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Abstract

Dzik (1981) gives a direct proof of the axiom of choice from the generalized Lindenbaum extension
theorem LET. The converse is part of every decent logical education. Inspection of Dzik’s proof shows
that its premise let attributes a very special version of the Lindenbaum extension property to a very
special class of deductive systems. The problem therefore arises of giving a direct proof, not using
the axiom of choice, of the conditional let ⇒ LET. A partial solution is provided.

0 Preliminaries

Let S be any set. An operation Cn: ℘(S) 7→ ℘(S) is called a consequence operation if it satisfies the
following postulates:

(a) if X ⊆ S then X ⊆ Cn(X) ⊆ S
(b) if X ⊆ S then Cn(Cn(X)) = Cn(X)
(c) if X ⊆ S then Cn(X) =

⋃
{Cn(Z) | Z ⊆ X and |Z| < ℵ0}.

(0)

These are the postulates of Tarski (1930), pp. 63f., with the omission of a postulate stating that S is
denumerable. This restriction is not wanted here. We shall however ignore systems in which S is finite.
(All the results of this paper hold for consequence operations based on a finite S, even the empty set Ø.)
Postulate (0c) is set-theoretically equivalent to the conjunction of the principles of monotony (0c0) and
finitariness (0c1):

(c0) if Z ⊆ X then Cn(Z) ⊆ Cn(X)
(c1) if x ∈ Cn(X) then x ∈ Cn(Z) for some finite Z ⊆ X.(0)

A consequence of (0) that we shall appeal to in § 1 is a form of transitivity or cut .

∗An early version of § 3 was discussed in Newton da Costa’s vacation seminar at the University of São Paulo in January
2000, and later presented as a contributed paper at the ASL European Summer Meeting, Logic Colloquium 2000, held in
Paris from July 23 to July 31 2000. I should like to record my gratitude to da Costa, and to the members of his seminar, for
their generous hospitality during the summer of 1999/2000. Most of the material now included in § 0, § 3, and the appendix
has been published in ‘Extremal Consequence Operations’, Bulletin of the Section of Logic ( Lódź) 29, 3, 2000, pp. 99-106.
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Lemma 0 If Cn is a consequence operation then

(d) if y ∈ Cn(Y ) then Cn(Y ∪ {y}) = Cn(Y ).(0)

Proof: If y ∈ Cn(Y ) then {y} ⊆ Cn(Y ), so Y ∪ {y} ⊆ Y ∪ Cn(Y ) = Cn(Y ), by (0a). Twice applying
monotony (0c0), and then (0b), we may infer that Cn(Y ) ⊆ Cn(Y ∪ {y}) ⊆ Cn(Cn(Y )) = Cn(Y ).

We call a pair 〈S,Cn〉 satisfying (0) a deductive system. Reference to S is usually omitted. If y ∈ Cn(Y )
we may say that Y implies y. It is easily checked that the operations Cnmin (= Y for all Y ⊆ S) and
Cnmax (= S for all Y ⊆ S) satisfy (0) whatever set S is.

The set Y ⊆ S is a (deductive) theory if Cn(Y ) = Y and is inconsistent if Cn(Y ) = S. When only
one consequence operation Cn is under discussion, boldface uppercase letters are used to denote theories.
S = Cn(S) = S is always a theory. The theory Y is maximal if it is consistent and no consistent theory
properly extends it; in symbols, if Y 6= S, and X = S whenever Y ⊂ X. An operation Cn satisfying
(0a,b,c0) is compact if the following condition holds.

if Cn(Y ) = S then Cn(X) = S for some finite X ⊆ Y.(1)

Though finitariness (0c1) is often confused with compactness (1), they are independent properties.

The classic extension theorem LT of Lindenbaum (Tarski 1930, pp. 98f.) states that if Cn is compact
then every consistent Y ⊆ S has a maximal extension. Note that the consequence operation Cnmin defined
above is not compact when S is infinite, yet Lindenbaum’s theorem holds: if y /∈ Y then S \ {y} is a
maximal extension of Y under Cnmin.

1 The Equivalence of Lindenbaum’s Theorem and the Axiom of
Choice

In this section we report proofs (due to others) that an important but neglected generalization of the
Lindenbaum extension theorem, here called LET, is set-theoretically equivalent to the axiom of choice AC
(given some background set theory such as ZF).

The main business of the paper, which follows, is the investigation of a variety of restricted versions
of LET that are also equivalent to AC. It will be shown that some of the equivalences among these different
variants of LET (not one of which is mentioned in the catalogue of Howard & Rubin 1998), are susceptible
of pleasingly elementary proofs.

Although LET is an apparently far-reaching generalization of Lindenbaum’s original theorem
(Béziau 1995 discusses thoroughly the various forms that the theorem takes), the proofs of the two
results are almost identical. One of the first formulations and proofs of LET appears in the Lemma
(pp. 238f.) of  Loś (1951), and the theorem has been formulated also by Asser, da Costa, and others. The
axiom of choice AC is assumed.

We first define a y-saturated set (in the system 〈S,Cn〉) as a set that does not imply y (according
to Cn) and cannot be extended further without implying y.

Y is y-saturated ⇐⇒Df

{
(a) y /∈ Cn(Y )
(b) y ∈ Cn(Y ∪ {x}) for every x /∈ Y.(2)

Lemma 1 If Y is a y-saturated set, then Y is a deductive theory.

Proof: Suppose that x ∈ Cn(Y ), yet x /∈ Y . By (0d), Cn(Y ∪ {x}) = Cn(Y ), and hence by (2) y both
is and is not an element of Cn(Y ).
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If Y is y-saturated for some y ∈ S then it is saturated . Thanks to Lemma 1 we shall assume without
further comment that every saturated set is a deductive theory.

It is fairly obvious that Y is maximal if & only if Y is y-saturated for every y /∈ Y (Béziau, op.cit.,
p. 11). This result and related results are collected in the appendix below.

Theorem 2 (LET) If 〈S,Cn〉 is a deductive system, and y is an element of S that does not belong to
Cn(Y ), then Y has a y-saturated extension Y.

Proof: Let the elements of S be well ordered in the sequence {yν | ν < λ}, where λ is a limit ordinal.
(This is where AC is used.) We define the following sequence {Yν | ν ≤ λ} of extensions of Y .

Y0 = Y

Yν+1 =
{
Yν ∪ {yν} if y /∈ Cn(Yν ∪ {yν})
Yν otherwise

Yκ =
⋃
{Yν | ν < κ} for limit κ.

Cn(Yλ) is the required theory Y, which is obviously an extension of Y . To prove (2b), suppose that
x /∈ Y. By (0a), x /∈ Yλ. Since x must be yν for some ν < λ, it is clear that x /∈ Yν+1. In other words,
y ∈ Cn(Yν ∪ {x}) ⊆ Cn(Yλ ∪ {x}) ⊆ Cn(Y ∪ {x}).

To prove (2a), we appeal to the finitariness of Cn. Suppose that y ∈ Y. Then y ∈ Cn(X) where
X is a finite subset of Yλ. In the construction of Yλ there must have been a stage, say the move from
Yν to Yν+1 when the final element of X qualified for inclusion (it may already have been present, as an
element of Y ). That is, y /∈ Cn(Yν ∪{yν}), and X ⊆ Yν+1 = Yν ∪{yν}, which by monotony (0c0) implies
that y ∈ Cn(X) ⊆ Cn(Yν ∪ {yν}). This is a contradiction.

This theorem would be of little interest if it said only that every Y not containing y can be extended
to a set (rather than a theory) satisfying (2a-b). But note that AC is not needed for the proof that Cnmin

satisfies LET. The set S \ {y} always obliges.

The prominent role given, in the proof of Theorem 2, to AC (in the form of the well-ordering
theorem) does not show that it is a necessary premise for the proof of LET. But it is. Dzik (1981) gives
a direct proof of AC from LET, which may be presented in the following slightly simplified way.

In the terminology of Russell (1919), pp. 119f., a selection from a family J of sets a set containing
exactly one element from each element of J. It is well known (and easily proved) that AC is equivalent to
the statement that every family of pairwise disjoint non-empty sets admits a selection (Jech 1973, p. 6).

Theorem 3 If LET (Theorem 2) holds, then every family of pairwise disjoint non-empty sets admits a
selection (AC).

Proof: Let J be a family of disjoint non-empty sets, and put S =
⋃

J. We define a consequence
operation Cn on subsets Y of S as follows:

Cn(Y ) =
{
Y if Y is a selection from a subfamily of J
S otherwise.(3)

That is to say, Cn(Y ) = Y if Y contains at most one element from each set in J; otherwise Cn(Y ) = S.
It is simple to show that Cn is a consequence operation. It is obvious that it is extremal.

If every element of the family J is a unit set, the set S is itself a selection from J, and nothing
more needs to be proved. In this case, every Y ⊆ S is a selection from some subfamily of J, and hence
Cn = Cnmin. Otherwise, there exists some Y ∈ J with distinct elements y, y′ in S. Now y /∈ Cn(Ø) = Ø,
and so by Theorem 2 there is a y-saturated theory Y that extends Ø; that is to say,

(i) Ø ⊆ Y
(ii) y /∈ Y = Cn(Y)
(iii) if x /∈ Y then y ∈ Cn(Y ∪ {x}).
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By clause (ii), the theory Y 6= S. By (3), Y is a selection from a subfamily of J. We prove that Y is a
selection from the whole of J.

The first task is to show that Y has a representative in Y. Let y′ be any element of Y distinct
from y. If y′ /∈ Y then by (iii) y ∈ Cn(Y ∪ {y′}). But by (ii), y /∈ Y ∪ {y′}, which means that
Y ∪ {y′} 6= Cn(Y ∪ {y′}). It follows from (3) that Y ∪ {y′} is not a selection from a subfamily of J. But
since Y is such a selection, and J is a disjoint family, this means that there is already in Y a representative
of the set Y . We have shown that if Y contains no representative of Y , then it contains a representative
of Y . It follows that Y contains a representative of Y .

The proof is much the same for a set X ∈ J that is distinct from Y . If no x ∈ X is selected by
Y, then y ∈ Cn(Y ∪ {x}) for every x ∈ X, by (iii). By (ii), and the fact that Y and X are disjoint,
Cn(Y ∪ {x}) 6= Y ∪ {x}. But then by (3), Y ∪ {x} is not a selection from a subfamily of J. It follows, in
the same way as before, that there is already in Y a representative of the set X.

Corollary If LT holds, then every family of pairwise disjoint non-empty sets admits a selection (AC).

Proof: Lindenbaum’s theorem LT, mentioned above, says that if Cn is compact then every consistent
Y ⊆ S has a maximal extension. Now the consequence operation Cn defined in (3) is plainly compact
except in the case, which need not detain us, in which J is a family of unit sets. We may therefore assume
that Ø has a maximal extension Y. We may choose y to be any element of S that is excluded from Y.
Since clauses (i)-(iii) all hold, the proof that Y is a selection from J proceeds as before.

These two theorems, LT and LET, are therefore each set-theoretically equivalent to AC (relative
to some background set theory such as ZF).

2 Untapped Depths in Dzik’s Proof

The proof above yields more than a pretty demonstration of what is, as Dzik himself admits, an unsur-
prising result. Inspection reveals that much less than the full intuitive power of LET is used in defining
the selection Y for the family J. For unless J is a family composed entirely of unit sets (in which case
the existence of a selection is trite), the operation Cn has four special properties:

(a) Cn(Y ) takes only the values Y and S
(b) there is no y ∈ S for which Cn({y}) = S
(c) if Cn(Y ) = S then Cn({x, z}) = S for some x, z ∈ Y
(d) if Cn({x, y}) = S = Cn({y, z}), and x 6= z, then Cn({x, z}) = S.

(4)

What is more, what need be assumed about Cn is only that, for at least one y ∈
⋃

J there exists a
y-saturated theory. (Dzik’s own proof, unlike the one given above, does not assume that if y ∈ Y ∈ J
then |Y | > 1. It is readily checked that if |Y | = 1, and Y is y-saturated, then Y ∪ {y} is a selection from
J. See also Lemma 22.) This is intuitively weaker than the assumption that, for every y ∈ S, there exists
a y-saturated theory, and intuitively much weaker than the assumption that for every y ∈ S, and every
Y not implying y, there exists a y-saturated theory extending Y . Indeed, it is a misnomer to call the
hypothesis of Dzik’s proof a version of the Lindenbaum extension theorem at all.

For brevity we shall call a family J of disjoint non-empty sets not all of which are unit sets an
active family. It has already been made clear that AC is equivalent to the statement that every active
family of sets admits a selection, and that we need not concern ourselves further with inactive families.

If the operations Cnmin and Cnmax defined above are called extreme, the more extensive class of
operations identified in (4a) may be called extremal . Consequence operations that satisfy (4b) will be
called punctilious. If consequence operations that satisfy (1) are called compact, as they are, then those
that satisfy the stronger condition

if Cn(Y ) = S then Cn(X) = S for some X ⊆ Y for which |X| = k(5)
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may be called k-compact . Unless S is empty, a compact consequence operation Cn that incorporates
the usual rules for conjunction is 1-compact (and therefore not punctilious). The consequence operations
identified in (4c) are 2-compact. We shall call consequence operations that satisfy (4d) equilateral , for the
following reason. The set Cn({x, z}) can be regarded as a lattice-valued metric operation, with greatest
value S, that measures the distance between x and z. (4c) then says that if x, y, z are the vertices of a
triangle with two distinct sides of length S, then they are the vertices of an equilateral triangle. (For
more on lattice-valued metrics see Miller 1984.) These terms will be applied to systems as well as to
consequence operations.

Let LETa be the restriction of LET to systems 〈S,Cn〉 in which Cn is extremal; and LETabcd be
the restriction of LET to systems in which Cn satisfies all four clauses of (4). Similar expressions will be
used in an obvious way. Theorems 2 and 3 demonstrate the truth of all the conditionals LET ß ⇒ LET
where ß is some subset of {a, b, c, d}. Furthermore, let let say that if 〈S,Cn〉 satisfies (4a-d) then there
exists a saturated theory Y in 〈S,Cn〉. The conditional let ⇒ LET has also been demonstrated.

Within ZF, of course, the antecedents and consequents of all these conditionals are equivalent to
AC, and so all the conditionals can be proved without appeal to AC. But the question quite naturally
arises whether they can be proved directly, without (in effect) first proving AC from the antecedent,
and then proving the consequent from AC. To provide some answers to these vague but mathematically
clear questions is the principal purpose of this paper. In § 3 we give a positive answer for the conditional
LETa ⇒ LET. In § 4 we give a positive answer also for LETab ⇒ LET, and discuss briefly the difficulties
encountered in giving a proof of LETac ⇒ LET. We shall show in § 5 that all the four properties mentioned
in (4) play a role in Dzik’s proof, and in § 6 that the conditional let ⇒ LETabcd holds (again without
recourse to AC). In § 7 we summarize what still needs to be achieved. The paper concludes with an
appendix, in which are gathered a number of useful results about saturated and maximal theories.

3 Extremal Consequence Operations

Throughout this section, S is a fixed (but arbitrary) set. We shall, however, have to consider simulta-
neously more than one consequence operation on ℘(S). The use of boldface characters for theories is
therefore suspended.

Let 〈S,Cn〉 be a system and y an element of S. We write L(Cn, y) for the statement that every
Y ⊆ S not implying y can be extended in 〈S,Cn〉 to a y-saturated theory:

L(Cn, y) ⇐⇒Df

 for every Y, if y /∈ Cn(Y ) then there is X ⊇ Y such that
(a) y /∈ Cn(X) = X
(b) y ∈ Cn(X ∪ {x}) for every x /∈ X.

(6)

In these terms, what LET asserts is that L(Cn, y) holds for every consequence operation Cn on ℘(S) and
every element y of S.

What will be proved, without appeal to the axiom of choice AC, is that every consequence operation
Cn may be associated with a family of explicitly defined extremal consequence operations {Cny | y ∈ S}
such that for every y, L(Cny, y) if & only if L(Cn, y). It follows that LET holds if L(Cny, y) holds for
every y; and hence that LET holds generally if it holds for every extremal consequence operation.

Let Cn be a (finitary) consequence operation and y an element of S. For each y the consequence
operation Cny is defined as follows.

Cny(Y ) =Df

{
Y if y /∈ Cn(Y )
S otherwise.(7)

Note that if S contains a minimal element ⊥ or a maximal element > under Cn then Cn⊥ = Cnmin and
Cn> = Cnmax. See also Lemma 24 in the appendix below.
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Lemma 4 For each y the operation Cny defined in (7) is an extremal consequence operation.

Proof: It is obvious that Y ⊆ Cny(Y ) = Cny(Cny(Y )), and that Cny is extremal. Assume that X ⊆ Z
and that x ∈ Cny(X). This latter set is either X or S. If Cny(X) = X, we may infer from X ⊆ Z and
x ∈ Cny(X) that x ∈ Z, and so x ∈ Cny(Z). If Cny(X) = S, then by (7), y ∈ Cn(X). Since Cn obeys
(0c0), it follows that y ∈ Cn(Z), so by (7) again, y ∈ Cny(Z). This proves that Cny obeys the monotony
law (0c0).

To show that Cny is finitary, note first that it holds generally that x ∈ Cny({x}). Assume that
x ∈ Cny(Y ). This latter set is either Y or S. If Cny(Y ) = Y , we may infer that {x} ⊆ Y , and hence that
x ∈ Cny(X) where X = {x} is a finite subset of Y . If Cny(Y ) = S, in which case y ∈ Cn(Y ) (even if
Cny(Y ) = Y too). From the finitariness (0c1) of Cn it follows that y ∈ Cn(X), where X is a finite subset
of Y , which implies that Cny(X) = S. Hence x ∈ Cny(X) where X is a finite subset of Y .

Corollary 0 For each y the operation Cny defined in (7) is compact.

Proof: Omitted.

Corollary 1 The following three conditions are equivalent.

(a) y ∈ Cny(Y )
(b) y ∈ Cn(Y )
(c) Cny(Y ) = S.

(8)

Proof: If y is in Cny(Y ) and not in Cn(Y ), then Cny(Y ) = Y , by (7). Hence y ∈ Y , and so y ∈ Cn(Y )
by (0a). It follows that if (a) y ∈ Cny(Y ) then (b) y ∈ Cn(Y ). Hence (c) Cny(Y ) = S, from which (a) is
an immediate consequence.

Corollary 2 The operation Cy(Y ) defined on ℘(S) by

Cy(Y ) =Df

{
Y if y /∈ Y
S otherwise(9)

is an extremal consequence operation.

Proof: Take for Cn in the lemma the extreme consequence operation Cnmin.

Lemma 5 X is a y-saturated theory in 〈S,Cny〉 if & only if it is a y-saturated theory in 〈S,Cn〉.

Proof: Suppose that x /∈ X. It follows immediately from the equivalence of (8a) and (8b) that y /∈
Cny(X) if & only if y /∈ Cn(X), and that y ∈ Cny(X ∪ {x}) if & only if y ∈ Cn(X ∪ {x}). It follows that
X satisfies (2a-b) in 〈S,Cny〉 if & only if it satisfies (2a-b) in 〈S,Cn〉. It remains to be shown that X is
a theory in the one system if & only if it is a theory in the other.

Suppose then that X = Cny(X), and that X is y-saturated in 〈S,Cny〉. Suppose further that
there is some x ∈ Cn(X) such that x /∈ X. We have just shown that X is y-saturated in 〈S,Cn〉, and
so y ∈ Cn(X ∪ {x}), which, since x ∈ Cn(x), is identical with Cn(X). By the equivalence of (8a) and
(8b), y ∈ Cny(X). Since X = Cny(X), by assumption, y ∈ X, contradicting the supposition that X
is y-saturated in 〈S,Cny〉. We may conclude that if x ∈ Cn(X) then x ∈ X, which means that X is a
theory in 〈S,Cn〉.

The converse is more straightforward. Assume that X = Cn(X) and that y /∈ Cn(X). By (7),
Cny(X) = X. That is, X is a theory in 〈S,Cny〉.

Lemma 6 L(Cny, y) if & only if L(Cn, y).

Proof: Immediate.
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Theorem 7 If LET (Theorem 2) holda for every extremal consequence operation Cn, then it holds for
every consequence operation.

Proof: The result follows from Lemmas 4 and 6. To allay any suspicion that there is at any point an
appeal to AC, the argument is set out more explicitly in (10), where C(f) means that f is a consequence
operation and E(f) means that f is an extremal consequence operation:

(a) Lemma 4 for every f and every y: if C(f) then E(fy)
(b) Lemma 6 for every f and every y: L(fy, y) if & only if L(f, y)
(c) Assumption for every f: if E(f) then for every y, L(f, y)

(d) Conclusion for every f: if C(f) then for every y, L(f, y).

(10)

Although rather long-winded if spelt out in detail, the argument is unquestionably valid in a two-sorted
elementary logic (with function symbols). The assumption (10c) is LETa, the restriction of LET to
extremal consequence operations. The conclusion (10d) is LET.

4 Punctilious, 2-compact, and Equilateral Consequence Opera-
tions

We have now shown that LETa ⇒ LET. Although we shall not achieve the aim of demonstrating (without
recourse to AC) the stronger conditional LETabcd ⇒ LET, we shall in this section make some progress
with regard to punctilious consequence operations (4b). It will be proved, without calling on AC, that
every extremal consequence operation Cn can be associated with an extremal punctilious Cn? such that
if Cn? satisfies LET then so does Cn. This will establish the conditional LETab ⇒ LETa.

For this task we shall alter not only the consequence operation Cn but also the class S. It will
therefore be necessary to be more explicit than before about which deductive system we are discussing.
We start with a general lemma.

Let 〈S,Cn〉 be any deductive system. We make the fairly obvious definition

(a) S? =Df S \ {y | Cn({y}) = S}
(b) Cn?(Y ) =Df Cn(Y ) ∩ S? for all Y ⊆ S?.

(11)

Lemma 8 Let 〈S,Cn〉 be an extremal deductive system with at least three consistent theories. The
system 〈S?,Cn?〉 is an extremal punctilious deductive system.

Proof: That 〈S?,Cn?〉 is an extremal system is a direct consequence of Lemma 23, which is in the
appendix. Now suppose that Cn?({y}) = S? for some y ∈ S?. By (11), Cn({y})∩S? = S?, which implies
that S? ⊆ Cn({y}). Unless S? = {y}, the extremality of 〈S,Cn〉 requires that Cn({y}) = S. But then by
(11), y /∈ S?, contrary to supposition.

S? = {y}, however, is not possible unless 〈S,Cn〉 contains only two consistent theories, namely Ø
and {y}. If there is any other theory Y ⊂ S, then Y must have an element u distinct from y for which
Cn({u}) 6= S. But then u ∈ S?.

Let 〈S,Cn〉 be any deductive system. Refining (6), we shall write

L(〈S,Cn〉) ⇐⇒Df

 for every Y ⊆ S and y ∈ S \ Cn(Y ) there is X ⊆ S such that
(a) y /∈ Cn(X) = X ⊇ Y
(b) y ∈ Cn(X ∪ {x}) for every x ∈ S \X.

(12)

L(〈S,Cn〉) says no more than that L(Cn, y) holds for every y, with the complication that not only the
operation Cn but also the set S is made explicit. LET says that L(〈S,Cn〉) holds for every system 〈S,Cn〉.
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Theorem 9 Let 〈S,Cn〉 be an extremal deductive system containing at least three consistent theories,
and let 〈S?,Cn?〉 be the system defined in (11). If L(〈S?,Cn?〉) then L(〈S,Cn〉).

Proof: Thanks to Lemma 8, we may assume that 〈S?,Cn?〉 is both extremal and punctilious. We are
given that L(〈S?,Cn?〉):

for every Y ⊆ S? and y ∈ S? \ Cn?(Y ) there is X ⊆ S? such that
(a) y /∈ Cn?(X) = X ⊇ Y
(b) y ∈ Cn?(X ∪ {x}) for every x ∈ S? \X.

(13)

Suppose that Y ⊆ S, and that y ∈ S \ Cn(Y ). Initially we suppose also that Cn({y}) 6= S; that is,
that y ∈ S?. Since Cn(Y ) does not contain y, the set Y is consistent, and hence Y ⊆ S?; in addition,
y /∈ Cn?(Y ) = Cn(Y ) ∩ S?. It therefore follows that there exists a set X ⊆ S? that satisfies (13a) and
(13b). We shall show that in the system 〈S,Cn〉 this set X is a y-saturated extension of the set Y ; that
is to say, that (12a) and (12b) are satisfied.

To show first that X = Cn(X), let us suppose that x ∈ Cn(X) \ X. Since X = Cn?(X) =
Cn(X) ∩ S?, x cannot belong to S?, and so Cn({x}) = S by (11a). Since x ∈ Cn(X), by assumption,
S = Cn({x}) ⊆ Cn(Cn(X)) = Cn(X), by (0b,c0), from which follows the identity Cn?(X) = S?, by
(11b). This is not possible, since y /∈ Cn?(X), by (13a), and y ∈ S? by assumption. We may conclude
that there is no x in Cn(X) \X.

It is immediate that Y ⊆ X. Since y is in S? but not in Cn?(X), it follows that y /∈ Cn(X). This
proves (12a).

Now suppose that x ∈ S \X. By (11a), either x ∈ S? \X or Cn({x}) = S. In the former case, by
(13b) and (11b), y ∈ Cn(X ∪ {x}). In the latter case, by monotony (0c0), y ∈ Cn(X ∪ {x}). This proves
(12b).

We must finally consider the possibility that at the outset we chose an element y for which
Cn({y}) = S. If Cn(Y ) = S?, then manifestly in 〈S,Cn〉 it is a maximal theory not containing y,
for the only elements of S that it lacks are those that are individually inconsistent; hence Y has a
y-saturated extension in 〈S,Cn〉. The alternative is that there is in Cn(Y ) some element u for which
Cn({u}) 6= S. By what we have already proved, Y has in 〈S,Cn〉 a u-saturated extension X. By Lemma
22, which is to be found in the appendix below, either X or X ∪ {u} is a maximal theory in 〈S,Cn〉.
Whichever one it is, it is plainly a y-saturated extension of Y .

Corollary If L(〈S,Cn〉) holds for every extremal punctilious system 〈S,Cn〉 then it holds for every
extremal system.

Proof: The only systems to which the Theorem does not provide the proof are those in which S has
only two consistent theories, Ø and {y}. Since Ø has Ø as a y-saturated extension, every theory that
does not imply y has a y-saturated extension, and hence L(〈S,Cn〉) holds.

Can we get any further towards proving LETabcd ⇒ LET? At this point matters become much
trickier. How, for example, might we hope to show the conditional LETabc ⇒ LETab, that if LET holds
for all extremal punctilious 2-compact consequence operations then it holds for all that are extremal and
punctilious? A natural approach to this problem might be to adjust the values of an arbitrary extremal
punctilious consequence operation Cn in this way:

C(Y ) =Df


Y if Cn(Y ) = Y
Y if Cn(Y ) = S

and there are no x, z ∈ Y such that Cn({x, z}) = S
S otherwise.

(14)

Lemma 10 Let 〈S,Cn〉 be an extremal punctilious deductive system. The system 〈S,C〉 defined in (14)
is an extremal punctilious 2-compact deductive system. If 〈S,Cn〉 is equilateral, then so is 〈S,C〉.
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Proof: Omitted.

Unfortunately it does not seem to be possible (without assuming AC) to show that whenever 〈S,C〉
satisfies LET then so does 〈S,Cn〉. Even the problem of proving (without assuming AC) the conditional
LETac ⇒ LET remains open. But it is worth recording that if this result could be proved, there is one
direction in which it could not be improved.

Theorem 11 Without assuming AC it is possible to show that LET holds for all extremal 1-compact
consequence operations.

Proof: Let Cn be a 1-compact extremal consequence operation. Suppose that y /∈ Cn(Y ), and let
X = Y ∪ {x | Cn({x}) 6= S}. If Cn(X) = S, then by 1-compactness there is x ∈ Y ∪ {x | Cn({x}) 6= S}
for which Cn({x}) = S. This implies that Cn(Y ) = S, which is impossible if y /∈ Cn(Y ). Hence
Cn(X) = X (since Cn is extremal).

If x /∈ X then Cn({x}) = S, and hence Cn(X ∪ {x}) = S. Thus X is a maximal theory. In
other words, even in the absence of AC, both LET and Lindenbaum’s theorem LT hold when restricted
to 1-compact extremal consequence operations.

5 A Representation Theorem

In this section we turn to the task of establishing that the four properties detailed in (4) exactly char-
acterize the consequence operations that emerge from Dzik’s construction. We begin with an overdue
definition

(a) x ∼ z =Df x = z ∨ Cn({x, z}) = S

(b) x̃ =Df {z ∈ S | x ∼ z} .
(15)

Lemma 12 If 〈S,Cn〉 is a punctilious and equilateral system then the relation ∼ is an equivalence relation
on S, and for each x, x̃ is the equivalence class of x.

Proof: (15a) is straightforward. (15b) is immediate.

Lemma 13 Let 〈S,Cn〉 be an extremal, punctilious, 2-compact, and equilateral system. There exists an
active family J of sets such that S =

⋃
J and (3) holds.

Proof: Put J = {ũ | u ∈ S}. It is immediate that S =
⋃

J. Now suppose that Cn(Y ) = S. Because Cn
is 2-compact (4c) and punctilious (4b), Cn({x, z}) = S for distinct x, z ∈ Y , from which it follows that
both x and z belong to x̃. In other words, Y is not a selection from any subfamily of J. The converse is
even easier: if Cn(Y ) 6= S, then Y is a selection from some subfamily of J. Note that no inactive family
J could fill the bill here; for Cn(S) = S, and 2-compactness would fail.

Lemma 14 Let J be an active family of sets. Let Cn be defined as in (3), where S =
⋃

J. Then 〈S,Cn〉
is an extremal, punctilious, 2-compact, and equilateral system.

Proof: It is immediate that Cn is extremal. If Cn(Y ) = S, then either Y = S, or Y is not a selection.
Since J is not a family of unit sets, in either case Y contains two distinct elements x, z from the same
element of J. Hence Cn is punctilious. By (3), moroever, Cn({x, z}) = S, since the elements of J are
disjoint. Hence Cn is 2-compact. It is then straightforward to check that Cn is also equilateral.

Lemma 15 Let 〈S,Cn〉 be an extremal, punctilious, 2-compact, and equilateral system, and let J = {ũ |
u ∈ S}. Suppose that y /∈ Y. Then Y is a y-saturated theory in 〈S,Cn〉 if & only if either Y is a selection
from J or ỹ = {y} and Y is a selection from J \ {ỹ}.
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Proof: We assume throughout the proof that y /∈ Y. Let Y be a y-saturated theory. It is obvious that
Y cannot contain two elements of any ũ ∈ J. We must show in addition that Y contains an element of
each ũ ∈ J. If not, then u /∈ Y and so y ∈ Cn(Y ∪ {u}). If this last set is S, then since Cn is punctilious
and 2-compact, Cn({x, u}) = S for some x ∈ Y, which means that Y contains an element of ũ after all.
Hence Cn(Y∪{u}) = Y∪{u}, since Cn is extremal. We may conclude, since y /∈ Y, that y = u. In other
words, the only ũ that Y can fail to contain an element of is ỹ.

Suppose first that ỹ 6= {y}. We shall show that Y is a selection from J. By assumption there is
an element x distinct from y in ỹ. Since x /∈ Y, we must have y ∈ Cn(Y ∪ {x}), from which it follows by
(4a) that Cn(Y ∪ {x}) = S. By 2-compactness and punctiliousness, there exists in Y after all an element
of ỹ. If, alternatively, ỹ = {y}, then it is immediate that Y is a selection from J \ {ỹ}.

For the converse, it is plain that y ∈ Cn(Y ∪ {y}). So choose any other u /∈ Y. It makes no
difference whether Y is a selection from J or a selection from J \ {ỹ}; in each case Y contains an element
of ũ, and hence the set Y ∪ {u} is inconsistent. We conclude that y ∈ Cn(Y ∪ {u}).

Corollary 0 Let 〈S,Cn〉 be an extremal, punctilious, 2-compact, and equilateral system, and let
J = {ũ | u ∈ S}. Then Y is a maximal theory in 〈S,Cn〉 if & only if Y is a selection from J.

Proof: If Y is maximal then it is y-saturated for each y /∈ Y (Lemma 19). If x̃ = ỹ whenever x, distinct
from y, does not belong to Y, then, since J is active, ỹ must contain at least two elements, and it follows
that Y is a selection from J. On the other hand, Y cannot be a selection from both J \ {x̃} and J \ {ỹ}
if x̃ 6= ỹ, and hence Y is again compelled to be a selection from J. The converse is immediate.

Corollary 1 If Y is a saturated theory in an extremal, punctilious, 2-compact, and equilateral system
〈S,Cn〉 then Y is a selection from an active family J satisfying (3).

Proof: All that needs to be shown is that if ỹ = {y} and J is an active family, then J \ {ỹ} is an active
family. Once stated, this is obvious.

Lemma 16 If Y is a selection from an active family J of sets, then there exists an extremal, punctilious,
2-compact, and equilateral system satisfying (3) in which Y is saturated.

Proof: Put S =
⋃

J, and define Cn as in (3). By Lemma 14, Cn has all the listed properties. It is a
simple matter to check that Y is a saturated theory.

Theorem 17 Y is a saturated theory in an extremal, punctilious, 2-compact, and equilateral system
〈S,Cn〉 if & only if it is a selection from an active family J of sets satisfying (3).

Proof: Combine the corollary to Lemma 13 with Lemma 16.

6 One Saturated Theory Is Enough

The aim of this section is to prove (without using AC) the truth of the conditional let ⇒ LETabcd: if in
every system satisfying (4a-d) there exists a saturated theory Y, then in every such system every set Y
not implying y has a saturated extension not implying y. As usual we prove this conditional of the form
∀yΦy → ∀yΨy by proving the stronger universalized conditional ∀y(Φy → Ψy).

Theorem 18 Let 〈S,Cn〉 be an extremal punctilious 2-compact equilateral system in which there is a
saturated theory. If x /∈ Cn(X), then X has an x-saturated extension.

Proof: By Lemma 22 there exists a maximal theory Y in 〈S,Cn〉. By corollary 0 to Lemma 15, Y is a
selection from J = {ũ | u ∈ S}.
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Suppose that x /∈ Cn(X). We define

W =Df X ∪ ({u ∈ Y | Cn(X ∪ {u}) 6= S} \ {x}).(16)

The idea is that in supplementing X by Y, elements of Y that individually contradict elements of X are
deleted, as is x (should it happen to be an element of Y), in the hope that other elements of X will more
or less make up for the loss of the deleted elements, so that W will remain a selection from either J or
J \ {x} (Lemma 15). It will turn out, however, that (16) is not quite enough. We shall see that W omits
x, that it extends X, and that it is a consistent theory, but that it is sometimes necessary to supplement
it to obtain a theory that is x-saturated.

It is immediate that W does not contain x. Since X is a consistent set, it can contain no u for
which Cn(X ∪ {u}) = S. In other words, no element of X is removed from X ∪ Y by the subtraction of
{u ∈ Y | Cn(X ∪ {u}) = S}. Hence X ⊆W .

The 2-compactness of Cn guarantees that W is consistent. Were it not, it would have some
inconsistent two-element subset, which could not consist of two elements of Y, since Y is maximal, and
so would have to consist of an element of X and an element of {u ∈ Y | Cn(X ∪ {u}) 6= S}. This is
impossible. From the consistency of W it follows by extremality that W is a theory.

To show that W is x-saturated, there are four cases to consider, each splitting off from the previous
one. In the first case, x /∈ Y. Hence if u belongs to Y but not to W , then Cn(X ∪ {u}) = S, and so
an element of ũ belongs to W . In other words, since W is consistent, and Y is a selection from J by
assumption, W too is a selection from J. In the second case, x ∈ Y, but x̃ = {x}. Here W contains no
element of x̃, but otherwise matches Y; it is therefore a selection from J \ {x}. In the third case x ∈ Y
and X contains an element, not x of course, of x̃. Here again W is a selection from J.

In the fourth and final case, x ∈ Y and x̃ 6= {x}, but X contains no element of x̃. Here we have to
replace W by W † = W ∪{z} where z is any such element of x̃ that is distinct from x. It is plain that W †

is consistent, for if it were not then there would be some u ∈ W such that u ∈ z̃ = x̃. But since u /∈ Y
(because x ∈ Y, and Y is consistent), it would follow that u ∈ X, contrary to hypothesis. Because Cn is
extremal, W † is a theory, as before. Previous considerations show that W † is a selection from J.

Note that although in defining W † it is necessary to select an element z from x̃, there is no appeal
to AC. For each X and x at most one choice is made, and nowhere do we collect together the choices
made for different X and x.

7 Summary: What Remains to be Done

The above considerations have made three positive steps towards the goal of establishing (without appeal
to AC) the conditional let ⇒ LET. We have proved the conditional let ⇒ LETabcd (Theorem 18), the
conditional LETab ⇒ LETa (the corollary to Theorem 9), and the conditional LETa ⇒ LET (Theorem
7). The unbridged gap is the conditional LETabcd ⇒ LETab. Whether this conditional is amenable to a
simple proof is for the moment an open question.

It may be mentioned in conclusion that quite analogous problems arise with respect to the original
Lindenbaum theorem LT. These must await another occasion.

Appendix: Further Results

This section contains a few useful results concerning maximal and saturated theories in extremal and more
general systems, and also some modest generalizations. Lemma 22 has already been used in Theorem 9
and in Lemma 18, and Lemma 23 was used in Lemma 8. Lemmas 19 and 20 are stated without proof by
Béziau, op.cit., p. 11.
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Lemma 19 Let 〈S,Cn〉 be any system. If the theory Y is maximal in 〈S,Cn〉, then it is y-saturated for
every y /∈ Y.

Proof: Suppose that y /∈ Y. For every x, if x /∈ Y then Cn(Y ∪ {x}) is a proper extension of Y, and
so by hypothesis Cn(Y ∪ {x}) = S. This means that if x /∈ Y then y ∈ Cn(Y ∪ {x}). That is, Y is
y-saturated.

Lemma 20 Let 〈S,Cn〉 be any system. If Y is y-saturated for every y /∈ Y in 〈S,Cn〉, then it is maximal.

Proof: If Y = S \ {y} then it is obviously maximal. So choose any two elements x, z outside Y. Since
Y is z-saturated, z ∈ Cn(Y ∪ {x}). This holds for every x, z, which means that every proper extension
Y ∪ {x} of Y implies every z /∈ Y, as well as every z ∈ Y. In other words, Y is maximal.

Lemma 21 Let 〈S,Cn〉 be any extremal system. If Y is y-saturated for two distinct y /∈ Y in 〈S,Cn〉,
then it is maximal.

Proof: Suppose that Y is both x-saturated and z-saturated, where x 6= z. Then both x /∈ Y and z /∈ Y.
Choose any y /∈ Y. Then y = z or y 6= z. In the first case, x ∈ Cn(Y ∪ {y}), since Y is x-saturated,
and hence Cn(Y ∪ {y}) = S, since 〈S,Cn〉 is extremal and y 6= x. In the second case, z ∈ Cn(Y ∪ {y}),
since Y is z-saturated, and hence Cn(Y ∪ {y}) = S, since 〈S,Cn〉 is extremal and y 6= z. In either case,
therefore, if y /∈ Y then Cn(Y ∪ {y}) = S. This means that Y is maximal.

Note that Lemma 21 cannot be generally improved. It is possible for Y to be y-saturated in an
extremal system 〈S,Cn〉, but not to be maximal. For a simple example, let S = {a, c} and Cn(Y ) = Y
for every Y ⊆ S except for {c}. Then the empty set Ø is a-saturated but not maximal. On the other
hand, we do have the following result.

Lemma 22 Let 〈S,Cn〉 be any extremal system. If Y is y-saturated in 〈S,Cn〉, then either Y is maximal
or Y ∪ {y} is maximal.

Proof: If x 6= y and x /∈ Y, then y ∈ Cn(Y ∪ {x}). Since y /∈ Y and Cn is extremal, it follows that
Cn(Y ∪ {x}) = S. If also Cn(Y ∪ {y}) = S, then Y is maximal. If not, then Cn(Y ∪ {y} ∪ {x}) = S
whenever x /∈ Y ∪ {y}. In other words, Y ∪ {y} is maximal.

Corollary Let 〈S,Cn〉 be any extremal system. If Y is y-saturated in 〈S,Cn〉, and Cn({y}) = S, then
Y is maximal.

Proof: Immediate.

Lemma 23 Let 〈S,Cn〉 be any deductive system satisfying (0). For each Y ⊆ U ⊆ S we put CU (Y ) =
Cn(Y ) ∩ U . Then 〈U,CU 〉 is a deductive system.

Proof: If Y ⊆ U then Y ⊆ Cn(Y ) ∩ U by (0a) applied to Cn. Hence (0a) holds for CU . Since
Cn(Y )∩U ⊆ Cn(Y ), it follows by (0c0) applied to Cn that Cn(Cn(Y )∩U) ⊆ Cn(Cn(Y )) = Cn(Y ). That
implies that for Y ⊆ U , we have CU (CU (Y )) = Cn(Cn(Y ) ∩ U) ∩ U ⊆ Cn(Y ) ∩ U = CU (Y ), which is
(0b). Moreover, if X ⊆ Z ⊆ U then CU (X) ⊆ CU (Z), which is (0c0).

Now suppose that Y ⊆ U , and that y ∈ CU (Y ) = Cn(Y ) ∩ U . Since y ∈ Cn(Y ), there is a finite
subset X of Y for which y ∈ Cn(X) (by (0c1) applied to Cn); and so y ∈ CU (X) where X is a finite
subset of Y . That is, (0c1) holds for CU .

Corollary If 〈S,Cn〉 is an extremal system then so is 〈U,CU 〉.

Proof: Take any Y ⊆ S. If Cn(Y ) = Y then CU (Y ) = Y ∩ U = Y , and if Cn(Y ) = S then CU (Y ) =
S ∩ U = U .
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Note that although the Lemma holds for every U ⊆ S, the pair 〈S,CU 〉 is a deductive system only if
U = S. Note also that the converse of the corollary is not generally valid.

We conclude with some generalizations of Definition 7, and some related results (whose proofs are
omitted). The first variant is rather obvious. Let Cn be a (finitary) consequence operation and X a
subset of S. For each X the consequence operation CnX is defined as follows.

CnX(Y ) =Df

{
Y if Y 6 ` X
S otherwise.(17)

According to this definition, CnS = Cnmin and CnØ = Cnmax. We can also generalize Lemma 4 above.

Lemma 24 For each finite X the operation CnX defined in (17) is an extremal consequence operation.

Proof: Omitted.

It is straightforward to show that if X is infinite the operation CnX may fail to satisfy finitariness (0c1).

We may write Cnzx (and similar expressions) as abbreviations for (Cnz)x (and similar expressions).
In other words

Cnzx(Y ) =Df

{
Y if x /∈ Cnz(Y )
S otherwise.(18)

Lemma 25 Cnzx(Y ) = Cnxz(Y ) for all x, z, Y if and only if Cn is extremal.

Proof: Omitted.

Lemma 26 Cnyy(Y ) = Cny(Y ) for all y, Y .

Proof: Omitted.

Lemma 27 Cn(xz)y(Y ) = Cnx(zy)(Y ) for all x, y, z, Y .

Proof: Omitted.

We state finally a simple characterization of extremal consequence operations. For any function ψ(Y ),
define cψ as follows.

cψ(Y ) =Df

{
Y if ψ(Y ) = Ø
S otherwise.(19)

Theorem 28 The operation Cn: ℘(S) 7→ ℘(S) is an extremal consequence operation if and only if
Cn = cψ for some function ψ that satisfies (0c); that is to say,

ψ(X) =
⋃
{ψ(Z) | Z ⊆ Xand |Z| < ℵ0}.(20)

Proof: Omitted.

The function Cny defined from Cn in (7) is obtained by setting ψ(Y ) = Cn(Y ) ∩ {y}.
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