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The Central Dogma of molecular biology proposes that the genetic information, constituting
the genome of all organisms, resides in the sequence of bases within a nucleic acid molecule
(usually DNA) and that this information is transcribed into RNA, which in turn determines
the linear sequence of amino acids in proteins. Coupled with the assumed quasi-universality
of the genetic code, the Central Dogma allows the molecular biologist to suppose that he or
she can analyse the DNA from any organism and determine where the genes lie on that DNA
molecule and also predict the amino acid sequence of the proteins they encode. Furthermore, by
comparison with other conceptually translated proteins, inferences are made as to the biological
properties of these proteins. Thus,“understanding nature’s mute but elegant language of living
cells” involves several, possibly inductive, steps. The large scale sequencing of DNA molecules is
now commonplace and, in the sense that the information obtained is purely descriptive, might
be regarded as the natural history of molecular biology. However, the explosion of sequence
information that this has led to and, more importantly, its subsequent interpretation, has given
rise to an absolute requirement for computerized approaches to the storage, organization, and
indexing of sequence data and for specialized tools to view and analyze this information. These
pressures have led to a novel field of science, Bioinformatics, in which biology, computer science,
and information technology converge. A key feature of the new discipline is the development
of novel algorithms to automatically annotate, interrogate and analyse large and complex data
sets with the aims of permitting global comparisons between genomes and, some would say,
permitting the automatic generation of testable hypotheses.

Some of these algorithms have undoubtedly been successful. The problem confronting us now
is to critically examine these successes in the light of the well-known falsificationist objections
to inductive reasoning.
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We have argued elsewhere [1] that the scientific process is best characterised by an iterative
interplay between complementary hypothesis-generating and hypothesis-testing (‘hypothesis-
dependent’) arms of a continuing cycle. In particular, especially in the “post-genomic” era
of functional genomics, which tends to be data-rich but hypothesis-poor, arguably the more
important arm presently in biology is that which is knowledge- or hypothesis-generating , and
in which the direction of inference is from observations to ideas. Notwithstanding the well-
known logical/philosophical insecurity of purely data-driven, inductive reasoning (‘the sun rose
yesterday and the day before, so I expect it to rise tomorrow’) the hypothesis-generating arm, as
used by working scientists ‘at the coalface’ , is essentially data-driven, and thus purely inductive
(to rules) or abductive (to facts) in character. Many other activities of value to the scientific
process, especially technology development, are free of specific hypotheses beyond that (view)
which states that their outputs should at least be of value. Some sciences are especially data
driven (epidemiology, ‘whodunnit’ forensic science).

A number of authors have described the evolution of ideas and knowledge, or of the optimal
future behaviour that they might then govern, as a data-driven search on what amounts to a
‘fitness’ landscape (e.g. [2-5]). Similarly, from the scientific point of view, the “design”, choice
or evolution of the next experiment to do in a series is known as ‘active learning’ [6-8], and
may again be purely data-driven. Machine learning methods, in which computer algorithms
are used which improve their performance in the light of ‘experience’ [9], exemplify this. The
‘Robot Scientist’ [10] carries out an iterative cycle of active learning in an entirely closed loop
manner (without human intellectual intervention) and is competitive with human reasoning in
an important scientific domain.
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In the life sciences there is a strong resurgence of the view that there is a direct route from
observation to understanding. By this route, knowledge can flow securely from data without
the human and fallible intervention of guesswork, imagination or hypothesis. Information tech-
nology now puts oceans of data at our immediate disposal, and even the ubiquitous personal
computer can process and analyse these data at huge speed. Surely we can now expect computer
programs to derive significance, relevance and meaning from chunks of information, be they nu-
cleotide sequences or gene expression profiles. Increasingly, life scientists are advised to rely on
computers, or on predetermined software algorithms, to do their thinking for them. A Nature
editorial — “Can biological phenomena be understood by humans?” — provocatively implies
that scientific discovery might well be carried out by machine. In contrast with this view, many
are convinced that no purely logical process can turn observation into understanding. We owe
this conviction to the work of Karl Popper. Here I argue that Popper was correct, and outline
the way in which I think his philosophy applies to the newly data-rich areas of the Life Sciences,
and to bioinformatics itself. I predict that even the formidable combination of computing power
with ease of access to data does not amount to a qualitative shift in the way we do science:
making hypotheses remains an indispensable component in the growth of knowledge.
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