k)
1s on an otherwise blank tape) produces the output string m (that is, halts in its halting
state scanning the leftmost 1 of a single string of m 1s on an otherwise blank tape), we
shall say that the ϕ-fecundity of M is m. If M halts in any other position or state, or fails
to halt, its ϕ-fecundity is 0.

Since there are only finitely many k-state Turing machines, there is one that is at least
as ϕ-fecund as any other. Let fϕ(k) be the ϕ-fecundity of the most ϕ-fecund k-state
machine.

Lemma 0: The 2-state machine {A10B,B0RA} deletes an input string of 1s of any
length, and halts in state A scanning a 0. For k > 0 the (k + 2)-state machine K

A10B B0RA A01C0 C001C0

C01LC1 C101C1 . . . Ck−101Ck−1

replaces an input string of 1s of any length (in particular, of length φ(k+2)) by an output
string of length k, and halts in state Ck−1 scanning the leftmost 1.

Proof: Exercise.

Lemma 1: The 8-state machine below replaces an input string of k 1s by an output
string of 2k 1s, and halts in state A scanning the leftmost 1.

A0RB A10A B0RC B1RB C01D C1RC D01E
D1RD E0LF E1LE F0RG F1LF G0RJ G10A

Proof: Exercise.

Lemma 2: For all k > 10

fϕ(k) ≥ 2k − 20.(1)

Proof: Use the two preceding lemmas.

∗This note, to be read in conjunction with Chapter 4.2 of G.S. Boolos, J.P. Burgess, & R.C. Jeffrey,
Computability & Logic (4th edition, CUP 2002), is dedicated to the memory of Richard Jeffrey, who died
on November 9, 2002. The proof of its main result, that the busy beaver function eventually dominates
every total Turing computable function (Theorem 3.2), was shown to me in 1989 by Richard Hill, who
was following my Symbolic Logic course at the University of Warwick. The 8-state doubling machine of
Lemma 1 is due to Richard Schefer, who followed the course in 2000/2001. It is evident that a similar
result can be obtained using the 12-state doubling machine (Example 3.2) on p. 28 of Computability &
Logic (p. 24 of earlier editions). Note that machine states are here named by upper case roman letters.



Theorem 3: Let h be any total, strictly increasing, Turing computable function. Then
for all sufficiently large j, fϕ(j) > h(j).

Proof: Let Fϕ be a machine with qϕ states that computes fϕ, and H be a machine
with r states that computes h. The composite machine K+Fϕ +H has j = k+ 2 + qϕ + r
states, and with any input (in particular ϕ(j)) its output is h(fϕ(k)); hence

fϕ(j) ≥ h(fϕ(k)).(2)

Now by elementary algebra, if k > qϕ + r + 22 then 2k − 20 > k + 2 + qϕ + r = j; and
therefore by (1), since k > 10 whenever k > qϕ + r + 22,

k > qϕ + r + 22 ⇒ fϕ(k) > j.(3)

Since h is a strictly increasing function,

k > qϕ + r + 22 ⇒ h(fϕ(k)) > h(j).(4)

Combining (2) and (4), we obtain:

k > qϕ + r + 22 ⇒ fϕ(j) > h(j).(5)

In other words, since k = j − 2− qϕ − r,

j > 2qϕ + 2r + 24 ⇒ fϕ(j) > h(j),(6)

which is what was to be proved.

Corollary 0: Let h be any total Turing computable function. Then for all sufficiently
large j, fϕ(j) > h(j).

Proof: If h is not strictly increasing, replace it by the strictly increasing function h′

defined by
h′(j) = max{h(i) | i ≤ j}+ 1.

Then h′(j) > h(j) for all j. The Theorem tells us that for sufficiently large j, fϕ(j) >
h′(j). It follows that for sufficiently large j, fϕ(j) > h(j).

Corollary 1: The function fϕ is not Turing computable.

Proof: If fϕ is Turing computable then it is is distinct from any Turing computable
function. It follows that fϕ is not Turing computable.

Corollary 2: Neither the scoring function s (Computability & Logic, Proposition 4.3)
nor the busy beaver function p (op.cit, Theorem 4.7) is Turing computable.

Proof: For the scoring function s take ϕ to be the identity function. For the busy
beaver function p take ϕ to be the zero function.

David Miller
January 9, 2003

2


