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Abstract

A theory of probability is outlined that permits the values
of the probability function to lie in any Brouwerian algebra.

0 Introduction

The axioms K for the elementary (numerical) theory of probability introduced by Kolmogorov
(1933), Chapter I, § 1, can be written:

0 ≤ p(x) ≤ p(1) = 1(0)

x · z = 0 =⇒ p(x+ z) = p(x) + p(z),(1)

where x, z, . . . belong to some Boolean algebra A with zero 0, unit 1, meet ·, and join +, and
p is a real-valued function on A; that is, p : A 7→ [0, 1]. The duplicate use of 0, 1, and + (as
operations on both A and ℜ) is deliberate. An alternative self-dual set K⋆ of axioms is

0 = p(0) ≤ p(x) ≤ p(1) = 1(2)

p(x · z) + p(x+ z) = p(x) + p(z).(3)

Note that, when (3) replaces (1), it is necessary to state, as (2) does, that p(0) = 0, so as to ex-
clude the function p whose range is {1}. A function p whose range is {0, 1} can, however, provide
an acceptable interpretation of the theory K, however little it merits the name of probability.

The following lemma is standard.

Lemma 0 : K is equivalent to K⋆, and it follows from each that

x ≤ z =⇒ p(x) ≤ p(z),(4)

where ≤ stands for the ordering on the Boolean algebra A (as well as the ordering on ℜ).

Sections 0 and 1 of this paper were originally written during the 1980s, probably in 1984 or in 1985. Although
sections 2 and 3 are new, the message of this rewritten and digitally remastered version is substantially unchanged.



Proof: To establish equivalence, it suffices to prove (3) from (1). If ∼ z is the Boolean com-
plement of the element z, then both x+ ∼x · z, which is identical with x+ z, and x · z+ ∼x · z,
which is identical with z, are sums of disjoint elements, and so

p(x · z) + p(x+ z) = p(x · z) + p(x) + p(∼x · z)(5)

= p(x) + p(x · z) + p(∼x · z)(6)

= p(x) + p(z)(7)

p(x) ≤ p(x+ z)(8)

1

5

1, 6

0, 5

Since x+ z = z when x ≤ z, this proves (4).

Each of the axioms of K and K⋆ makes perfectly good sense if 0, 1,+, and ≤ are given lattice-
theoretical meanings instead of arithmetical ones, and if we replace the real-valued function
p(x) by a function |x| (which may be called a norm, or valuation) that takes values in any
Boolean algebra or any other lattice L. Unlike the theory of lattice-valued metrics, which has
been studied for more than half a century (see Blumenthal & Menger 1970, or Miller 1977 for
references), the theory of lattice-valued norms is, to my knowledge, almost non-existent; though
it should be mentioned that in (1959), appendix ∗iv, p. 341 (Classics edition, p. 347), Popper
used a simple example in order to give an independence proof for one of the postulates in his
axiomatization of numerical probability. It is the aim of this paper to launch the theory of
lattice-valued norms (or lattice-valued probability).

The task is not without some interest. The algebraic theory L whose axioms are

0 ≤ |x| ≤ |1| = 1,(9)

x · z = 0 =⇒ |x+ z| = |x|+ |z|,(10)

despite being a straight transcription of the Kolmogorov axioms (0) and (1), is much weaker
than its archetype. Axiom (9) says only that |1| = 1, and L itself is too weak to exclude the
possibility that |y| = 1 for all y ∈ A. If (9) is strengthened in the natural way, by adding |0| = 0,
then these axioms can be proved equivalent to the transcription L⋆ of the alternative axioms,
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1 = |a| = |c| = |1|

0 = |0|

a c

Figure 0: 4-element Boolean algebra

0 = |0| ≤ |x| ≤ |1| = 1(11)

|x · z|+ |x+ z| = |x|+ |z|,(12)

exactly as Lemma 0 was proved. But (11), which of course says only that |0| = 0 and |1| = 1,
and (12) are still together too weak to exclude the possibility that |y| = 1 for all non-zero y ∈ A.
This may be seen by inspection of the 4-element Boolean algebra A depicted in Figure 0, in
which the norm | | : A 7→ A takes the value 1 for of each of the three solid elements (including
the top element 1); |0| = 0..
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A more specific problem is that although

|y|+ |∼y| = 1(13)

is a theorem of L⋆, it is not an adequate replica of the familiar law of complementation

p(y) + p(∼y) = 1.(14)

For it follows from (14) that if the probability of an element y decreases, then the probability
of ∼y increases; that is, that

p(x) < p(z) =⇒ p(∼z) < p(∼x).(15)

Nothing like this can be derived from (13), or from L⋆, even if < is replaced by ≤. These axioms
are together compatible with existence of elements x, z for which

|x| < |z| & |∼x| < |∼z|.(16)

This is illustrated by the 16-element Boolean algebra depicted as a regular tesseract in Figure 1.
The norm of each of the nine solid elements (including the top element 1) is 1; |0| = 0; the norm
of the three elements marked ⋆ is some non-extreme element b of the algebra, and the norm of
the three elements marked ⋄ is ∼b. The four elements marked a, c,∼a,∼c provide an example
satisfying (16): the elements a and ∼a have norms b and ∼ b respectively, while each of c and
∼c has norm 1, with the result that |a| < |c| and |∼a| < |∼c|.
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Figure 1: 16-element Boolean algebra

It is immediate that (11) holds. To prove (12), note that there are four kinds of lattice quadrangle
with fringe elements x and z, bottom element x · z, and top element x+ z.

(i) Degenerate quadrangles, in which x ≤ z or z ≤ x. For these quadrangles (12) holds trivially.

(ii) Non-degenerate quadrangles for which |x + z| ̸= 1. There are only two. Since |0| + |b| =
|b|+ |b|, the quadrangle whose top element is a satisfies (12). The same holds when a and
b are replaced by ∼a and ∼b.

(iii) Non-degenerate quadrangles for which |x+ z| = 1, and either |x| = 1 or |z| = 1. For these
quadrangles (12) holds trivially.

(iv) Non-degenerate quadrangles for which |x+ z| = 1, and |x| ̸= 1 ̸= |z|. Then one of x and z
is a ⋆ element, and the other a ⋄ element (since those quadrangles in which both x and z
are ⋆ elements, or both ⋄ elements, have been dealt with in clause (ii)). Since b+ ∼ b = 1,
(12) once more holds.
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1 Resolution

We obtain something much more recognizable if we first rewrite (1) and (3) as

x · z = 0 =⇒ p(x+ z)− p(x) = p(z),(17)

p(x+ z)− p(x) = p(z)− p(x · z),(18)

in which the binary arithmetical operation of subtraction appears. (Note that the singulary
operation minus, which is also represented by −, has not been used above.) Now there is a well
known method of specifying an operation of lattice subtraction − that to some extent behaves
like an inverse of addition; and though (like complementation ∼) it is not defined in every lattice,
it is defined in every Boolean algebra. In general the remainder z − x may be defined as the
least element y for which z ≤ x+ y; that is to say,

z − x ≤ y ↔ z ≤ x+ y.(19)

Bounded lattices that contain a remainder operation that satisfies (19) constitute the variety of
Brouwerian algebras; Boolean algebras constitute a proper subvariety. In a Brouwerian algebra,
the authocomplement ∼y is identified with 1− y, and it is immediate that

1 ≤ y+ ∼y(20)

y+ ∼y = 1,(21)

19

20

the tertium non datur . Note that the law of non-contradiction y · ∼y = 0 is not generally true.
Some care must be taken, since even in Boolean algebras the remainder operation − does

not behave exactly like its arithmetical counterpart. For example, z − x is quite different from
z+ ∼ x (since z − z = 0 but z+ ∼ z = 1), and there is no equivalence between y − z = x
and y − x = z (since 0 − z = 0 for all z, but 0 − 0 = z only if z = 0). As a consequence,
although the inequalities in (19) are equivalent, there is no implication either way between the
equations z−x = y and z = x+y. Inequalities involving the remainder are duals of intuitionistic
implications involving the conditional. Table 0 lists the main inequalities that we shall call on,
together with their duals (⊤ is an intuitionistic tautology, and ⊥ a contradiction).

∼ 1 = 0(22)

y − 0 = y(23)

y − y = 0(24)

y − 1 = 0(25)

x− z ≤ x(26)

x · z + (x− z) = x(27)

(x− y) + z ≤ x+ z(28)

x+ (z − x) = x+ z(29)

(x+ z)− z = x− z(30)

⊥ ⊣⊢ ¬⊤
q ⊣⊢ ⊤ → q

⊤ ⊣⊢ q → q

⊤ ⊣⊢ ⊥ → q

p ⊢ r → p

p ⊣⊢ (p ∨ r) ∧ (r → p)

p ∧ r ⊢ (q → p) ∧ r

p ∧ r ⊣⊢ p ∧ (p → r)

p → r ⊣⊢ p → (p ∧ r)

Table 0: Inequalities in Brouwerian algebra and their intuitionistic duals

Whenever the values of the function | | : A 7→ B lie in a Brouwerian algebra B, the lattice
transcriptions of (17) and (18),

x · z = 0 =⇒ |x+ z| − |x| = |z|,(31)

|x+ z| − |x| = |z| − |x · z|(32)
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are meaningful, whether or not B is identical with the domain A of | |. What is interesting is
that the theory M, which may be axiomatized either by (9) and (31), or by (11) and (32), is
substantially stronger than L.

Theorem 1 : Let | | be a function from a Boolean algebra A into a Brouwerian algebra B. Ax-
ioms (9) and (31) are together equivalent to axioms (11) and (32). Only if A is the two-element
Boolean algebra can |y| = 1 for every non-zero element y of A.

Proof: Thanks to the identity (23), (31) follows from (11) and (32). We therefore begin with
(9) and (31). Equation (35) repeats equation (13).

y · ∼y = 0 =⇒ 1− |y| = | ∼y|(33)

| ∼y| = ∼|y|(34)

|y|+ | ∼y| = 1(35)

∼∼|y| = |y|(36)

x · (∼x · z) = 0 =⇒ |x+ z| − |x| = | ∼x · z|(37)

(x · z) · (∼x · z) = 0 =⇒ |z| − |x · z| = | ∼x · z|(38)

|x+ z| − |x| = |z| − |x · z|.(39)

9, 31, 21

33

34, 21

34

31

31

37, 38

The Boolean law y · ∼y = 0 is silently applied at lines (34) and (39). According to line (34), |y|
and | ∼ y| are neither both equal to 0 nor both equal to 1; it follows that unless A = {0, 1}, it
contains a non-zero element y for which |y| ̸= 1. Line (39) is the same as (32), and the proof is
complete.

Theorem 2 : Let | | be a function from a Boolean algebra A into a Brouwerian algebra B that
satisfies the theory M. Then | | is a monotone function (42), and the law |x + z| = |x| + |z| of
additivity holds generally.

Proof: Either (31) or (32) yields (40). The Boolean law y · ∼y = 0 is applied at line (41).

(x · ∼z) · (x · z) = 0 =⇒ |x| − |x · ∼z| = |x · z|(40)

|x · z| ≤ |x|(41)

z ≤ x =⇒ |z| ≤ |x|(42)

|x|+ |z| ≤ |x+ z|(43)

|x+ z| ≤ (|z| − |x · z|) + |x|(44)

|x+ z| ≤ |x|+ |z|(45)

|x+ z| = |x|+ |z|.(46)

31

40, 26

41

42

19, 39

28, 44

43, 45

This concludes the proof.

Corollary : Equation (12) is a theorem of M.

Proof: (12) follows immediately from (42) and (46).

Theorem 3 : If the range (the set of values) of the function | | is also a Boolean algebra, then
| | is a Boolean homomorphism.

Proof: Lines (34) and (46) provide the necessary information.

Corollary : When A and B are both Boolean algebras, every homomorphism | | : A 7→ B
satisfies M.

Proof: This is obvious for (11). The proof of (32) is an easy exercise in Boolean algebra.
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Every bounded chain is a Brouwerian algebra, since z−x is identical with z when x < z, and
is identical with 0 otherwise. The remainder 1− x, in particular, takes only the values 0 and 1.

Lemma 4 : If the function | | : A 7→ B satisfies M, and B is a chain, then | | takes only the
values 0 and 1.

Proof: Let x be an element of the Boolean algebra A. By (32),

|x| = |x · ∼x|+ (|x+ ∼x| − | ∼x|);

and so by (11), |x| = 0 + (1− | ∼x|). If | ∼x| = 1 then |x| = 0, and if | ∼x| ̸= 1, then |x| = 1,
and hence | ∼x| = 0 in accordance with (34).

An important example is the closed unit interval of the real line, with the standard ordering, but
the theory M does not include as a special case the theory K (in which p may take any number of
distinct values). The arithmetical operation + cannot be understood as a join operation (since,
for example, x ≤ z does not imply that x+ z = z). Equation (36) states that every term of the
form |y| satisfies the law of double negation, a law that does not hold generally in Brouwerian
algebras (any more than it holds in intuitionistic logic). But this does not imply that the range
of | | is a Boolean subalgebra of B. In particular, it is not a theorem of M that |x · z| = |x| · |z|
(which would hold if | | were a homomorphism). This is illustrated in Figure 2, in which the
norm | | defined on the 4-element Boolean algebra A on the left takes values in the 5-element
Brouwerian algebra B on the right. Using (31), it is easily shown that the theory M holds. But
|a · c| = |0| = 0 ̸= β = |a| · |c|.
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Figure 2: Failure of |x · z| = |x| · |z| in M

2 Alternatives

The arithmetical equation (3) can be reorganized in many equivalent ways by moving terms
from side to side. These equivalences are not preserved in the algebraic transcriptions, as we
have seen: (32) is much richer in consequences than (12) is. The question arises whether similar
results are obtainable from algebraic transcriptions of other reorganizations of (3). In making
these transformations it must be remembered that x − z is not in general equivalent to x + u
for any u, and certainly not to x+ ∼ z. The equation p(x · z) − (p(x) + p(z)) = −p(x + z), for
example, cannot sensibly be transformed into |x · z| − (|x|+ |z|) =∼|x+ z|.

Equations (32) and equations (47)–(58) below essentially exhaust the cases where each side
of the equation contains at least one of the four terms (trivial reletterings are excluded). For
the enumeration to be complete, each equation (j) y = w has to be supplemented by two further
equations, (jl) y − w = 0, which is equivalent to y ≤ w, and (jr) w − y = 0, which is equivalent
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to w ≤ y. The equation (j) is obviously equivalent to the conjunction of (jl) and (jr).

|x+ z| − |x| = |z| − |x · z|(32)

|x · z| − |x| = |z| − |x+ z|(47)

|x+ z| = |x| − (|x · z| − |z|)(48)

|x+ z| = |x|+ (|z| − |x · z|)(49)

|x+ z| = (|x|+ |z|)− |x · z|(50)

|x · z| = |x| − (|x+ z| − |z|)(51)

|x · z| = |x|+ (|z| − |x+ z|)(52)

|x · z| = (|x|+ |z|)− |x+ z|(53)

|x| = (|x · z|+ |x+ z|)− |z|(54)

|x| = |x+ z| − (|z| − |x · z|)(55)

|x| = |x · z| − (|z| − |x+ z|)(56)

|x| = |x+ z|+ (|x · z| − |z|)(57)

|x| = |x · z|+ (|x+ z| − |z|)(58)

To these we may add

|x · z|+ |x+ z| = |x|+ |z|,(12)

though we have already established its unacceptable weakness.
When (j) is one of the 42 equations enumerated, the nameMj will be used to denote the theory

axiomatized by (11) and (j). The theory M32 and the theory M are therefore the same theory.
We begin by showing that the set of 42 equations just enumerated contains some redundancies.

Lemma 5 : In every Brouwerian algebra, each equation in the following list is equivalent to
those with which it is grouped: {(32r), (51r), (58l)}; {(47r), (48r), (57l)}; {(47l), (52l), (56r)};
{(32l), (49l), (55r)}; {(12l), (54r)}; {(12r), (50r), (53r)}.

Proof: Write the equations as inequalities, and apply (19), interchanging x and z where necess-
ary. The slight imbalance in the list (five sets of three, and one of two) results from the identity
of the two versions of (54r) that emerge from symmetrical applications of (19) to (12l).

Lemma 6 : The theory M58 is equivalent to M.

Proof: It is evident that, given (11), the principal axiom (32) of M follows from (58). The
following lines show how (58) may be derived within M.

|x+ z| − |z| ≤ |x|(59)

|x · z|+ (|x+ z| − |z|) ≤ |x · z|+ |x| = |x|(60)

|x| ≤ |x · z|+ (|x+ z| − |z|)(61)

|x| = |x · z|+ (|x+ z| − |z|).(58)

19, 46

59, 42

32, 19

60, 61

It must be remembered that (46) and (42) have been derived from (32) in Theorem 2.

Corollary The theory M55 is consistent and implies M.

Proof: If | | is the identity function on the Boolean algebra A, then M55 reduces to a simple
Boolean identity. It is evident too that, given (11) and (23), the principal axiom (32) of M
follows from (55). A proof is wanting, but M55 appears to be strictly stronger than M.
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We now eliminate from 30 distinct equations that remain those that contradict (11) and are
therefore of little further interest. None of them is the equivalent of any other equation in the
original list.

Lemma 7 : Each of the theories M48l, M50l, M52r, M53l, M54l, M56l, and M57r, is inconsistent.

Proof: Put x = 0 and z = 1 in (48l) and in (57r). Put x = 1 and z = 0 in (52r) and in (56l).
Put x = 1 = z in (50l), in (53l), and in (54l). In each case the identities |0| = 0 and |1| = 1
yield the inequality 1 ≤ 0.

Corollary : Each of the theories M48, M50, M52, M53, M54, M56, and M57 contradicts M11.

Proof: Immediate.

This leaves 16 distinct equations. We now eliminate some that are too weak to be useful.

Lemma 8 : None of the theories M12, M47, M49, M51l, M53r, M54r, M55r, M56r, M57l, and M58r,
excludes the norm depicted in Figure 0 on p. 2 above.

Proof: It is necessary to check only that the equation holds when x ≤ z, when z ≤ x, and for
a and c (in either order). These proofs are all straightforward. A proof in the same style is spelt
out in Lemma 9 below.

Corollary : None of the theories M12l, M12r, M32l, M47l, M47r, M48r, M49l, M49r, M50r, and
M52l excludes the norm depicted in Figure 0.

Proof: For (12l) and (12r), (47l), (47r), (49l), and (49r), the proof is immediate, since they
are consequences of equations already shown to be too weak. According to Lemma 5, the others
(and some of those just mentioned) are equivalent to equations that are too weak.

We now eliminate four theories that show weaknesses that stop short of triviality.

Lemma 9 : The theory M51 implies that | ∼ y| ≤ ∼ |y| and also the double negation law (36),
but does not imply the identity (34).

Proof: Substitute ∼y for x and y for z in (51), and then use the Boolean law y · ∼y = 0 and
(11). The result is 0 = | ∼y|−(1−|y|), from which, by application of (19), the desired inequality
follows. Writing 1 for x and y for z in (51) establishes that |y| =∼∼|y|, which is (36).
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Figure 3: Failure of | ∼y| = ∼|y| in M51

Figure 3 provides a counterexample to (34). That M51 holds may be checked in four stages.
The proof of (11) requires no work. If x = a and z = c in A, then (51) reduces to

|0| = |a| − (|1| − |c|) = α− (1− γ) = α− 1 = 0;
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and likewise if x = c and z = a in A. If x ≤ z in A then (51) reduces to |x| = |x| − (|z| − |z|),
which is trivial. If z < x in A then (51) reduces to |z| = |x| − (|x| − |z|). This holds when x = 1,
by the double negation law (36) just proved. It holds also when x < 1, since in that case z = 0.

It is immediate that γ = |c| = | ∼a| ̸= ∼|a| =∼α = 1, and that (34) fails.

Corollary 0 : The theories M32r, M51r, and M58l do not imply the identity (34).

Proof: Use the lemma and Lemma 5.

Corollary 1 : The theories M32l, M49l, and M55l do not imply the identity (34).

Proof: The proof for M55l is similar to that just given. Lemma 5 completes the proof.

The theories mentioned in Corollary 0 to Lemma 9 also fail to enforce the additivity law (46).

Lemma 10 : The theories M32r, M51r and M58l do not imply the identity (46).

Proof: It is easily checked that M32r holds for the norm | | displayed in Figure 4. But (46)
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Figure 4: Failure of |x+ z| = |x|+ |z| in M32r, M51r and M58l

fails, since |a|+ |c| = 0 ̸= 1 = |a+ c|.

These results are summarized in Table 1, where ◦ indicates that the equation is too weak
to rule out the norm | | for which |y| = 1 whenever y ̸= 0 (Figure 0), and ⋆ indicates that the
equation excludes this norm but is too weak to yield (34). Equations marked× contradict (11).

32 47 48 49 50 51 52 53 54 55 56 57 58 12

l&r M ◦ × ◦ × ⋆ ××× ×× M ◦
l ◦ ◦ × ◦ × ◦ ◦ ×× ⋆ × ◦ ⋆ ◦
r ⋆ ◦ ◦ ◦ ◦ ⋆ × ◦ ◦ ◦ ◦ × ◦ ◦

Table 1: Summary of Lemmas 5–10

If we dismiss all those theories marked with a×or a ◦ or a ⋆, we are left with one alternative
to the theory M, namely M55, which has been shown in the corollary to Lemma 6 to be at least
as strong as M. Some light may be thrown on this theory, and on some of the others marked with
a ⋆, by identifying | | throughout with the identity function, and considering the duality between
each of the 42 enumerated equations and a corresponding statement of logical implication. Each
of the inequalities or equations indicted in Lemma 8, in particular, and accordingly each of
those mentioned in its corollary, is dual to a valid implication or bi-implication of intuitionistic
logic. Equation (58r), for example, corresponds to p ⊢ (r → (p ∧ r)) ∧ (p ∨ r); while (57l)
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corresponds to (r → (p ∨ r)) ∧ (p ∧ r) ⊢ p. In the same way, none of the inequalities
or equations indicted in Lemma 7, and accordingly none of those mentioned in its corollary,
corresponds to a valid implication of classical logic. Equation (52r), for example, corresponds
to p ∨ r ⊢ p ∧ ((p ∧ r) → r), while equation (48l) corresponds to (r → (p ∨ r)) → p ⊢ p ∧ r.
All this seems sensible. But some of the inequalities not indicted in Lemma 8 also correspond to
valid intuitionistic implications; for example, (58l) corresponds to (r → (p ∧ r)) ∧ (p ∨ r) ⊢ p,
and (32r) and (51r), which are logically equivalent to it (Lemma 5), of course also correspond
to valid formulas. These are three of the four inequalities for which Table 1 shows a star.
There are just two inequalities that correspond to implications that are classically valid but
intuitionistically invalid: (55l), which corresponds to ((p ∨ r) → r) → (p ∧ r) ⊢ p, and (51l),
which corresponds to (r → (p ∧ r)) → p ⊢ p ∨ r. They are not equivalent, and indeed the
latter is too weak to exclude the norm depicted in Figure 0, but the former is not.

It is to be hoped that further investigation of the theory M55 will either establish its identity
with M or will indicate in what way it is too strong (or, perhaps, in what way M is too weak).

3 Closing Remarks

A standard extension to the theory K incorporates also Kolmogorov’s axiom of continuity (1933,
Chapter II, § 1), which states that if y = {yj | j ∈ N} is a decreasing sequence of elements of A,
that is, one for which yj+1 ≤ yj for every j ∈ N , then∏

y = 0 =⇒ lim
n=⇒∞

p(yj) = 0,(62)

where
∏

y is the (infinite) meet of the elements in the sequence y. This axiom (62) is equivalent
to the generalized addition theorem (ibidem): if y ⊂ A is a countable collection of pairwise
disjoint sets, then

p(
∑

y) =
∑
y∈y

p(y),(63)

provided that A contains the infinite join
∑

y of y. These laws can be rendered lattice-
theoretically in the obvious way, by writing | | instead of p in their consequents. It is clear
that the same problem arises for

∀x ∈ y ∀z ∈ y (x ̸= z =⇒ x ∩ z = 0) =⇒ |
∑

y| =
∑
y∈y

|y|,(64)

as arose for (10), that it is powerless on its own to prevent |y| from being equal to 1 for all
y ∈ A. It remains to be seen whether the incorporation of the law (64) into the theory M yields
a theory of much mathematical interest.
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