
STEADY STATE MODELS and the INITIAL TRANSIENT 
 
There are five main methods for dealing with an initial transient: 
1. Run-in model for a warm-up period till reaches steady state.  Delete data from the warm-up period. 
2. Set initial conditions of the model so that model starts in steady-state. 
3. Set partial initial conditions then warm-up model and delete warm-up data. 
4. Run model for very long time making the bias effect negligible. 
5. Estimate steady state parameters from a short transient simulation run. 
 
This project is only concerned with the first method: Deletion of the initial transient data by specifying a warm-up period. 
 

Question is:  How do you estimate the length of the warm-up period required? 
 
There are five main methods: 
1. GRAPHICAL METHODS: Involve visual inspection of the time-series output and human judgement. 
2. HEURISTIC APPROACHES – Provide rules for determining when initialisation bias has been removed. 
3. STATISTICAL METHODS – Based upon statistical principles. 
4. INITIALISATION BIAS TESTS – These test whether the warm-up period has been deleted.  They test the null hypothesis, H0: no  

initialisation bias present in a series of data. 
5. HYBRID METHODS – Combines initialisation bias tests with graphical or heuristic methods to determine warm-up period. 
 
This document contains details of 42 such methods that were found by the authors of this document in published literature.  Each method has 
been given a unique ID number, as has each journal/book reference relating to the methods.  The first summary table (Table1) gives the method 
ID, method name, method type and all journal/book ref IDs relating to that method, for each of the 42 methods found.  The second summary 
table (Table2) gives the reference ID, author names, title and journal/book information for each of the papers/books referenced.  The following 
section, titled “Warm up Methods: Summary Details and Literature Review”, contains individual tables, sorted into method types, which give 
the details of each warm up method.  Each table consists of the method ID and name, a brief description of the method, a brief literature review 
and a summary of the positives and negatives (criticisms) of the method. Each method is also rated on accuracy, simplicity, automation potential 
(particularly important for this project), generality, including the number of parameters requiring estimation and computation time. 



 
Warmup Methods 

Method ID Method Name Method Type Paper Refs ID 
1 Simple Time Series Inspection Graphical 48
2 Ensemble (Batch) Average Plots Graphical 51
3 Cumulative-Mean Rule Graphical 48, 35, 32, 16, 57, 6, 51, 37, 4, 45
4 Deleting-The-Cumulative-Mean Rule Graphical 57, 6
5 CUSUM Plots Graphical 16
6 Welch's Method Graphical 34, 7, 53, 52, 51, 36, 4, 1, 45
7 Variance Plots (or Gordon Rule) Graphical 48, 35, 32, 7
8 Statistical Process Control Method (SPC) Graphical 52, 1, 8
9 Ensemble (Batch) Average Plots with Schribner's Rule Heuristic 35, 13, 7

10 Conway Rule or Forward Data-Interval Rule Heuristic 40, 13, 32, 35, 50, 7, 23, 5, 1, 49
11 Modified Conway Rule or Backward Data-Interval Rule Heuristic 35, 32, 5, 58
12 Crossing-Of-The-Mean Rule Heuristic 35, 32, 13, 7, 5, 58, 1
13 Autocorrelation Estimator Rule Heuristic 24, 35, 7
14 Marginal Confidence Rule or Marginal Standard Error Rules (MSER) Heuristic 5, 28, 36
15 Marginal Standard Error Rule m, (e.g. m=5, MSER-5) Heuristic 28, 1, 45
16 Goodness-Of-Fit Test Statistical 7
17 Relaxation Heuristics Heuristic 46, 7, 57, 6, 36  
18 Kelton and Law Regression Method Statistical 11, 34, 46, 7, 57, 6, 47, 52, 36
19 Randomisation Tests For Initialisation Bias Statistical 23, 1
20 Schruben's Maximum Test (STS) Initialisation Bias Tests 20, 34, 18, 23, 22, 52
21 Schruben's Modified Test Initialisation Bias Tests 16, 34, 28, 52



Warmup Methods 
Method ID Method Name Method Type Paper Refs ID 

22 Optimal Test (Brownian bridge process) Initialisation Bias Tests 18, 46, 7, 31, 52
23 Rank Test Initialisation Bias Tests 14, 31, 52
24 Batch Means Based Tests - Max Test Initialisation Bias Tests 33, 42, 43, 52, 28
25 Batch Means Based Tests - Batch Means Test Initialisation Bias Tests 33, 43, 22, 28, 52
26 Batch Means Based Tests - Area Test Initialisation Bias Tests 33, 43, 22, 52
27 Pawlikowski's Sequential Method Hybrid 7
28 Scale Invariant Truncation Point Method (SIT) Hybrid 17
29 Exponentially Weighted Moving Average Control Charts Graphical 9
30 Algorithm for a Static Dataset (ASD) Statistical 4
31 Algorithm for a Dynamic Dataset (ADD) Statistical 4
34 Telephone Network Rule Heuristic 19
35 Ockerman & Goldsman Students t-tests Method Initialisation Bias Tests 22
36 Ockerman & Goldsman (t-test) Compound Tests Initialisation Bias Tests 22
37 Glynn & Iglehart Bias Deletion Rule Statistical 38
38 Wavelet-based spectral method (WASSP) Statistical 39, 54, 56
39 Queueing approximations method (MSEASVT) Statistical 41
40 Chaos Theory Methods (methods M1 and M2) Statistical 42
41 Beck's Approach for Cyclic output Heuristic 44
42 Tocher's Cycle Rule Heuristic 7
43 Kimbler's Double exponential smoothing method Heuristic 46
44 Kalman Filter method Statistical 47, 52
45 Euclidean Distance (ED) Method Heuristic 58



Warmup Methods 
Method ID Method Name Method Type Paper Refs ID 

46 Neural Networks (NN) Method Heuristic 58
Table 1: Summary of all warm-up methods found in literature: method ID, method name, method type and all journal/book ref IDs relating to 
each method.   
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Evaluation of methods used to 
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state simulation 

Proceedings of the 
Winter Simulation 
Conference 

2004   663-
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only 

No 
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Truncation point estimation using 
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Proceedings of the 
Winter Simulation 
Conference 

2003   414-
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 New Method No 

5 Preston White Jnr, K. An effective truncation heuristic 
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output 
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 New Method No 
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 New Method No 
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problems and solutions 
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 Survey No 
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European Journal of 
Operational Research
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346 

 New Method No 
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ID Authors Title Journal Year Volume Number Pages Publisher Type Book? 

9 Rossetti, M. D., Li, Z., 
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determine the warm-up period 

Proceedings of the 
Winter Simulation 
Conference 

2005   771-
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 New Method No 

11 Kelton, W. D., and Law, 
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A new approach for dealing with 
the startup problem in discrete 
event simulation 

Naval Research 
Logistics Quarterly 

1983 30  641-
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 New Method No 

13 Wilson, J. R., and 
Pritsker, A. A. B. 

Evaluation of startup policies in 
simulation experiments 

Simulation 1978 31 3 79-89  Comparison 
only 

No 

14 Vassilacopoulos, G. Testing for initialization bias in 
simulation output 

Simulation 1989 52 4 151-
153 

 New Method No 

16 Nelson, B. L Statistical analysis of simulation 
results 

Handbook of 
industrial engineering

1992    John Wiley 
NY, 2nd Ed 

Survey Yes 

17 Jackway, P. T., and 
deSilva, B. M. 

A methodology for initialisation 
bias reduction in computer 
simulation output 

Asia-Pacific Journal of 
Operational Research

1992 9  87-100  New Method No 

18 Schruben, L., Singh, H., 
and Tierney, L. 

Optimal tests for initialization 
bias in simulation output 

Operations Research 1983 31 6 1167-
1178 

 New Method No 

19 Zobel, C. W., and Preston 
White Jnr, K. 

Determining a warm-up period 
for a telephone network routing 
simulation 

Proceedings of the 
Winter Simulation 
Conference 

1999   662-
665 

 New Method No 

20 Schruben, L. W. Detecting initialization bias in 
simulation output 

Operations Research 1982 30 3 569-
590 

 New Method No 

22 Ockerman, D. H., and 
Goldsman, D 

Student t-tests and compound 
tests to detect transients in 
simulated time series 

European Journal of 
Operational Research

1999 116  681-
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 New Method No 

23 Yucesan, E Randomization tests for 
initialization bias in simulation 
output 

Naval Research 
Logistics 

1993 40  643-
663 

 New Method No 

24 Fishman, G. S. Estimating sample size in Management Science 1971 18  21-38  New Method No 
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computing simulation 
experiments 

28 Preston White Jnr, K., 
Cobb, M. J., and Spratt, 
S. C 

A comparison of five steady-
state truncation heuristics for 
simulation 

Proceedings of the 
Winter Simulation 
Conference 

2000   755-
760 

 Comparison 
only 

No 

31 Ma, X., and Kochhar, A. 
K. 

A comparison study of two tests 
for detecting initialization bias in 
simulation output 

Simulation 1993 61 2 94-101  Comparison 
only 

No 

32 Gafarian, A. V., Ancker 
Jnr, C. J., and Morisaku, 
T. 

Evaluation of commonly used 
rules for detecting "steady state" 
in computer simulation 

Naval Research 
Logistics Quarterly 

1978 25  511-
529 

 Comparison 
only 

No 

33 Cash, C. R., Dippold, D. 
G., Long, J. M., and 
Pollard, W. P. 

Evaluation of tests for initial-
condition bias 

Proceedings of the 
Winter Simulation 
Conference 

1992   577-
585 

 Comparison 
only 

No 

34 Law, A. M. Statistical analysis of simulation 
output data 

Operations Research 1983 31  983-
1029 

 Survey No 

35 Wilson, J. R., and 
Pritsker, A. A. B 

A survey of research on the 
simulation startup problem 

Simulation 1978   55-58  Comparison 
only 

No 

36 Linton, J. R., and 
Harmonosky, C. M. 

A comparison of selective 
initialization bias elimination 
methods 

Proceedings of the 
Winter Simulation 
Conference 

2002   1951-
1957 

 Comparison 
only 

No 

37 Fishman, G. S. Discrete-Event Simulation  2001    Springer Instructional 
incl. warmup 

Yes 

38 Glynn P W and Iglehart D 
L 

A New Initial Bias Deletion rule Proceedings of the 
Winter Simulation 
Conference 

1987   318-
319 

 New Method No 

39 Lada E K, Wilson J R and 
Steiger N M. 

A wavelet-based spectral 
method for steady-state 
simulation analysis 

Proceedings of the 
Winter Simulation 
Conference 

2003   422-
430 

 New Method No 
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40 Conway R W Some tactical problems in digital 
simulation 

Management Science 1963 10 1 47-61  New Method No 

41 Rossetti M D and 
Delaney CPT P J 

Control of initialization bias in 
queueing simulations using 
queueing approximations 

Proceedings of the 
Winter Simulation 
Conference 

1995   322-
329 

 New Method No 

42 Lee Y-H and Oh H-S Detecting truncation point in 
steady-state simulation using 
chaos theory 

Proceedings of the 
Winter Simulation 
Conference 

1994   353-
360 

 New Method No 

43 Goldsman D, Schruben L 
W and Swain J J 

Tests for transient means in 
simulated time series 

Naval Research 
Logistics 

1994 41  171-
187 

 New Method No 

44 Beck A D Consistency of warm up periods 
for a simulation model that is 
cyclic in nature 

Proceedings of the 
Simulation study 
group (OR Society) 

2004   105-
108 

 New Method No 

45 Sandikci B and 
Sabuncuoglu I 

Analysis of the behaviour of the 
transient period in non-
terminating simulations 

European Journal of 
Operational Research

2006 173  252-
267 

 Comparison 
only 

No 

46 Kimbler D L and Knight B 
D 

A survey of current methods for 
the elimination of initialisation 
bias in digital simulation 

Annual Simulation 
Symposium 

1987 20  133-
142 

 Comparison 
only 

No 

47 Gallagher M A, Bauer K 
W Jnr and Maybeck P S 

Initial Data truncation for 
univariate output of discrete-
event simulations using the 
Kalman Filter 

Management Science 1996 42 4 559-
575 

 New Method No 

48 Gordon G System simulation  1969    Prentice-Hall 
NJ 

New Method Yes 

49 Fishman G S Concepts and methods in 
discrete event digital simulation 

 1973    Wiley NY New Method Yes 

50 Bratley P, Fox B and 
Schrage L 

A guide to simulation (2nd Ed)  1987    Springer-
Verlag NY 

Survey Yes 
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51 Banks J, Carson J S, 
Nelson, B L and Nicol D 
M 

Discrete-event system simulation  2001    Prentice Hall 
NJ 

Survey Yes 

52 Law A M and Kelton W D Simulation Modelling and 
Analysis 

 2000    McGraw-Hill 
NY 

Survey Yes 

53 Alexopoulos C and Seila 
A F 

Output data analysis Handbook of 
Simulation (Ed: J 
Banks) 

1998   225-
272 

Wiley NY Survey Yes 

54 Lada E K, Wilson J R, 
Steiger N M and Joines J 
A 

Performance evaluation of a 
wavelet-based spectral method 
for steady-state simulation 
analysis 

Proceedings of the 
Winter Simulation 
Conference 

2004   694-
702 

 New Method No 

56 Lada E K and Wilson J R A wavelet-based spectral 
procedure for steady-state 
simulation analysis 

European Journal of 
Operational Research

2006 174  1769-
1801 

 New Method No 

57 Roth E and Josephy N A relaxation time heuristic for 
exponential-Erlang queueing 
systems 

Computers & 
Operations research 

1993 20 3 293-
301 

 New Method No 

58 Lee Y-H, Kyung K-H and 
Jung C-S 

On-Line determination of steady 
state in simulation outputs 

Computers industrial 
engineering 

1997 33 3 805-
808 

 New Method No 

Table 2: Summary of the literature searched for warm-up methods: reference ID, author names, title and journal/book information. 
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WARM-UP METHODS:  SUMMARY DETAILS and LITERATURE REVIEW 
 
 



CRITERIA RATINGS PREFERRED 
RATING 

Accuracy Good/Medium/Poor Good 
Simplicity Good/Medium/Poor Good/Medium 
Automation potential Good/Medium/Poor Good/Medium 
Generality  
(No assumptions) 

Good/Medium/Poor Good/Medium 

Parameters to estimate? None,1, 2, etc… (V) = (incl. variance) None/Few 
Computation time Good/Medium/Poor Good/Medium 
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HEURISTIC METHODS 

 
Method ID 9
Method Name Ensemble (Batch) Average Plots with Schribner’s Rule 
Brief description Pawlikowski (1990) [7]:  “In a time series of batch means ( ) ( ),...,, 0201 mXmX  the initial transient is over 

after b0 batches, that is, after n0 = b0m0 observations, if the k most recent batch means all fall within an 
interval of width δ1; that is if:    

( ) ( ) 100 00
δ<− −− mXmX jbib ,  for 0<i<k-1, 0<j<k-1 

Literature Review Pawlikowski (1990) [7]: Method "…is sensitive to the value of the parameter k [number of batch means 
which must fall within interval], which should depend on the variability of the observed process" 
 
Wilson & Pritsker (1978b)[13]:   
Test Method: Used a 5 step procedure for evaluating 3 alternative start-up policies with 4 different 
truncation methods:  



IC1: initial conditions are idle & empty, IC2: start as close to steady state mode as possible, IC3: start as 
close to steady state mean as possible;  
Truncation Rules: TR0: retain all data, TR1: Use Conway rule (10), TR2: Use Crossing-of-the-mean rule 
(12), TR3: Use Ensemble (Batch) Average Plots with Schribner’s Rule (9):    
Step1: Select standard system and compute bias, variance and MSE for all possible values of truncation 
point and for each initial condition (ICi) as specified above.   
Step2: Estimate distribution of truncation pt over independent simulation runs for each start up policy (ICi, 
TRi).   
Step3: Compute average bias, var & MSE by combining results from Steps1 & 2.   
Step4:  Select a base policy & for every truncation pt under this policy compute the 1/2 length of a 
confidence interval (CI) for µ centred at the sample mean for that truncation pt.  Average these values with 
respect to the observed distribution from Step2 to create a standard average CI 1/2 length for the base policy. 
Adjust CIs for all other policies so their average 1/2 length = the base average 1/2 length.   
Step5: Calculate probabilities that a CI centred around the estimated mean will actually cover the true mean.  
Calculate these coverage probabiities for all possible values of truncation pt, and average results w.r.t the 
appropriate truncation pt distribution for each policy.              
Systems Studied:  M/M/1 queue with a capacity of 15 and a traffic intensity (ρ) of 0.9;  A Machine Repair 
System - each machine in a group of 14 independent units has a constant failure rate of 0.2 so that time to 
failure is exponentially distributed with a mean of 5. Repair station rule is first come first served, with 3 
parallel servers & enough waiting room for all machines.  Repair times are exponentially distributed with a 
mean of 2.  Arrival rate depends on how many units are in the system. 
Results:  Ensemble (Batch) Average Plots with Schribner’s Rule (9) & Crossing-of-the-mean rule (12) 
seemed to reduce the bias much more than the Conway rule (10) but suffered from a loss of CI coverage 
regarding the true mean.  This showed apparently that a misspecification of the parameter/s can cause a large 
loss of coverage. 
 
Wilson & Pritsker (1978a) [35]:  Requires 3 parameters to be specified: Batch size, batch count & tolerance. 

Positives Simple.  Automatable. 
Criticisms Requires 3 parameters to be specified: Batch size, batch count & tolerance [35]. Misspecification of the 



parameter/s can cause a large loss of coverage [13].  Sensitive to the value of the parameter, k, number of 
batch means which must fall within interval, which should depend on the variability of the observed process.  
[7]. 

Accuracy Medium/Poor 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 3 -  Batch size, batch count (k) & tolerance (δ) 
Computation time Good 
 
Method ID 10
Method Name Conway Rule (or Forward Data-Interval Rule) 
Brief description Make pilot runs.  Collect observations at relatively short intervals.  

Bratley et al (1987) [50]:  For each pilot run, “…discard initial observations until the first one left is neither 
the maximum nor the minimum of the remaining observations.”    
Fishman (1973) [49]: Choose the largest truncation point out of all the pilot runs.  
Recommended that it be applied to batch means and not original observations.   
Conway [40] cautioned “against examining cumulative statistics …as such will typically lag behind the 
current state.”     

Literature Review Mahajan & Ingalls (2004) [1]:  
Systems Studied:  Job Shop model consisting of 5 Cells, C(i), i=1…5.  Each cell has different number of 
machines (resources). There are 3 customer classes A,B,C.  Overall arrival rate is poisson.  Service times are 
exponential with mean dependent on customer class and cells.  Arriving parts are split into classes {A, B, C} 
with probability {0.5, 0.3, 0.2}.  3 types of utilisation are used:  TypeI is high utilisation with an average 
utilisation of 90%  and range 80-95%;  TypeII is moderate with an average utilisation of 70% and range 65-
80%;  TypeIII is Low with average utilisation of 50% with range 45-65%.   Models are started empty & idle.  
Initial run length is 1000 hrs, with 5 replications.                       
Performance criteria:  Final MSE & Variance, average computing time, percentage change in MSE, 
percentage change in variance.   Method said to perform well if it reduces both MSE and Variance and is 



computationally efficient. 
Results:  Method performed well with the low utilised systems and is therefore recommended for use with 
those types of systems. 
 
Preston White Jnr (1997) [5]:   
Systems Studied: Four M/M/1 queue systems with output variable set as number in system:  

1. Empty Queue: model starts empty & idle with ρ = 0.9;  
2. Loaded Queue: 100 entities in system at start with ρ = 0.9;  
3. Filling Tandem Queue: model starts empty & idle with ρ = 1.4 and a capacity of 100;  
4. Transient Tandem Queue: model starts empty & idle with ρ = 1.4; 

Tested 4 methods: Conway rule (10), Modified Conway rule (11), Crossing-of-the-mean rule (12) and MCR 
(14). 
Results:  All better than not truncating at all!  "For the empty queue experiments, all of the rules give 
reasonably accurate overall point estimates for the grand mean (within 3% of population mean), with the 
sole exception of the un-weighted Modified Conway rule (11).  Only MCR (14) provides coverage of the 
95% confidence interval however."  "The results for .. [no truncation of data] and [Conway rule (10)] are 
identical to each other…and also provide the most precise interval estimate as expected.  The results differ 
only on one run [out of 10] and provide the most accurate point estimate."  "For the loaded queue 
experiments, …all of the rules provide significant correction [of bias] through truncation.  Again only the 
MCR (14) yields coverage of the 95% CI."  "For the filling queue experiments, …the rules provide 
correction through truncation, with remarkably consistent point and interval estimates of the grand sample 
mean across rules and across runs." 
 
Pawlikowski (1990) [7]: "...poor approximation of the duration of the initial transient. As was shown in 
Gafarian et al. (1978) [32], using this rule we can significantly overestimate the length of the initial transient 
for small ρ and underestimate it for high ρ; (see also Wilson and Pritsker 1978b [13]). " 
 
Wilson & Pritsker (1978b) [13]:   
Test Method: Used a 5 step procedure for evaluating 3 alternative start-up policies with 4 different 
truncation methods:  



IC1: initial conditions are idle & empty, IC2: start as close to steady state mode as possible, IC3: start as 
close to steady state mean as possible;  
Truncation Rules: TR0: retain all data, TR1: Use Conway rule (10), TR2: Use Crossing-of-the-mean rule 
(12), TR3: Use Ensemble (Batch) Average Plots with Schribner’s Rule (9):    
Step1: Select standard system and compute bias, variance and MSE for all possible values of truncation 
point and for each initial condition (ICi) as specified above.   
Step2: Estimate distribution of truncation pt over independent simulation runs for each start up policy (ICi, 
TRi).   
Step3: Compute average bias, var & MSE by combining results from Steps1 & 2.   
Step4:  Select a base policy & for every truncation pt under this policy compute the 1/2 length of a 
confidence interval (CI) for µ centred at the sample mean for that truncation pt.  Average these values with 
respect to the observed distribution from Step2 to create a standard average CI 1/2 length for the base policy. 
Adjust CIs for all other policies so their average 1/2 length = the base average 1/2 length.   
Step5: Calculate probabilities that a CI centred around the estimated mean will actually cover the true mean.  
Calculate these coverage probabiities for all possible values of truncation pt, and average results w.r.t the 
appropriate truncation pt distribution for each policy.              
Systems Studied:  M/M/1 queue with a capacity of 15 and a traffic intensity (ρ) of 0.9;  A Machine Repair 
System - each machine in a group of 14 independent units has a constant failure rate of 0.2 so that time to 
failure is exponentially distributed with a mean of 5. Repair station rule is first come first served, with 3 
parallel servers & enough waiting room for all machines.  Repair times are exponentially distributed with a 
mean of 2.  Arrival rate depends on how many units are in the system. 
Results:  Ensemble (Batch) Average Plots with Schribner’s Rule (9) & Crossing-of-the-mean rule (12) 
seemed to reduce the bias much more than the Conway rule (10) but suffered from a loss of CI coverage 
regarding the true mean.   
 
Yucesan (1993) [23]:  Randomisation Test (19) generally more conservative than Conway rule (10) or 
(graphical) Schruben (20).   
 
Gafarian et al. (1978) [32]:   
Systems Studied:  M/M/1 queue with output variable as waiting time in queue per customer; ρ = 0.1, 0.5, 



0.7, 0.9. Method is tested 100 times.            
'Goodness' (Performance) Criteria:   

(i) Accuracy: The ratio,  mean of [estimated truncation values] / [true truncation value], is calculated 
and a value near 1 implies method accurate.    

(ii) Precision:  Measure of variation in estimated truncation value is calculated as Sqrt(variance of 
estimated truncation points) / (mean of estimated truncation points).  A value close to zero 
implies method precise.    

(iii) Generality: Judged to be general if the rule performs well across a broad range of systems and 
parameters within a system.   

(iv) Cost:  Expense in computer time.    
(v) Simplicity:  Accessible to average practitioner.       

(i) Accuaracy, (ii) Precision and (iii) Generality are considered first.  Any method not satisfactory on all 
three is discarded. Computer cost is a last priority. 
Results:   Conway rule (10) satisfied the simplicity criteria but failed the accuracy criteria.  It overestimated 
for low ρ, grossly underestimated for high ρ and failed to find a truncation pt on many occasions (especially 
when run length was small). 
 
Wilson & Pritsker(1978) [35]: Comments that Gafarian et al [32] applied this method to an M/M/1/infinity 
queue, ρ = 0.1, 0.5, 0.7, 0.9 and found that it badly underestimated the truncation pt in almost all cases. 
 
Conway (1963) [40]: No testing carried out, just a brief description of method. 
 
Fishman (1973) [49]: No testing carried out, just a brief description of method. 
 
Bratley et al (1987) [50]: No testing carried out, but a brief description of method.  They state that “Gafarian 
et al (1978) [32] show that if Conways rule (10) is applied to individual observations it will not work well.” 

Positives Simple [32]. 
Recommended for use with low utilised systems [1]. 
Better than not truncating at all [5].  
"For the empty queue experiments, Conway rule (10), gives reasonably accurate overall point estimates for 



the grand mean (within 3% of population mean).  "The results for … [no truncation of data] and [Conway 
rule (10)] are identical to each other...and also provide the most precise interval estimate as expected.  The 
results differ only on one run [out of 10] and provide the most accurate point estimate".  For the loaded 
queue experiments, Conway rule (10) provide significant correction of bias through truncation. "For the 
filling queue experiments, ...the rule provides correction through truncation” [5]. 

Criticisms "...poor approximation of the duration of the initial transient. As was shown in Gafarian et al. (1978) [32], 
using this rule we can significantly overestimate the length of the initial transient for small ρ and 
underestimate it for high ρ” [7].     
Failed to find a truncation pt on many occasions (especially when run length was small) [32] .      
Reduces the bias much less than the Ensemble (Batch) Average Plots with Schribner’s Rule (9) & Crossing-
of-the-mean rule (12)  [13]. 
“Gafarian et al (1978) [32] show that if Conway’s rule is applied to individual observations it will not work 
well.”[50]
Requires preliminary (pilot) runs. 

Accuracy Poor 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 3 – number of replications to test as pilot runs, batch size, run length 
Computation time Good 
 
Method ID 11
Method Name Modified Conway Rule (or Backward Data-Interval Rule) 
Brief description Gafarian et al. (1978) [32]:   “…turn Conway’s idea around and continually look backwards to find the first 

observation that is neither a max nor min of all the previous observations.  Thus number of observations in 
this procedure is a random variable, in contrast to the Conway rule (10)” 

Literature Review Preston White Jnr (1997) [5]:   
Systems Studied: Four M/M/1 queue systems with output variable set as number in system:  

5. Empty Queue: model starts empty & idle with ρ = 0.9;  



6. Loaded Queue: 100 entities in system at start with ρ = 0.9;  
7. Filling Tandem Queue: model starts empty & idle with ρ = 1.4 and a capacity of 100;  
8. Transient Tandem Queue: model starts empty & idle with ρ = 1.4; 

Tested 4 methods: Conway rule (10), Modified Conway rule (11), Crossing-of-the-mean rule (12) and MCR 
(14). 
Results: Better than not truncating at all! For the empty queue experiments, un-weighted Modified Conway 
rule (11) gives inaccurate overall point estimates for the grand mean (outside 3% of population mean).  For 
the loaded queue experiments, the rule provides significant correction of bias through truncation.  For the 
filling queue experiments, the rule provides correction through truncation. 
 
Gafarian et al. (1978) [32] create this new method from the Conway rule (10). 
Systems Studied:  M/M/1 queue with output variable as waiting time in queue per customer; ρ = 0.1, 0.5, 
0.7, 0.9. Method is tested 100 times.            
'Goodness' (Performance) Criteria:   

(vi) Accuracy: The ratio,  mean of [estimated truncation values] / [true truncation value], is calculated 
and a value near 1 implies method accurate.    

(vii) Precision:  Measure of variation in estimated truncation value is calculated as Sqrt(variance of 
estimated truncation points) / (mean of estimated truncation points).  A value close to zero 
implies method precise.    

(viii) Generality: Judged to be general if the rule performs well across a broad range of systems and 
parameters within a system.   

(ix) Cost:  Expense in computer time.    
(x) Simplicity:  Accessible to average practitioner.       

(i) Accuaracy, (ii) Precision and (iii) Generality are considered first.  Any method not satisfactory on all 
three is discarded. Computer cost is a last priority. 
Results:   Modified Conway rule (11) satisfies simplicity criteria but fails the accuracy criteria, badly 
underestimating in almost all cases. 
 
Wilson&Pritsker (1978) [35]: Comments that Gafarian et al [32] applied this method to an M/M/1/infinity 
queue with ρ = 0.1, 0.5, 0.7, 0.9…and found it badly underestimated the truncation pt in almost all cases. 



 
Lee et al (1997) [58]:  
Systems Studied:  M/M/1 and M/M/2 queuing systems with 4 levels of utilisation: 0.2, 0.5, 0.7 & 0.9.     
Performance criteria: Truncation pt; Coverage of true mean; Relative bias; Estimated relative half width of 
Confidence Interval. 
Results:   "...in the case of ρ = 0.5 the Modified Conway rule (11) is best” when compared with the 
Crossing-of-the-mean rule (12) (with number of crossings set to 20), ED (45) and NN (46) methods. 

Positives Better than not truncating at all! [5]     
Simple [32]  

Criticisms Badly underestimates in almost all cases. [32] [35]
Accuracy Poor 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 2 - run-length, number of pilot runs 
Computation time Good 
 
Method ID 12
Method Name Crossing-Of-The-Mean Rule 
Brief description Compute a running cumulative mean {c1,c2,…,cn} as the data series {x1,x2,…,xn} is generated.  Calculate the 

total mean from all n observations.   
Then either  
i) count how many times the individual observations time series cross the total mean. (see refs [49][35][13] 
& [7]) 
ii) count how many times the individual observations cross the cumulative mean. (see ref [5])  
iii) count how many times the cumulative mean crosses the total mean. (see ref [58]) 
(It is unclear in ref [32] which precise method they use.) 
In all cases choose truncation point as the point where the number of crossings reaches a specified number 
(k). 



Literature Review Mahajan & Ingalls (2004) [1]:   
Systems Studied:  Job Shop model consisting of 5 Cells, C(i), i=1…5.  Each cell has different number of 
machines (resources). There are 3 customer classes A,B,C.  Overall arrival rate is poisson.  Service times are 
exponential with mean dependent on customer class and cells.  Arriving parts are split into classes {A, B, C} 
with probability {0.5, 0.3, 0.2}.  3 types of utilisation are used:  TypeI is high utilisation with an average 
utilisation of 90%  and range 80-95%;  TypeII is moderate with an average utilisation of 70% and range 65-
80%;  TypeIII is Low with average utilisation of 50% with range 45-65%.   Models are started empty & idle.  
Initial run length is 1000 hrs, with 5 replications.                       
Performance criteria:  Final MSE & Variance, average computing time, percentage change in MSE, 
percentage change in variance.   Method said to perform well if it reduces both MSE and Variance and is 
computationally efficient. 
Results:  Can be used with moderate to low utilised systems but requires a very long run length. 
 
Preston White Jnr (1997) [5]:   
Systems Studied: Four M/M/1 queue systems with output variable set as number in system:  

9. Empty Queue: model starts empty & idle with ρ = 0.9;  
10. Loaded Queue: 100 entities in system at start with ρ = 0.9;  
11. Filling Tandem Queue: model starts empty & idle with ρ = 1.4 and a capacity of 100;  
12. Transient Tandem Queue: model starts empty & idle with ρ = 1.4; 

Tested 4 methods: Conway rule (10), Modified Conway rule (11), Crossing-of-the-mean rule (12) and MCR 
(14). 
Results:   Better than not truncating at all! For the empty queue experiments, Crossing-of-the-mean rule (12)  
gives reasonably accurate overall point estimates for the grand mean (within 3% of population mean). For 
the loaded queue experiments, this rule provides significant correction of bias through truncation.  For the 
filling queue experiments, Crossing-of-the-mean rule (12)  provides correction through truncation. 
 
Pawlikowski (1990) [7]:  "This rule is sensitive to the value of k [set number of times crosses the mean].  
Too large a value will usually lead to an overestimated value of [warm-up length] regardless of system's 
utilization, whereas too small a value can result in an underestimated [warm-up length] in more heavily 
loaded systems….. The system-dependent selection of the parameter k in this rule seems to be too arduous 



for potential users." 
 
Wilson & Pritsker (1978) [13]:   
Test Method: Used a 5 step procedure for evaluating 3 alternative start-up policies with 4 different 
truncation methods:  
IC1: initial conditions are idle & empty, IC2: start as close to steady state mode as possible, IC3: start as 
close to steady state mean as possible;  
Truncation Rules: TR0: retain all data, TR1: Use Conway rule (10), TR2: Use Crossing-of-the-mean rule 
(12), TR3: Use Ensemble (Batch) Average Plots with Schribner’s Rule (9):    
Step1: Select standard system and compute bias, variance and MSE for all possible values of truncation 
point and for each initial condition (ICi) as specified above.   
Step2: Estimate distribution of truncation pt over independent simulation runs for each start up policy (ICi, 
TRi).   
Step3: Compute average bias, var & MSE by combining results from Steps1 & 2.   
Step4:  Select a base policy & for every truncation pt under this policy compute the 1/2 length of a 
confidence interval (CI) for µ centred at the sample mean for that truncation pt.  Average these values with 
respect to the observed distribution from Step2 to create a standard average CI 1/2 length for the base policy. 
Adjust CIs for all other policies so their average 1/2 length = the base average 1/2 length.   
Step5: Calculate probabilities that a CI centred around the estimated mean will actually cover the true mean.  
Calculate these coverage probabiities for all possible values of truncation pt, and average results w.r.t the 
appropriate truncation pt distribution for each policy.              
Systems Studied:  M/M/1 queue with a capacity of 15 and a traffic intensity (ρ) of 0.9;  A Machine Repair 
System - each machine in a group of 14 independent units has a constant failure rate of 0.2 so that time to 
failure is exponentially distributed with a mean of 5. Repair station rule is first come first served, with 3 
parallel servers & enough waiting room for all machines.  Repair times are exponentially distributed with a 
mean of 2.  Arrival rate depends on how many units are in the system. 
Results:   Crossing-of-the-mean rule (12) seemed to reduce the bias much more than the Conway rule (10) 
but suffered from a loss of CI coverage regarding the true mean.  This showed apparently that a 
misspecification of the parameter/s can cause a large loss of coverage. 
 



Gafarian et al (1978) [32]:   
Systems Studied:  M/M/1 queue with output variable as waiting time in queue per customer; ρ = 0.1, 0.5, 
0.7, 0.9. Method is tested 100 times.            
'Goodness' (Performance) Criteria:   

(xi) Accuracy: The ratio,  mean of [estimated truncation values] / [true truncation value], is calculated 
and a value near 1 implies method accurate.    

(xii) Precision:  Measure of variation in estimated truncation value is calculated as Sqrt(variance of 
estimated truncation points) / (mean of estimated truncation points).  A value close to zero 
implies method precise.    

(xiii) Generality: Judged to be general if the rule performs well across a broad range of systems and 
parameters within a system.   

(xiv) Cost:  Expense in computer time.    
(xv) Simplicity:  Accessible to average practitioner.       

(i) Accuaracy, (ii) Precision and (iii) Generality are considered first.  Any method not satisfactory on all 
three is discarded. Computer cost is a last priority. 
Results:  Crossing-of-the-mean rule (12) satisfied the simplicity criteria and wastes no data.  Regarding the 
accuracy criteria, it is very conservative for low ρ, i.e. overestimates truncation pt.  Precision improves with 
decreasing ρ and increasing number of crossings. 
 
Wilson & Pritsker (1978) [35]:  Some guidelines for parameter selection found in Wilson 1977.  Gafarian et 
al [32] applied this method to an M/M/1/infinity queue with ρ = 0.1, 0.5, 0.7, 0.9 and found it badly 
overestimated the truncation pt for low values of ρ.  It was better for higher values of ρ but the precision of 
the estimated mean decreased. 
 
Lee et al (1997) [58]:   
Systems Studied:   M/M/1 and M/M/2 queuing systems with 4 levels of utilisation: 0.2, 0.5, 0.7 and 0.9.     
Performance criteria: Truncation pt; Coverage of true mean; Relative bias; Estimated relative half width of 
CI. 
Results:  "...in case of ρ = 0.2 and n(the number of batches) = 50, the Crossing-of-the-mean rule (12)  (with 
crossings set to 20) is superior to the Modified Conway rule (11), ED (45) and NN (46) methods.” For ρ = 



0.2 and n = 1000, Crossing-of-the-mean rule (12) or ED (45) method is superior. 
 
Fishman (1973) [49]: Explains rule as an initialisation bias test rather than a straight truncation method. 

Positives Simple and wastes no data [32]. Better than not truncating at all![5]  Reduces the bias much more than 
Conway rule (10) [13].  Precision improves with decreasing ρ and increasing number of crossings [32].   
Performs better for higher values of ρ but precision of estimated mean decreased [35]. 
Can be used with moderate to low utilised systems…[1]    

Criticisms …but requires a very long run length. [1]   Rule is sensitive to the value of k (set number of times crosses the 
mean) which can lead to over or under estimation of warm-up length.[7]   “The system-dependent selection 
of the parameter k in this rule seems to be too arduous for potential users." [7]    Suffered from a loss of CI 
coverage regarding the true mean…apparently a misspecification of the parameter/s can cause a large loss of 
coverage. [13]  Badly overestimated truncation pt for low values of ρ. [32] [35].  

Accuracy Poor 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 2 – run length (n) and number of crossings (k) 
Computation time Good 
 
Method ID 13
Method Name Autocorrelation Estimator Rule 
Brief description Pawlikowski (1990) [7]:  “Fishman proposed equating the variance of the mean of auto-correlated 

observations with the variance of the mean of a hypothetical sequence of independent observations to find 
the number of collected (auto-correlated) observations equivalent, in the above sense, to one independent 
(hypothetical) observation.  After some simplification we get the following rule: 
In a time series of observations x1,x2,…,xn,…, the initial transient is over after 
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0≤k≤n-1.” 
Literature Review Pawlikowski (1990) [7]: "…usually gives underestimates [of warm-up length]" 

 
Fishman (1971) [24]:  
Systems Studied:  Zero, 1st, and 2nd order Autoregressive schemes for normal stochastic sequences. M/M/1 
queue, with ρ = 0.9.  Output variable is mean queue length. 
Performance criteria: Number of times generated CIs included true mean, which is 9. 
Results:  Poor with smaller n.  Performance increases with increasing data (n).  Poor results for M/M/1 
model as tested. 
 
Wilson& Pritsker (1978) [35]: Brief explanation of method - no comments made. 

Positives Performance increases with increasing data (n). [24]
Criticisms Usually gives underestimates of warm-up length [7]. 

Poor with smaller n. [24]
Accuracy Poor 
Simplicity Medium 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 1 - Autocorrelation of lag k (V) 
Computation time ? 
 
Method ID 14
Method Name Marginal Confidence Rule (MCR) or Marginal Standard Error Rule (MSER) 
Brief description Preston White Jnr (1997) [5]:  “Instead of selecting a truncation point to minimise the MSE, we propose to 

select a truncation point that minimises the width of the CI about the truncated sample mean …Thus we will 
seek to mitigate bias by removing initial observations that are far from the sample mean, but only to the 
extent this distance is sufficient to compensate for the resulting reduction in sample size in the calculation of 
the confidence interval half-width.”    
From refs [36] & [5]:  Formally, given a finite stochastic sequence of output i of replication j {Yi(j): 



i=1,2,…,n}, we define the optimal truncation point for this sequence as: 
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α ,  where zα/2 is the value of the N(0,1) distribution associated with a 100(1-

α)% CI and s(d(j)) is the sample standard deviation of the reserved sequence (i.e. of all data following d(j)), 
and n(j) is the total number of observations in replication j.  Since the confidence level α is fixed, zα/2 is a 
constant and can therefore be set arbitrarily to 1, as the purpose of using the above equation is only to 
compare all data points to find the minimum. 
The expression for the optimal truncation point can therefore be written explicitly in terms of the 
observations: 
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Literature Review Preston White Jnr (1997) [5]:   
Systems Studied: Four M/M/1 queue systems with output variable set as number in system:  

13. Empty Queue: model starts empty & idle with ρ = 0.9;  
14. Loaded Queue: 100 entities in system at start with ρ = 0.9;  
15. Filling Tandem Queue: model starts empty & idle with ρ = 1.4 and a capacity of 100;  
16. Transient Tandem Queue: model starts empty & idle with ρ = 1.4; 

Tested 4 methods: Conway rule (10), Modified Conway rule (11), Crossing-of-the-mean rule (12) and MCR 
(14). 
Results:  All better than not truncating at all! MCR (14) was comparable or slightly superior to other tests 
used here. MCR is easy to understand & implement, inexpensive to compute, efficient in preserving data & 
efficient in mitigating initial bias.   "For the empty queue experiments, all of the rules give reasonably 
accurate overall point estimates for the grand mean (within 3% of population mean), with the sole exception 
of the un-weighted [Modified Conway rule (11)].  Only MCR (14) provides coverage of the 95% confidence 
interval however." "For the loaded queue experiments, ...all of the rules provide significant correction [of 
bias] through truncation.  Again only the MCR yields coverage of the 95% CI."  "For the filling queue 
experiments, ...the rules provide correction through truncation, with remarkably consistent point and interval 



estimates of the grand sample mean across rules and across runs."  "…while removing rare but recurring 
observations improves point estimates of the mean, truncation of unusual observations aggravates 
underestimation of the steady-state variance of the output, if very few runs are made.  This is inevitable and 
methods such as batch means will continue to be required in developing interval estimates of the mean for 
such applications". 
 
Preston White Jnr et al (2000) [28]:   
Systems Studied:  2nd order autoregressive process with zero mean and with differing initial parameter 
values.  3 bias fns: exponential, mean shift, under-damped oscillations (based on Cash et al (1992) [33]). 
Bias fns incorporated by superposition (adding into output) and injection (adding into state equation).       
Performance Criteria:  Sample mean, abs bias = |grand estimated mean - grand mean of unbiased data|;  p-
value of 2 sample t-test - H0: estimated mean = mean from unbiased data; average computation time; min, 
max, mean & standard deviation of truncation pt.; number of inconclusive results. 
The MCR/MSER method is applied sequentially.       
Results:   MCR (14) consistently outperformed the other methods: Schruben’s modified test (21), BM Max 
test (24) and BM Batch means test (25), except for the MSER-5 (15) method on models with exp and mean 
shift bias.  Highly accurate in locating optimal truncation pt.  Not as effective with damped oscillating bias.  
Performance decreased with increasing average bias (possibly due to sensitivity to individual observations).  
Effective at detecting mean shift bias in capacitated data sets. 
MSER-5 (15)  performed best. The methods MCR (14), Schruben’s modified test (21) and BM Max test (24) 
are much of a much-ness. BM Batch means test (25) performed the worst. 
 
Linton & Harmonsky (2002) [36]:    
Model1: Queuing model with 2 servers in sequence. Inter-arrival time is exponential with mean of 8; server1 
process time is exponential with a mean of 6; server2 process time is exponential with mean of 7.    
Model2:  Same as for model1 except all distributions are triangular; inter-arrival time distribution is 
therefore defined as{min = 6, mode = 8, max = 10}; server1 process time defined as{min = 4, mode = 6, 
max = 8}; server2 process time as {min = 5, mode = 7, max = 9} 
Performance criteria:   
i)  equality of variance (between methods) using Levene's test  



ii) equality of mean (between methods) using 2-sample t-test.    
Results:   MCR (14) is intuitively appealing because it determines a truncations point for each replication.  It 
was found to be able to adjust to changes in distributions of the inter-arrival times and processing times.  
Computationally intensive as requires a large number of calculations.  WARNING: This paper did not test if 
chosen truncation point (& therefore estimate of mean output) was correct or efficient! 

Positives MCR (14) is intuitively appealing because it determines a truncations point for each replication.  Able to 
adjust to changes in distributions of the inter-arrival times and processing times [36]. 
Highly accurate in locating optimal truncation pt for models with exp and mean shift bias.  Effective at 
detecting mean shift bias in capacitated data sets [28]. 
Performance of MCR was either superior or on par with methods Conway rule (10), Modified Conway rule 
(11), Crossing-of-the-mean rule (12), Schruben’s modified test (21), BM Max test (24) and BM Batch means 
test (25). (from refs[5] & [28]) 

Criticisms Not as effective with damped oscillating bias.  Performance decreased with increasing average bias (possibly 
due to sensitivity to individual observations) [28]. 
Computationally intensive as requires a large number of calculations. [36]

Accuracy Medium/Good 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 1 – run length (n) 
Computation time Medium 
 
Method ID 15
Method Name Marginal Standard Error Rule m (MSER–m) (e.g. m=5) 
Brief description Same as for MCR/MSER(14)  but MSER-m applies the equation 
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averages instead of to the raw output series. 



Literature Review Mahajan & Ingalls (2004) [1]:  
Systems Studied:  Job Shop model consisting of 5 Cells, C(i), i=1…5.  Each cell has different number of 
machines (resources). There are 3 customer classes A,B,C.  Overall arrival rate is poisson.  Service times are 
exponential with mean dependent on customer class and cells.  Arriving parts are split into classes {A, B, C} 
with probability {0.5, 0.3, 0.2}.  3 types of utilisation are used:  TypeI is high utilisation with an average 
utilisation of 90%  and range 80-95%;  TypeII is moderate with an average utilisation of 70% and range 65-
80%;  TypeIII is Low with average utilisation of 50% with range 45-65%.   Models are started empty & idle.  
Initial run length is 1000 hrs, with 5 replications.                       
Performance criteria:  Final MSE & Variance, average computing time, percentage change in MSE, 
percentage change in variance.   Method said to perform well if it reduces both MSE and Variance and is 
computationally efficient. 
Results:  Recommended MSER-5 for use with low to highly utilised systems with a long run length.  
 
Preston White Jnr et al (2000) [28]:   
Systems Studied:  2nd order autoregressive process with zero mean and with differing initial parameter 
values.  3 bias fns: exponential, mean shift, under-damped oscillations (based on Cash et al (1992) [33]). 
Bias fns incorporated by superposition (adding into output) and injection (adding into state equation).       
Performance Criteria:  Sample mean, abs bias = |grand estimated mean - grand mean of unbiased data|;  p-
value of 2 sample t-test - H0: estimated mean = mean from unbiased data; average computation time; min, 
max, mean & standard deviation of truncation pt.; number of inconclusive results. 
The MCR/MSER method is applied sequentially.     
Results:   MSER-5 (15) most effective and robust method when compared with methods: Schruben’s 
modified test (21), BM Max test (24), BM Batch means test (25) & MCR (14).  Particularly effective with 
exponential and mean shift bias.  Unlike MCR (14), if bias increased so did MSER-5's effectiveness.  Also 
fastest method especially on data sets with big bias. 
MSER-5 (15)  performed best. The methods MCR (14), Schruben’s modified test (21) and BM Max test (24) 
are much of a much-ness. BM Batch means test (25) performed the worst. 
 
Sandikci & Sabuncuoglu (2006) [45]:   
Systems Studied:  2 types of manufacturing system: (1) serial production lines; (2) job-shops.  Output 



variable is time in system. 
Results:   "MSER-5 applied to the whole sequence suggests truncating 4876 observations whereas deleting 
[outliers] from the sequence would change the truncation point drastically to 339.  This shows that unless 
extreme values are carefully deleted from a sequence MSER can display a poor performance."   "Since the 
MSER is an objective criterion…and is very simple and computationally efficient, we recommend this 
heuristic. However special attention must be paid to remove any outliers from the sequence which otherwise 
would lead the analysts to wrong conclusions"   MSER-5 (15)  had "comparable" results with Cumulative 
Mean Rule (3).  "Cumulative averages usually suggest longer transient periods than MSER-5" 

Positives Recommended MSER-5 for use with low to highly utilised systems with a long run length [1]. 
Effective and robust.  If bias increased so did MSER-5's effectiveness.  Particularly effective with exp and 
mean shift bias.  Fast method especially on data sets with big bias [28]. 
Objective criterion…and is very simple and computationally efficient [45]. 

Criticisms “…unless extreme values are carefully deleted from a sequence MSER can display a poor performance."[45]
Accuracy Good 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 2 – run length, batch size (although this could be set to 5 by default) 
Computation time Medium 
 
Method ID 17
Method Name Relaxation Heuristics 
Brief description Linton & Harmonsky (2002) [36] & Roth (1994) [6]:    

For M/M/k systems:   Begin queuing system at rest and empty.  Truncation point =  4τR units of model time, 
where: 

( )[ ] 1214.1
−

−= ρμτ kR , where k = number of servers, µ = mean service rate and ρ = traffic intensity. k ≤ kmax 
(max number of servers which is dependent on ρ: see Roth(1994) [6]) 
 



Roth & Josephy(1993) [57]:   For M/Ek/1 & Ek/M/1 systems, begin queuing system at rest and empty.  
Truncation point =  4τR units of model time, where: 
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,   where k = number of servers, µ = service rate and ρ = traffic intensity. 

Literature Review Roth (1994) [6]:   
Systems Studied:  51 M/M/k queuing systems with ρ = 0.1 to 0.9 and k = 1 to max.  
Performance Criteria:  Normal hypothesis test – H0: estimated mean = true mean (see paper [6] for details). 
Results:   Relaxation Heuristics (17) satisfies performance criteria in all except M/M/2 ρ = 0.2; Cumulative-
mean rule (3) fails twice for ρ = 0.9; Kelton-Law regression method (18) & Truncated mean rule (4) failed in 
43% & 29% of cases respectively - probably because run length was not long enough.. 
 
Pawlikowski (1990) [7]:  “For more complex queuing networks the relaxation times have not yet been 
theoretically determined.” "…the usefulness of even known formulas for relaxation times can be questioned 
in simulation studies. They can be used only as first approximations of the duration of simulated initial 
transients, since it has been shown that estimators of the mean values from simulation tend to their steady 
state more slowly than exponentially.…" 
 
Linton & Harmonsky (2002) [36]:    
Model1: Queuing model with 2 servers in sequence. Inter-arrival time is exponential with mean of 8; server1 
process time is exponential with a mean of 6; server2 process time is exponential with mean of 7.    
Model2:  Same as for model1 except all distributions are triangular; inter-arrival time distribution is 
therefore defined as{min = 6, mode = 8, max = 10}; server1 process time defined as{min = 4, mode = 6, 
max = 8}; server2 process time as {min = 5, mode = 7, max = 9} 
Performance criteria:   
i)  equality of variance (between methods) using Levene's test  
ii) equality of mean (between methods) using 2-sample t-test.     
Results:   Produced comparable results with Welch's method (6).  The Relaxation Heuristics (17) were found 
able to adjust to changes in distributions of the inter-arrival times and processing times.  Does not seem to be 



negatively affected by modifications necessary to apply it to the chosen two models.  A more practical 
method.  WARNING: Not tested in this paper to see if chosen truncation point was correct or efficient! 
 
Kimbler & Knight (1987) [46]:   
Systems Studied: M/M/1 queue with ρ = 0.9.  This is a "highly congested system …has an unusually gradual 
transition into steady state"      
Performance Criteria:  Steady state statistics (time in system) compared with theoretical solution using 
Dudewicz method for determining the best of k systems. 
4 Truncation methods tested: Kelton-Law regression method (18), Optimal test (22), Kimbler’s double 
exponential smoothing (43) and Relaxation Heuristics (17). 
Results:  Relaxation Heuristics (17) had the largest average truncation pt of the four methods tested and was 
only 8% below the theoretical mean after 20 replications.  Very simple method but only applicable (as 
presented here) to M/M/1 system for which an analytical solution exists.   It is the simplest method of the 
four tested but with limited applicability. 
 
Roth & Josephy (1993) [57]:  Extends the scope of the Relaxation Heuristics (17) to include M/Ek/1 and 
Ek/M/1 queueing systems.   
Systems Studied:  30 M/Ek/1 and 24 Ek/M/1 queuing systems (which begin at rest); ρ varies from 0.25 to 
0.925 by holding arrival rate fixed and varying service rate; k (parameter for the Erlang dist) varies from 1 to 
20.  Note: Experiments have fixed replication length.       
Performance Criteria: Bias = estimated mean - theoretical mean;  CI size - a function of the variance; MSE; 
observed coverage probability of CIs. 
Results:  "The relaxation time heuristic satisfies the bias criterion in each experiment. The Kelton-Law 
regression method (18), Cumulative-mean rule (3) and Truncated mean rule (4)  techniques are less 
consistent, causing rejection of the null hypothesis in 33, 10, and 3% of cases respectively."  "The 
confidence interval coverage probabilities are quite consistent for each truncation rule." "Of …concern is 
performance of the relaxation time heuristic when Erlang order k (in Ek/M/1) is large and traffic intensity ρ 
is low.  Recall that the relaxation time (TR) is an approximation. It is clear that the Odoni and Roth approx 
for TR is not as appropriate for these systems as it is for the other cases [tested].  In practice one would use a 
larger multiplier of TR [i.e. larger than 4] for such systems. Future refinement of the approx should alleviate 



this prob."      "The major advantage of the relaxation heuristic is that it only requires specification of model 
characteristics; there are no input parameters left for the user to specify.  This eliminates the need for 
preliminary replications and as there is no randomness in the truncation pt selection, the user may have 
confidence that bias is removed in a consistent manner." 

Positives Produced comparable results with Welch's method (6).  Able to adjust to changes in distributions of the 
inter-arrival times and processing times.  Does not seem to be negatively affected by modifications 
necessary to apply it to the chosen two models.  A practical method.[36]     
A relatively simple method [46].
"Only requires specification of model characteristics; there are no input parameters to estimate”.  “..there is 
no randomness in the truncation pt selection, the user may have confidence that bias is removed in a 
consistent manner."[57]

Criticisms "…the usefulness of even known formulas for relaxation times can be questioned in simulation studies. They 
can be used only as first approximations of the duration of simulated initial transients, since it has been 
shown that estimators of the mean values from simulation tend to their steady state more slowly than 
exponentially…".  “For more complex queueing networks the relaxation times have not yet been 
theoretically determined.” [7]
Has limited applicability.[46]
Of concern is performance of the relaxation time heuristic when Erlang order k (in Ek/M/1) is large and 
traffic intensity ρ is low….The relaxation time (TR) is an approximation and is not as appropriate for these 
systems as it is for the other cases [tested].  In practice one would use a larger multiplier of TR [i.e. larger 
than 4] for such systems. Future refinement of the approx should alleviate this prob."  [57]

Accuracy Good/Medium 
Simplicity Good 
Automation potential Poor/Medium – requires input values from system and being able to recognise the type of system so that the 

correct relaxation time equation can be applied if one exists. 
Generality (No assumptions) Poor   
Parameters to estimate? None 
Computation time Good 
 



 
Method ID 29
Method Name Exponentially Weighted Moving Average Control Charts 
Brief description Rossetti et al (2005)[9]:   

Let L =Average run length constant;  λ = smoothing constant;  d = deletion point and p2’ = desired 
proportion of the exp weighted data remaining after deletion that fall within control limits. 
The exponentially weighted moving average is defined as: 
Zi = λYi + (1-λ)Zi-1, where 0<λ<1 and the starting value Z0=µ0. 
In an EMWA control chart the control limits are calculated by: 
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Where σ is the variance of the underlying data. 
 
Define an indicator variable to indicate whether an exp weighted point is in control or not: 
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Therefore an estimator for  p2’ can be defined as : 
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The procedure is : 
1. Collect the data {Yi; i=1,2,…,n} and reverse the data. 



2. Set  p2’, λ and L 
3. Set a = 0 and b = n 
4. Set d = Int[(a+b)/2] 
5. If ( ) 'ˆ 22 pdp <  then 
              a = a, b = d 
    Else 
              a = d, b = b 
6.  If a = b return dr = a  
     Else goto step 4. 
    

Literature Review Rossetti et al (2005)[9]:   
Systems Studied:  Artificial data sets using a monotonically decreasing function & a monotonically 
exponential decreasing function for bias.  M/M/1 queue with ρ = 02 & 0.8. Output variable is waiting times;  
Performance measures:  bias, variance & MSE of point estimator. 
Results:  As the percentage of biased data points increases this method consistently underestimates the 
warm-up period. Also performs worse when variance increases. Autocorrelation is detrimental to the 
procedure but can be helped by batching.  
“It is easy to implement and relatively quick computationally”.  

Positives Easy to implement.  Relatively quick computationally [9]. 
Criticisms As the percentage of biased data pts increases the method consistently underestimates the warm-up period.   

More prone to underestimation as variance (white noise of the process) increases.  Autocorrelation 
detrimental to procedure (but can be helped by batching). [9]

Accuracy Poor (prone to underestimate) 
Simplicity Medium 
Automation potential Medium/Good 
Generality (No assumptions) Good 
Parameters to estimate? 5 - Run length (n);  Average run length constant (L); smoothing constant (λ); desired proportion of the exp 

weighted data remaining after deletion that fall within control limits (p2’); Variance (V) 
Computation time Good 



 
 
Method ID 40
Method Name Chaos Theory Methods (M1 and M2) 
Brief description Lee & Oh (1994) [42]: 

M1: 

Let ,log1
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where 
xi = average waiting time in queue for up to the ith customer from the 1st customer in M/M/1 with arrival rate 
λ, service rate µ. 
n = run length 
The criteria for  λi to decide the truncation point are: 
C1: | λi| must be less than the specified value 
The specified values for variation rate 5% is obtained by: 
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C2:  λi must not have the positive values (or negative values) more than 30 times continuously. 
 
M2: 
Partition n simulation data x1, x2, … , xn into b nonoverlapping batches in which each batch has m 
observations such that n=b*m, and define the following functions of the orig data for I = 1,2,…,b. 
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λ    can not read from paper (or screen!) 

Where xi = average waiting time in queue for up to the jth customer in the ith batch. 
 
C3: | λi| must be less than the specified value 



The specified values for variation rate 5% is obtained by: 
( )[ ] 036.0025.01log2 =
±

a
a  

Literature Review Lee & Oh (1994) [42]:   
Systems Studied:  M/M/1/infinity queuing model with ρ = 0.5; 0.7; 0.9. Output variable is waiting time in 
queue.    
Performance criteria:  Effectiveness was assessed using a bias calculation:  
Abs[true mean  - estimated mean] / estimated mean 
Results:   
M2 (40) with a batch size of 40 worked best.   For ρ = 0.5 and 0.7, methods BM max test (24), M1 & M2 
(40) had results similar.  For ρ = 0.9, with given present run-length, system fails to reach steady state in 
some runs.  Methods M1 (40) and BM max test (24) "detect a truncation pt regardless of system state".  But 
M2 (40)  "can determine correctly the transient state…"    "Some statistical work is required to determine the 
most appropriate criteria to be used in the proposed methods M1 & M2 (40)." 
M2 (40) of the new methods seemed to perform better than the BM max test (24). 

Positives M2 (40) "can determine correctly the transient state…"  [42]
Criticisms "Some statistical work is required to determine the most appropriate criteria to be used in the proposed 

methods."  [42]
Accuracy M1: Poor;  M2: Medium 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Poor  - applied to estimating average waiting time in M/M/1 queue model 
Parameters to estimate? 2 - Run length (n); batch number (b) 
Computation time Good 
 
Method ID 41
Method Name Beck’s Approach for Cyclic Output 
Brief description “Involves comparing the values for each hour in the 1st week of the simulation run, against the values in the 

subsequent weeks for the same hour.” 



“The following criterion was used to specify when a model had warmed-up: For 3 consecutive hours the 
values had to be non-zero and also not greater than the maximum values or less than the minimum values in 
the subsequent weeks. 

Literature Review Beck (2004) [44]: Uses a British Airways model called "Operations Robustness Model", flies a schedule for 
a number of weeks and outputs a matrix of operational performance figures. Produces a cyclic output to 
illustrate method. 

Positives - 
Criticisms - 
Accuracy Unknown 
Simplicity Good 
Automation potential Medium 
Generality (No assumptions) Poor - Cyclic data (with a regular cycle?) 
Parameters to estimate? None  
Computation time Good 
 
 
Method ID 42
Method Name Tocher’s Cycle Rule 
Brief description “The performance of a system can be regarded as a cyclic evolution of system’s basic operations.  For this 

reason, Tocher (1963, p.176) suggested this rule: 
The initial transient period is over if the longest cycle distinguished in the behaviour of the simulated system 
has been executed at least 3 or 4 times.” 

Literature Review Pawlikowski (1990) [7]: "No results concerning the effectiveness of this rule are available." 
Positives - 
Criticisms How to find a system cycle? And monitor it? 
Accuracy unknown 
Simplicity Good 
Automation potential Poor 
Generality (No assumptions) Good 



Parameters to estimate? None 
Computation time Good  
 
Method ID 43
Method Name Kimbler’s Double Exponential Smoothing 
Brief description Kimbler & Knight (1987) [46]: 

Calculate the doubly-smoothed sequence of waiting times using: 
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Where F(t) is the smoothed sequence of waiting times, and  is the doubly-smoothed sequence of waiting 
times. 
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Calculate the error e(t), smoothed error E(t) and absolute smoothed error A(t) using: 
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The tracking signal is: TS = E(t) / A(t),  t>1 
Perform these calculations for each subsequent time series value and compare to a constant C.  As long as 
the tracking signal is larger in absolute value than C, the process is assumed to be in the transient period. 
Suggested parameter values:   α = 0.1;  λ = 0.6;  C = 0.1 



Literature Review Kimbler & Knight (1987) [46]:   
Systems Studied: M/M/1 queue with ρ = 0.9.  This is a "highly congested system …has an unusually gradual 
transition into steady state"      
Performance Criteria:  Steady state statistics (time in system) compared with theoretical solution using 
Dudewicz method for determining the best of k systems. 
Tests 4 methods:  Relaxation heuristics (17), Optimal test (22), Kelton & Law regression (18), Kimbler’s 
Double Exponential Smoothing (43). 
Results:  
The Double exponential smoothing method had the smallest average truncation pt of the four methods 
tested.   It is simple to execute & worked well.   "We feel the best of the four methods was the one developed 
by Kimbler. It worked as well at bias removal as any of the other three and was very easy to apply.  An 
additional advantage which it had over the methods of Kelton & Law regression (18) and Schruben (Optimal 
test (22)) was its ability to work from the beginning to the end of the time sequence.  Unlike the other 
methods which start at the end of the time sequence work back toward the beginning, the Kimbler method is 
able to determine truncation points 'on the fly' without the need for a pilot run." 
 
All methods worked equally well in relation to estimating mean time in system...but there were quite a 
difference in truncation points. Kimbler’s Double Exponential Smoothing (43) had the smallest average 
truncation pt of the four methods tested. Relaxation heuristics (17) and Kimbler’s Double Exponential 
Smoothing (43) are far simpler than Kelton & Law regression (18) and Optimal test (22) to carry out. 

Positives Simple to carry out.  “…able to determine truncation points 'on the fly' without the need for a pilot run." 
Had the smallest average truncation pt of the four methods tested, Relaxation heuristics (17), Optimal test 
(22), Kelton & Law regression (18), Kimbler’s Double Exponential Smoothing (43).  “It worked as well at 
bias removal as any of the other three.”  “…worked equally well in relation to estimating mean time in 
system.” [46]

Criticisms - 
Accuracy Good/Medium 
Simplicity Good 
Automation potential Good 



Generality (No assumptions) ? – unclear from paper whether this method should only be applied to waiting times 
Parameters to estimate? α = 0.1;  λ = 0.6;  C = 0.1  
Computation time Good 
 
Method ID 45
Method Name Euclidean Distance Method (ED) 
Brief description Lee et al (1997) [58]:   

Collect 10 data points; Normalise this vector of 10 data pts; check ED criteria; if criteria satisfied 5 times in 
a row (i.e. for 5 lots of 10 data points in a row) then truncation pt determined. 
 
Normalise by: dividing vector of 10 data pts (x1, x2,…,x10) by 2

10
2
2

2
1 ... xxx +++  

ED Criteria:  Mean of the normalised data lies between 0.3162276 and 0.3162278. 
Literature Review Lee et al (1997) [58]:  

Systems Studied:  M/M/1 and M/M/2 queuing systems with 4 levels of utilisation: 0.2, 0.5, 0.7 & 0.9.     
Performance criteria: Truncation pt; Coverage of true mean; Relative bias; Estimated relative half width of 
Confidence Interval. 
Four methods tested: Crossing-Mean-Rule (12), Modified Conway rule (11), ED (45) & NN (46)  methods. 
Results:  
In the case of ρ = 0.2 and n (number of batches) = 50, Crossing-Mean-Rule (12) with crossings set to 20, is 
superior to others tested.  For ρ = 0.2 and n = 1000, Crossing-Mean-Rule (12) or ED (45) method is better.  
For ρ = 0.5, Modified Conway rule (11) is best.  For ρ = 0.7, NN (46)  Method is better than any of the 
others.  For ρ = 0.9, ED (45) & NN (46) methods are better w.r.t coverage and relative bias.  “Regardless of 
ρ ED (45) & NN (46)  have robustness in their performance."    Batching was used to find the estimated 
mean after truncation was achieved - "batch size and number of batches …must be determined on-line for 
completely automated simulation output analysis.  One of the methods for this purpose would be sequential 
procedure suggested by Law and Kelton [52].  If we use sequential procedure after determining truncation pt 
by ED or NN, we could achieve this goal". 

Positives For ρ = 0.9, ED (45) & NN (46) methods are better w.r.t coverage and relative bias…Regardless of ρ, ED& 



NN have robustness in their performance." [58]
Criticisms Do not perform so well with low traffic intensity. 
Accuracy Medium 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? None 
Computation time Good 
 
Method ID 46
Method Name Neural Networks (NN) method 
Brief description Lee et al (1997) [58]:  

Training method:  Input to Neural Network are10 normalised data points and 0 (or 1) for identifying steady-
state of normalised data.  Data from an M/M/1 simulation with ρ = 0.2 is used for training. 
Using the weights determined by supervised learning, the NN receives 10 data points as input and gives 0 or 
1 as output.  1 means that the steady-state pattern of training data coincides with the current pattern within a 
limited error range.  NN criterion is met when output is 1.  Consider warm-up period over when NN criterion 
is satisfied 5 times successively.  

Literature Review Lee et al (1997) [58]:  
Systems Studied:  M/M/1 and M/M/2 queuing systems with 4 levels of utilisation: 0.2, 0.5, 0.7 & 0.9.     
Performance criteria: Truncation pt; Coverage of true mean; Relative bias; Estimated relative half width of 
Confidence Interval. 
Four methods tested: Crossing-Mean-Rule (12), Modified Conway rule (11), ED (45) & NN (46)  methods. 
Results:  
In the case of ρ = 0.2 and n (number of batches) = 50, Crossing-Mean-Rule (12) with crossings set to 20, is 
superior to others tested.  For ρ = 0.2 and n = 1000, Crossing-Mean-Rule (12) or ED (45) method is better.  
For ρ = 0.5, Modified Conway rule (11) is best.  For ρ = 0.7, NN (46)  Method is better than any of the 
others.  For ρ = 0.9, ED (45) & NN (46) methods are better w.r.t coverage and relative bias.  “Regardless of 
ρ ED (45) & NN (46)  have robustness in their performance."    Batching was used to find the estimated 



mean after truncation was achieved - "batch size and number of batches …must be determined on-line for 
completely automated simulation output analysis.  One of the methods for this purpose would be sequential 
procedure suggested by Law and Kelton [52].  If we use sequential procedure after determining truncation pt 
by ED or NN, we could achieve this goal". 

Positives For ρ = 0.9, ED (45) & NN (46) methods are better w.r.t coverage and relative bias…Regardless of ρ, ED& 
NN have robustness in their performance." [58]

Criticisms - 
Accuracy Medium 
Simplicity Poor 
Automation potential Poor 
Generality (No assumptions) Good 
Parameters to estimate? None 
Computation time unknown 
 
 

(Return to top of document) 
 

INITIALISATION BIAS TESTS 
 
Method ID 20
Method Name Schruben’s Maximum Test (STS) 
Brief description Schruben (1982) [20]:    

1. Let Y1,Y2,…,Ym be a series of output from a run of length m. 
2. Let Sm(k) = total mean of series. 
3. Let s  be the 1  (if there are ties) global maximum of (k S* st

m(k)/√m), for k = 1,2,…,m.  Let k  be the 
location of this maximum. 

*

4. Let t* = k*/m 
5. Let τ*2 be the estimate of the variance )]([ mYV = . 
6. Calculate the test statistic:  h* = s*2/[3 τ*2t*(1-t*)] , which has an approx F dist with 3 and δ degrees of 



freedom (see ref[20] for more about estimating the value of  δ). 
7. Test the null hypothesis of no negative bias with this F test. 
If wanting to test for positive bias should use opposite sign for test statistic. 
This method can be carried out for one run or averaged replications.  

Literature Review Schruben et al(1983) [18]:   
Systems Studied:  
Model1: AR(2) with oscillating initial transient function.      
Model2: M/M/1 queue with ρ = 0.9.  Output variable is waiting times.     
Model3: Simple production-inventory model.     
Model4: time-shared computer system (Adiri & Avi-Itzhak [1969]).     
Model5: Telephone exchange model (M/M/s).  Output is number of busy lines per time period.    
Model6:  Network of 3 capacitated M/M/s queues with feedback.       
Performance criteria:  Percentage of runs for which the null hypothesis of no bias was rejected. 
Results:  Optimal test (22) has high power in detecting presence of initialisation bias in all test models.    
Compared well with the Schruben Max test (20), which performed poorly for 2nd model (M/M/1 ρ = 0.9).   
"The computation involved in the two tests was minimal even on the smallest of computers".   "We 
recommend that both the test presented here, Optimal test (22), and the test presented by Schruben, Schruben 
Max test (20), be conducted to support ascertations that initialisation bias in the mean of a simulation output 
process has been effectively controlled." 
 
Schruben (1982) [20]:                     
Systems Studied:  
Model1:  Telephone Exchange (McDaniel [1979]).    
Model2:  Inventory system.    
Model3:  Computer time sharing system (Adiri & Avi-Itzhak [1969], Sargeant [1979]).    
Model4: M/M/1 queue, with ρ = 0.9.    
Model5:  Network of 3 capacitated M/M/s queues with feedback. 
Performance criteria:   
For the test procedure to be valid the significance level (alpha) should be uniformly (0, 1) distributed when 
no initial bias is present.   



Effectiveness:  The power of the test has the distribution function, F(alpha).  The more powerful the test is in 
detecting initial bias the more rapidly F(alpha) should go from 0 to 1 as alpha increases from 0 to 1, when 
initial bias is present.   
Results:    Schruben’s Max test (20) performed well on all models (model4, M/M/1, being the worst).  Test 
appeared valid with reasonable power in detecting bias.  Care needs to be taken to test for the correct sign 
(i.e. positive or negative bias).  Test results indicates that the asymptotic theory that the test is based on 
produces good results.  Many of the simulation runs here were quite short & results therefore improved for 
longer runs.  Test most useful when transient mean function is almost constant or dissipates rapidly.  Test 
not powerful when a large initial transient is present that remains throughout run.  The Area test (26) is far 
better in that situation. 
 
Ockerman & Goldsman (1999) [22]:   
Systems Studied:   
Model1:  A step process Y(j), j=1,2,... where Y(j)s = ±1 with probability 0.5. The variance is 1.     
Model2:  AR(1) with Normal errors. The variance is 19.     
Model3:  MA(1) with Normal errors. The variance is 0.01.     
Model4:  M/M/1 where output variable is waiting time.  The arrival rate is 0.8, service rate is 1 and the 
variance is stated as being 1976??      
Model5:  2-station re-entrant line, with a poisson arrival process. 
Performance criteria:  P{Reject H0 | H0 is true) and P{Reject H0 | H0 is false}.      
Results:    
P{Reject H0 | H0 is true) criteria:  All methods performed relatively well (reaching 10% value with 
increasing n).   
P{Reject H0 | H0 is false} criteria:   The Ockerman & Goldsman Students t-tests Method (35),  Ockerman & 
Goldsman (t-test) Compound Tests (36) and Schruben max test (20) seem to cope a little better than the other 
variance ratio tests BM Batch Means Test (25)  and Area test (26) when the M/M/1 or re-entrant line systems 
started empty.  That is, they cope with "2nd-order effect" slightly better.    
 
Yucesan (1993) [23]:  Randomisation test (19)  generally more conservative than Conway Rule (10) or 
(graphical) Schruben (20).   



 
Law (1983) [34]:  No tests done - just algorithm explained & commented on: "Schruben tested his procedure 
in a large number of independent experiments for each of a number of stochastic models…test generally had 
high power…..Performed well for fairly small values of n though based on asymptotic properties". 
 
Law & Kelton(2000) [52]:  Brief explanation of Schruben's procedures.  "Schruben tested his procedure on 
several stochastic models with a known value of [steady state mean], and found that it had high power in 
detecting initialization bias." 

Positives "The computation involved … was minimal even on the smallest of computers" [18]. 
Performed well on all models.  Test appeared valid with reasonable power in detecting initial bias.  Test 
most useful when transient mean fn is almost constant or dissipates rapidly. [20]
Performed well for fairly small values of n (though based on asymptotic properties [34] [20]. 
Schruben max test (20) seemed to cope a little better than other variance ratio tests: BM Batch means test 
(25) & BM Area test (26); when M/M/1 or re-entrant line systems started empty - i.e coped better with "2nd-
order effect". [22]

Criticisms Schruben max test (20) performed poorly for 2nd model (M/M/1 ρ = 0.9) [18]. 
Worst performance for model4, M/M/1.  Care needs to be taken to test for the correct sign (i.e positive or 
negative bias).  Test not powerful when a large initial transient is present that remains throughout run. [20]

Accuracy Medium 
Simplicity Medium 
Automation potential Medium – need to access whether bias is +ve or –ve. 
Generality (No assumptions) Good/Medium – asymptotic assumption seems robust 
Parameters to estimate? 3 – run length (m); variance (V); degree of freedom (δ) for F dist test.  (+ number of replications if used) 
Computation time Good 
 
Method ID 21 
Method Name Schruben’s Modified Test 
Brief description Nelson (1982) [16]:   

Null hypothesis, H0: no negative initial condition bias in mean of the output process. 



“The output of a single replication is divided in half.  If the run is long enough then any bias is most 
prevalent in the first half.  The cusum values from each half are compared in terms of the location and 
magnitude of their maximum deviation from zero.  If the behaviour of the first half is significantly different 
from the second half, then the hypothesis of no initial condition bias is rejected.  There are several versions 
of this test that have power against specific alternatives.” 
Preston White Jnr (2000) [28]:  Schruben recommends batching parameters be set at b, number of batches = 
Int[n / 5] 

Literature Review Nelson (1982) [16]:   No tests done - just algorithm explained & commented on: "version given here is 
conservative in that it tries to ensure that all of the asymptotic assumptions behind the test will be valid" 
 
Preston White Jnr et al (2000) [28]:   
Systems Studied:  2nd order autoregressive process with zero mean and with differing initial parameter 
values.  3 bias fns: exponential, mean shift, under-damped oscillations (based on Cash et al (1992) [33]). 
Bias fns incorporated by superposition (adding into output) and injection (adding into state equation).       
Performance Criteria:  Sample mean, abs bias = |grand estimated mean - grand mean of unbiased data|;  p-
value of 2 sample t-test - H0: estimated mean = mean from unbiased data; average computation time; min, 
max, mean & standard deviation of truncation pt.; number of inconclusive results. 
Methods tested:  MCR (14), MSER-5 (15), Schruben’s modified test (21), BM Max test (24), & BM Batch 
means test (25).  The MCR/MSER method is applied sequentially.    
Results:  Schruben’s Modified Test (21) is effective in removing damped oscillating bias and mean shift 
bias.  Generally not successful in dealing with exponential bias except in most extreme cases.  Occasionally 
removed large amount of data relative to other methods tested.  Not effective in detecting bias in capacitated 
damped oscillating bias. 
 
Law (1983) [34]:  No tests done - just algorithm explained & commented on: "May be a more powerful test 
than Schruben's original test (20), for large initial bias" 
 
Law & Kelton (2000) [52]:  Brief explanation of Schruben's procedures. "Schruben tested his procedure on 
several stochastic models with a known value of [steady state mean], and found that it had high power in 
detecting initialization bias." 



Positives Effective in removing damped oscillating bias and mean shift bias. [28]
"May be a more powerful test than Schruben's original test (20), for large initial bias" [34]
High power in detecting initialization bias [52]. 

Criticisms Generally not successful in dealing with exponential bias except in most extreme cases.   Not effective in 
detecting bias in capacitated damped oscillating bias.  Occasionally removed large amount of data relative to 
other methods MCR (14), MSER-5 (15), BM Max test (24), & BM Batch means test (25). [28]  
"version given [in Nelson (1982) [16]] … is conservative in that it tries to ensure that all of the asymptotic 
assumptions behind the test will be valid" 

Accuracy Medium 
Simplicity Medium 
Automation potential Medium  -  need to access whether bias is +ve or –ve. 
Generality (No assumptions) Good/ Medium – need to either decide if bias is +ve or –ve 
Parameters to estimate? 4 – run length (n); variance (V); degree of freedom (δ) for F dist test and Batch size (b) 
Computation time Good 
 
Method ID 22
Method Name Optimal Test (Brownian bridge process) 
Brief description Schruben et al (1983) [18]:  

Replicate k times with a run length of n. 
Compute the variance σ2 and degrees of freedom d. 
Compute the test statistic: 
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Reject the null hypothesis is no negative initial bias if T > t(d,α).  Here t(d,α) is the upper 100α quantile of 
the t distribution with d degrees of freedom. 



If a test for positive bias is required, then the sign of the T statistic should be changed.  The absolute value of 
T can be used if a two-sided t test is required. 

Literature Review Pawlikowski(1990) [7]:  "Despite the sophisticated theory hidden behind these tests, they appear to be 
simple numerically and can be applied to a wide class of simulated processes"…"The main practical 
problem with their implementation is that they require a priori knowledge of the variance estimator of the 
simulated process in steady state." 
 
Schruben et al(1983) [18]:   
Systems Studied:  
Model1: AR(2) with oscillating initial transient function.      
Model2: M/M/1 queue with ρ = 0.9.  Output variable is waiting times.     
Model3: Simple production-inventory model.     
Model4: time-shared computer system (Adiri & Avi-Itzhak [1969]).     
Model5: Telephone exchange model (M/M/s).  Output is number of busy lines per time period.    
Model6:  Network of 3 capacitated M/M/s queues with feedback.       
Performance criteria:  Percentage of runs for which the null hypothesis of no bias was rejected. 
Results:  The Optimal Test (22) had high power in detecting presence of initialisation bias in all test models 
and compared well with Schruben’s Max Test (20).  Schruben’s Max Test (20) performed poorly for 2nd 
model (M/M/1 ρ = 0.9).  "The computation involved in the two tests was minimal even on the smallest of 
computers".  "The Optimal Test (22)  for initialisation bias in simulations presented in this paper appears to 
be robust and powerful in widely differing situations.  The forms of the initial transient mean function in the 
models used in the examples are quite different.  Relatively short runs were used in the experiments to 
illustrate the robustness of the asymptotic theory on which the test is based."  "We recommend that both the 
test presented here, [Optimal Test (22)] and the test presented [by Schruben, Schruben’s Max Test (20)] be 
conducted to support ascertations that initialisation bias in the mean of a simulation output process has been 
effectively controlled." 
 
Ma & Kochner(1993) [31]:   
Systems Studied:  Artificial stochastic sequences are produced, Y(i) = X(i) +u(i),  i=1,2,…,n; where X(i) is a 
series of i.i.d N(0,1) random variables & u(i) is the initial bias function, a geometrically declining function 



which converges to 0 as i increases: u(i) = u(1) p(i-1), (0<p<1); u(1) & p are predetermined parameters. (Also 
possible to use AR(1) model as X, although not clear if done here).    
Performance Criteria:  The number of positive bias sequences detected by test for all 6 combinations of u 
and p parameters. 
Results:   Optimal Test (22) more sensitive to bias than Rank test (23).  Sample size affects performance of 
each test: too large or too small a sample size reduces power of each test. 
 
Kimbler & Knight (1987) [46]:   
Systems Studied: M/M/1 queue with ρ = 0.9.  This is a "highly congested system …has an unusually gradual 
transition into steady state"      
Performance Criteria:  Steady state statistics (time in system) compared with theoretical solution using 
Dudewicz method for determining the best of k systems. 
Results:   Though quite complex to (code) execute, the Optimal Test (22) worked well. "…We also found 
that while the methods proposed by both Kelton & Law (18) and Schruben [Optimal Test (22)]  were very 
complex and sophisticated, the results which they produced did not warrant the additional level of 
difficulty".   All methods tested: Relaxation Heuristics (17); Kelton & Law Regression (18); Optimal Test 
(22) & Kimbler’s double exponential smoothing (43), worked equally well in relation to estimating mean 
time in system...but there was quite a difference in truncation points.  The Relaxation Heuristics (17) 
truncated far later than others; then Kelton & Law Regression (18) and Optimal Test (22), with Kimbler’s 
double exponential smoothing (43) being the least conservative.  Relaxation Heuristics (17)  and Kimbler’s 
double exponential smoothing (43) are far simpler than Kelton & Law Regression (18) and Optimal Test 
(22) to carry out. 
 
Law & Kelton (2000) [52]:  Only a brief mention (with cite) of this initialisation bias test as a variation of 
the Schruben procedures. 

Positives Simple numerically.  Applicable to a wide class of simulated processes [7]. 
High power in detecting presence of initialisation bias.  “Compared well with Schruben’s Max Test (20).” 
“Robust and powerful in widely differing situations.”  Asymptotic theory robust [18]
Optimal Test (22)  more sensitive to bias than Rank test (23). [31]   



Criticisms Require estimate of Variance [7]. 
Sample size affects performance of test: too large or too small a sample size reduces power of test. [31]  
Quite complex to (code) execute. [46]

Accuracy Medium/Good 
Simplicity Medium 
Automation potential Good/Medium – need to either decide if bias is +ve or –ve or use the two-sided test. 
Generality (No assumptions) Good/Medium – Asymptotic assumptions a possible problem 

– need to either decide if bias is +ve or –ve or use the two-sided test. 
Parameters to estimate? 4-5 – Variance (V), degrees of freedom (d), run length (n), number of reps (k).  May need to use batches (b) 
Computation time Good 
 
Method ID 23
Method Name Rank Test 
Brief description Vassilacopoulos (1989) [14]:   

Let x1,x2,…,xN be the observations to be tested for initial bias (these can be from a single run or averages 
from several runs etc..). 
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1.  Find the ranks (Rk) of the observations and calculate {UN(k);   k=1,2,…,N}:   
2.  Find c and the significance probability; α̂ (for two-sided test); +α̂  (for +ve bias); −α̂  (for –ve bias); 

associated with it. 
3.  Reject the hypothesis of “no initial bias” if   α̂ < α where α is the selected significance level of the test. 

Literature Review Vassilacopoulos (1989) [14]:   
Systems Studied: M/M/1 & M/M/4 queues with ρ = 0.9.  There are 3 initial states used: empty & idle 
(producing negative bias), equal to steady state mean (producing no bias), twice steady state mean 
(producing positive bias).  The output variable is customer waiting times. 
Results:  Method performed well, detecting bias with high power. 
 
Ma & Kochner(1993) [31]:   
Systems Studied:  Artificial stochastic sequences are produced, Y(i) = X(i) +u(i),  i=1,2,…,n; where X(i) is a 
series of i.i.d N(0,1) random variables & u(i) is the initial bias function, a geometrically declining function 
which converges to 0 as i increases: u(i) = u(1) p(i-1), (0<p<1); u(1) & p are predetermined parameters. (Also 
possible to use AR(1) model as X, although not clear if done here).    
Performance Criteria:  The number of positive bias sequences detected by test for all 6 combinations of u 
and p parameters. 
Results:  Optimal Test (22) more sensitive to bias than Rank test (23).  Sample size affects performance of 
each test: too large or too small a sample size reduces power of each test. 
 
Law & Kelton(2000) [52]:  Only a brief mention (with cite) of this initialisation bias test.  "Limited testing 
on the M/M/s queue produced encouraging results" 

Positives Performed well, detecting bias with high power. [14]
Criticisms Less sensitive to bias than Optimal Test (22).  Sample size affects performance of test: too large or too small 

a sample size reduces power of test. [31]
Accuracy Medium/Good 



Simplicity Medium 
Automation potential Good 
Generality (No assumptions) Good – asymptotic theory seems robust 
Parameters to estimate? 1-2 – run length (N) and number of replications if used. 
Computation time Medium 
 
Method ID 24
Method Name Batch means based test – Max test 
Brief description Cash et al (1992) [33]: “…a test based on the location and magnitude of the maximum deviation…” 

For a test for negative bias (positive bias test requires change of sign for test statistic): 
Partition X1,X2,…,Xn into b non-overlapping batches of m observations such that n = bm. 
Let, 
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V MAXBM
MAXBM  , be the batch-means variance estimator, where  

MAXBMMAXBM QQQ +=+ , for definition of QBM see Method [25]. 



 
Partition the b batch means into two groups consisting of the first b’ batch means and the last (b-b’) batch 
means.   
Let VBM+MAX

1st be the variance estimator calculated using only the first b’ batches; and let VBM+MAX
2nd be the 

variance estimator calculated using the last (b-b’) batches only. 
Under the null hypothesis of no initial bias, the ratio  
FBM+MAX =  VBM+MAX

1st /  VBM+MAX
2nd  converges in distribution to an F random variable.  The critical value 

for the test is  
F4b’-1, 4b-4b’-1, (1-α). 

Literature Review Preston White Jnr et al (2000) [28]:   
Systems Studied:  2nd order autoregressive process with zero mean and with differing initial parameter 
values.  3 bias fns: exponential, mean shift, under-damped oscillations (based on Cash et al (1992) [33]). 
Bias fns incorporated by superposition (adding into output) and injection (adding into state equation).       
Performance Criteria:  Sample mean, abs bias = |grand estimated mean - grand mean of unbiased data|;  p-
value of 2 sample t-test - H0: estimated mean = mean from unbiased data; average computation time; min, 
max, mean & standard deviation of truncation pt.; number of inconclusive results. 
Methods tested:  MCR (14), MSER-5 (15), Schruben’s modified test (21), BM Max test (24), & BM Batch 
means test (25).  The MCR/MSER method is applied sequentially.       
Results:  Principle shortcoming of the BM Max test (24) was that it was often inconclusive particularly for 
initial parameters >0.  Did perform well on data sets containing damped oscillating bias.  Generally efficient 
in picking truncation pts.  Not effective in detecting bias in capacitated damped oscillating bias.  Generally 
unreliable because the test statistic on which it is based is frequently undefined yielding an inconclusive 
result.  "Must test for both positive and negative bias at each iteration".   
 
Cash et al (1992) [33]:   
Systems Studied:   
Model1:  AR(1).  
Model2:  M/M/1 queue, ρ = 0.5, 0.8.  Output variable is ‘delay in queue per customer’. 
Model3:  Markov Chain.  
Bias fns: (1) Mean shift bias; (2) Linear bias fn;  (3) Quadratic bias fn (based on GSS)  (4) Damped 



oscillating bias function.   All 4 biases are made to go to zero at a fixed n (data number).   Uses (and 
recommends using) batch number, b, ≤ 16.                     
Performance Criteria:   Bias Index: Absolute Bias of point estimator / (asymptotic variance of process / n).   
Estimated power of test.  P(test rejects H0 of no bias| no bias present).  
Methods tested: BM Max test (24), BM Batch means test (25), BM Area test (26). 
Results:  Power of tests are reduced by making the number of batches (b) too small or too big (But of course 
the practitioner doesn’t know what is "too small" or "too big"!).   
The slower the bias decays the more difficulty the tests have in detecting it.   BM Max test (24) is the most 
powerful test of the ones tested here.  Recommend Max test run with 8 batches.  More work on a good 
deletion strategy still needed. 
   
Lee & Oh (1994) [42]:   
Systems Studied:  M/M/1/infinity queuing model with ρ = 0.5; 0.7; 0.9. Output variable is waiting time in 
queue.    
Performance criteria:  Effectiveness was assessed using a bias calculation:  
Abs[true mean  - estimated mean] / estimated mean 
 
Results:     Methods M1 (40) and BM Max test (24) "detect a truncation pt regardless of system state".  But 
M2 (40) "can determine correctly the transient state…" 
 
Goldsman et al (1994) [43]:   
Systems Studied: AR(1)~Norm error; AR(1)~exp error; M/M/1 queue.    
Performance criteria: Analytical power results if possible or empirical power results. 
Methods tested:  BM Max test (24), BM Batch means test (25), BM Area test (26)  
Results:  Tests valid for all examples.  ". tests fared particularly well when [number of batches and number 
of batches in first group] were large.  Unfortunately when we divided simulation output into many batches 
the performance of the non-BM tests was disappointing.  …A conservative yet powerful approach may be to 
use the area or maximum estimators after dividing the simulation into a smaller number of batches…" 
 
Law & Kelton(2000) [52]:  Only a brief mention (with cite) of this initialisation bias test as a variation of the 



Schruben procedures. 
Positives Performed well on data sets containing damped oscillating bias (except capacitated ones) [28]   

Tests fared particularly well when [number of batches and number of batches in first group] were large. [43]
Criticisms Often inconclusive - Generally unreliable because the test stat on which it is based is frequently undefined 

yielding an inconclusive result.  Not effective in detecting bias in capacitated damped oscillating bias. "Must 
test for both +ve and -ve bias at each iteration". [28] 
The slower the bias decays the more difficulty the tests have in detecting it.  BM Max test (24)  is more 
powerful than BM Batch means test (25) and BM Area test (26). [33]
Method will "detect a truncation pt regardless of system state". [42]

Accuracy Poor/Medium 
Simplicity Medium 
Automation potential Medium – need to access whether bias is +ve or –ve. 
Generality (No assumptions) Good/Medium – asymptotic assumption seems robust 
Parameters to estimate? 4 - Run length (n), batch number (b), division of batches into two groups (b’), variance (V) 
Computation time Good 
 
Method ID 25
Method Name Batch means based tests – Batch Means Test 
Brief description Partition X1,X2,…,Xn into b nonoverlapping batches of m observations such that n=bm.   

Let,  
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Partition the b batch means into two groups consisting of the first b’ batch means and the last (b-b’) batch 
means.   



Let VBM
1st be the variance estimator calculated using only the first b’ batches; and let VBM

2nd be the variance 
estimator calculated using the last (b-b’) batches only. 
Under the null hypothesis of no initial bias, the ratio  
FBM =  VBM

1st /  VBM
2nd  converges in distribution to an F random variable.  The critical value for the test is 

Fb’-1, b-b’-1, (1-α). 
Literature Review Ockerman & Goldsman (1999) [22]:   

Systems Studied:   
Model1:  A step process Y(j), j=1,2,... where Y(j)s = ±1 with probability 0.5. The variance is 1.     
Model2:  AR(1) with Normal errors. The variance is 19.     
Model3:  MA(1) with Normal errors. The variance is 0.01.     
Model4:  M/M/1 where output variable is waiting time.  The arrival rate is 0.8, service rate is 1 and the 
variance is stated as being 1976??      
Model5:  2-station re-entrant line, with a poisson arrival process. 
Performance criteria:  P{Reject H0 | H0 is true) and P{Reject H0 | H0 is false}.   
Results:    
P{Reject H0 | H0 is true) criteria:  All methods performed relatively well (reaching 10% value with 
increasing n).   
P{Reject H0 | H0 is false} criteria:   The Ockerman & Goldsman Students t-tests Method (35),  Ockerman & 
Goldsman (t-test) Compound Tests (36) and Schruben max test (20) seem to cope a little better than the 
other variance ratio tests BM Batch Means Test (25)  and Area test (26) when the M/M/1 or re-entrant line 
systems started empty.  That is, they cope with "2nd-order effect" slightly better.    
 
Preston White Jnr et al (2000) [28]:   
Systems Studied:  2nd order autoregressive process with zero mean and with differing initial parameter 
values.  3 bias fns: exponential, mean shift, under-damped oscillations (based on Cash et al (1992) [33]). 
Bias fns incorporated by superposition (adding into output) and injection (adding into state equation).       
Performance Criteria:  Sample mean, abs bias = |grand estimated mean - grand mean of unbiased data|;  p-
value of 2 sample t-test - H0: estimated mean = mean from unbiased data; average computation time; min, 
max, mean & standard deviation of truncation pt.; number of inconclusive results. 
Methods tested:  MCR (14), MSER-5 (15), Schruben’s modified test (21), BM Max test (24), & BM Batch 



means test (25).  The MCR/MSER method is applied sequentially.       
Results:   BM Batch means test (25) is the worst least effective method tested.  It had relatively low 
sensitivity in detecting bias and rarely truncated enough of series.  It never, however, truncated beyond the 
optimal truncation pt and was generally fast to run.  
 
Cash et al (1992) [33]:   
Systems Studied:   
Model1:  AR(1).  
Model2:  M/M/1 queue, ρ = 0.5, 0.8.  Output variable is ‘delay in queue per customer’. 
Model3:  Markov Chain.  
Bias fns: (1) Mean shift bias; (2) Linear bias fn;  (3) Quadratic bias fn (based on GSS)  (4) Damped 
oscillating bias function.   All 4 biases are made to go to zero at a fixed n (data number).   Uses (and 
recommends using) batch number, b, ≤ 16.                     
Performance Criteria:   Bias Index: Absolute Bias of point estimator / (asymptotic variance of process / n).   
Estimated power of test.  P(test rejects H0 of no bias| no bias present).  
Methods tested: BM Max test (24), BM Batch means test (25), BM Area test (26). 
Results:  
Power of tests are reduced by making the number of batches (b) too small or too big (But of course the 
practitioner doesn’t know what is "too small" or "too big"!).  The slower the bias decays the more difficulty 
the tests have in detecting it.  BM Batch means test (25) & BM Area test (26) are joint least powerful tests of 
the ones tested here. More work on a good deletion strategy still needed. 
 
Goldsman et al (1994) [43]:   
Systems Studied: AR(1)~Norm error; AR(1)~exp error; M/M/1 queue.    
Performance criteria: Analytical power results if possible or empirical power results. 
Methods tested:  BM Max test (24), BM Batch means test (25), BM Area test (26)  
Results:   Tests valid for all examples.  All tests fared particularly well when [number of batches and number 
of batches in first group] were large.  Unfortunately when we divided simulation output into many batches 
the performance of the non-BM tests was disappointing.  “…A conservative yet powerful approach may be 
to use the area or maximum estimators after dividing the simulation into a smaller number of batches…" 



 
Law & Kelton(2000) [52]:  Only a brief mention (with cite) of this initialisation bias test as a variation of the 
Schruben procedures. 

Positives P{Reject H0 | H0 is true) criteria:  performed relatively well (reaching 10% value with increasing n) [22].   
Never truncated beyond the optimal truncation pt.  Generally fast to run. [28]
Fared particularly well when [number of batches and number of batches in first group] were large. [43]

Criticisms Worst, least effective method when compared with methods MCR (14), MSER-5 (15), Schruben’s modified 
test (21) and BM Max test (24).  Had relatively low sensitivity in detecting bias and rarely truncated enough 
of series [28]. 
Power of test is reduced by making the number of batches (b) too small or too big.  The slower the bias 
decays the more difficulty the test has in detecting it.  Less powerful test than BM Max test (24). [33]  

Accuracy Poor/Medium 
Simplicity Medium 
Automation potential Good 
Generality (No assumptions) Good – though based on asymptotic theory 
Parameters to estimate? 4 - Run length (n), batch number (b), division of batches into two groups (b’), variance (V) 
Computation time Good 
 
Method ID 26
Method Name Batch means based tests – Area Test 
Brief description Cash et al (1992) [33]:  

A test based on the area under a standardised time series… 
Partition X1,X2,…,Xn into b nonoverlapping batches of m observations such that n=bm. 
Transform the data into b standardised time series and compute a variance estimator based on the area under 
the standardised time series, as follows, where i=1,2,…,b  and j=1,2,…,m and 0≤t≤1. 
 
Let, 
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where σ2 is the asymptotic variance constant of the output process. 
  
Let  
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V AREABM
AREABM  , be the batch-means variance estimator, where  

AREABMAREABM QQQ +=+ , for definition of QBM see Method (25). 
 
Partition the b batch means into two groups consisting of the first b’ batch means and the last (b-b’) batch 
means.   
Let VBM+AREA

1st be the variance estimator calculated using only the first b’ batches; and let VBM+AREA
2nd be 

the variance estimator calculated using the last (b-b’) batches only. 
Under the null hypothesis of no initial bias, the ratio  
FBM+AREA =  VBM+AREA

1st /  VBM+AREA
2nd  converges in distribution to an F random variable.  The critical 

value for the test is F2b’-1, 2b-2b’-1, (1-α). 
 

Literature Review Ockerman & Goldsman (1999) [22]:   
Systems Studied:   
Model1:  A step process Y(j), j=1,2,... where Y(j)s = ±1 with probability 0.5. The variance is 1.     



Model2:  AR(1) with Normal errors. The variance is 19.     
Model3:  MA(1) with Normal errors. The variance is 0.01.     
Model4:  M/M/1 where output variable is waiting time.  The arrival rate is 0.8, service rate is 1 and the 
variance is stated as being 1976??      
Model5:  2-station re-entrant line, with a poisson arrival process. 
Performance criteria:  P{Reject H0 | H0 is true) and P{Reject H0 | H0 is false}.   
Results:    
P{Reject H0 | H0 is true) criteria:  All methods performed relatively well (reaching 10% value with 
increasing n).   
P{Reject H0 | H0 is false} criteria:   The Ockerman & Goldsman Students t-tests Method (35),  Ockerman & 
Goldsman (t-test) Compound Tests (36) and Schruben max test (20) seem to cope a little better than the 
other variance ratio tests BM Batch Means Test (25)  and Area test (26) when the M/M/1 or re-entrant line 
systems started empty.  That is, they cope with "2nd-order effect" slightly better.    
 
Cash et al (1992) [33]:   
Systems Studied:   
Model1:  AR(1).  
Model2:  M/M/1 queue, ρ = 0.5, 0.8.  Output variable is ‘delay in queue per customer’. 
Model3:  Markov Chain.  
Bias fns: (1) Mean shift bias; (2) Linear bias fn;  (3) Quadratic bias fn (based on GSS)  (4) Damped 
oscillating bias function.   All 4 biases are made to go to zero at a fixed n (data number).   Uses (and 
recommends using) batch number, b, ≤ 16.                     
Performance Criteria:   Bias Index: Absolute Bias of point estimator / (asymptotic variance of process / n).   
Estimated power of test.  P(test rejects H0 of no bias| no bias present).  
Methods tested: BM Max test (24), BM Batch means test (25), BM Area test (26). 
Results:   Power of tests are reduced by making the number of batches (b) too small or too big (But of course 
the practitioner doesn’t know what is "too small" or "too big"!).  The slower the bias decays the more 
difficulty the tests have in detecting it.  BM Batch means test (25) & BM Area test (26) are joint least 
powerful tests of the ones tested here. More work on a good deletion strategy still needed. 
 



Goldsman et al (1994) [43]:   
Systems Studied: AR(1)~Norm error; AR(1)~exp error; M/M/1 queue.    
Performance criteria: Analytical power results if possible or empirical power results. 
Methods tested:  BM Max test (24), BM Batch means test (25), BM Area test (26)  
Results:   Tests valid for all examples.  All tests fared particularly well when [number of batches and number 
of batches in first group] were large.   A conservative yet powerful approach may be to use the area or 
maximum estimators after dividing the simulation into a smaller number of batches…" 
 
Law & Kelton(2000) [52]:  Only a brief mention (with cite) of this initialisation bias test as a variation of the 
Schruben procedures. 

Positives P{Reject H0 | H0 is true) criteria:  performed relatively well (reaching 10% value with increasing n).  [22]
Fared particularly well when [number of batches and number of batches in first group] were large. [43]

Criticisms Power of test is reduced by making the number of batches (b) too small or too big.  The slower the bias 
decays the more difficulty the test has in detecting it. Less powerful than BM Max test (24). [33]

Accuracy Poor/Medium 
Simplicity Medium 
Automation potential Good 
Generality (No assumptions) Good – based on asymptotic theory 
Parameters to estimate? 5 - Run length (n), batch number (b), division of batches into two groups (b’), Standardisation parameter (t),  

asymptotic variance of output process  (σ2) and variance of area under standardised time series (V) 
Computation time Good 
 
 
Method ID 35 
Method Name Ockerman & Goldsman Students t-tests Method 
Brief description Find the sample means of the first and second halves of the data series: 2/,2 nY  and 2/,2 nY   

Create an asymptotically independent χ2 estimate of the variance of 2/,2 nY - 2/,2 nY , namely  

(variance of 2
)()2(

8, nVBM
nd half of data series using 8 batches). 



Construct the statistic:  
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Which converges to a t-dist random variable, with 7 df, under the H0 of no initialisation bias. 
i.e. this test rejects H0 at the 100α% level if QBM > t7,α is the upper-α quantile from the t-dist with 7 df. 
NOTE: this test is one-sided based on the assumption of H1: negative initial bias present.  Multiply test 
statistic by -1 to test for positive bias. 

Literature Review Ockerman & Goldsman (1999) [22]:   
Systems Studied:   
Model1:  A step process Y(j), j=1,2,... where Y(j)s = ±1 with probability 0.5. The variance is 1.     
Model2:  AR(1) with Normal errors. The variance is 19.     
Model3:  MA(1) with Normal errors. The variance is 0.01.     
Model4:  M/M/1 where output variable is waiting time.  The arrival rate is 0.8, service rate is 1 and the 
variance is stated as being 1976??      
Model5:  2-station re-entrant line, with a poisson arrival process. 
Performance criteria:  P{Reject H0 | H0 is true) and P{Reject H0 | H0 is false}.   
Results:    
P{Reject H0 | H0 is true) criteria:  All methods performed relatively well (reaching 10% value with 
increasing n).   
P{Reject H0 | H0 is false} criteria:   The Ockerman & Goldsman Students t-tests Method (35),  Ockerman & 
Goldsman (t-test) Compound Tests (36) and Schruben max test (20) seem to cope a little better than the 
other variance ratio tests BM Batch Means Test (25)  and Area test (26) when the M/M/1 or re-entrant line 
systems started empty.  That is, they cope with "2nd-order effect" slightly better.   Results generally good.   
"It would appear that for stochastic processes that have boundaries (e.g. the number of customers waiting in 
a queue cannot be negative), if the process is started near one of the boundaries and the variance at the 
boundary is lower than the variance at steady state, then many current initialisation bias tests will not be 
successful in detecting the bias.  We believe that the t-test method (35) and compound test (36) are steps 
towards a solution." 
Schruben max test (20) and new tests Ockerman & Goldsman Students t-tests Method (35),  Ockerman & 



Goldsman (t-test) Compound Tests (36) slight improvement on  BM Batch Means Test (25) & BM Area test 
(26).  

Positives P{Reject H0 | H0 is true) criteria:  performed relatively well (reaching 10% value with increasing n).  
P{Reject H0 | H0 is false} criteria:  Schruben max test (20) seemed to cope a little better than other variance 
ratio tests, BM Batch Means Test (25)  and Area test (26) when systems (M/M/1 or re-entrant line) started 
empty - i.e cope with "2nd-order effect" slightly better.  [22]

Criticisms Need to know whether bias is positive of negative and adjust statistic accordingly. 
Accuracy Medium 
Simplicity Medium 
Automation potential Medium - Need to know whether bias is positive of negative and adjust statistic accordingly. 
Generality (No assumptions) Good/Medium - Need to know whether bias is positive of negative and adjust statistic accordingly. 
Parameters to estimate? 3 - Run length (n), variance (V), sig level (α),  
Computation time Good 
 
Method ID 36
Method Name Ockerman & Goldsman (t-tests) Compound Methods 
Brief description Component1: t-test method(as in method 35) but using the batched-area estimator for the variance so that 

independence between this test and the one in component2 is maintained: 

∑
=

=
8

1
1,1

)2(
8, ][

8
1)(

i
BM iVnV   i.e. the average of 8 area estimators from the 2nd half of the data series.   

( ) )(/4 )2(
8,

2/,12/,2

nVn

YY
Q

BM

nn
BM

−
=  now converges to the t-dist with 8df under the null hypothesis of no initial 

bias. 
i.e. this test rejects H0 at the 100α% level if QBM > t8,α is the upper-α quantile from the t-dist with 8 df. 
 
Component2:  Method (25), the Batch means test , using 8 batches in each half of the data series. 
        --------------------------------------------------------------- 



Compound Test 1:  Reject the claim of no initial bias only if BOTH the t-test and the batch-means test would 
have individually rejected the claim.  Individual tests constructed with size √α to obtain a compound test 
with size α. 
 
Compound Test 2:  Reject the claim of no initial bias only if EITHER the t-test or the batch-means test 
would have individually rejected the claim.  Individual tests constructed with size 1-√(1-α) to obtain a 
compound test with size α. 
 

Literature Review Ockerman & Goldsman (1999) [22]:   
Systems Studied:   
Model1:  A step process Y(j), j=1,2,... where Y(j)s = ±1 with probability 0.5. The variance is 1.     
Model2:  AR(1) with Normal errors. The variance is 19.     
Model3:  MA(1) with Normal errors. The variance is 0.01.     
Model4:  M/M/1 where output variable is waiting time.  The arrival rate is 0.8, service rate is 1 and the 
variance is stated as being 1976??      
Model5:  2-station re-entrant line, with a poisson arrival process. 
Performance criteria:  P{Reject H0 | H0 is true) and P{Reject H0 | H0 is false}.   
Results:    
P{Reject H0 | H0 is true) criteria:  All methods performed relatively well (reaching 10% value with 
increasing n).   
P{Reject H0 | H0 is false} criteria:   The Ockerman & Goldsman Students t-tests Method (35),  Ockerman & 
Goldsman (t-test) Compound Tests (36) and Schruben max test (20) seem to cope a little better than the 
other variance ratio tests BM Batch Means Test (25)  and Area test (26) when the M/M/1 or re-entrant line 
systems started empty.  That is, they cope with "2nd-order effect" slightly better.   Results generally good.  
Compound2 probably better than Compound1. 
       "It would appear that for stochastic processes that have boundaries (e.g. the number of customers 
waiting in a queue cannot be negative), if the process is started near one of the boundaries and the variance 
at the boundary is lower than the variance at steady state, then many current initialisation bias tests will not 
be successful in detecting the bias.  We believe that the Ockerman & Goldsman Students t-tests Method (35) 
and Ockerman & Goldsman (t-test) Compound Tests (36) are steps towards a solution." 



Schruben max test (20) and new tests (35) & (36) slight improvement on BM Batch Means Test (25)  and 
Area test (26). 

Positives P{Reject H0 | H0 is true) criteria:  performed relatively well (reaching 10% value with increasing n).  
P{Reject H0 | H0 is false} criteria:  Schruben max test (20) seemed to cope a little better than other variance 
ratio tests, BM Batch Means Test (25)  and Area test (26) when systems (M/M/1 or re-entrant line) started 
empty - i.e cope with "2nd-order effect" slightly better.  [22]

Criticisms Need to know whether bias is positive of negative and adjust statistic accordingly. 
Accuracy Medium 
Simplicity Medium 
Automation potential Medium - Need to know whether bias is positive of negative and adjust statistic accordingly. 
Generality (No assumptions) Good/Medium - Need to know whether bias is positive of negative and adjust statistic accordingly. 
Parameters to estimate? 4 - Run length (n), two different variances (VBM) & (VBA), sig level (α), 
Computation time Good/Medium 
 
 

(Return to top of document) 
 
 

STATISTICAL METHODS 
 
Method ID 16
Method Name Goodness-Of-Fit Test 
Brief description Pawlikowski (1990) [7]:  “...the sequence of observations should be partitioned into batches of at least m0 = 

10 observations each; e.g. Soloman (1983) selected m0 = 30…  In a time series of observations x1,x2,…,xn 
the initial transient is over after n0 observations if the  χ2 goodness-of-fit test confirms that in the batch of 
observations following the observation n

0000
,...,, 21 mnnn xxx +++ 0, the numbers of observations above and 

below the running mean )( 0nX are about the same.” 
Literature Review Pawlikowski (1990) [7]:  “approach, which Solomon (1983) [“Simulation of Waiting-Line Systems”. 



Prentice-Hall, NJ.] attributes to Emshoff and Sisson (1970) [“Design and Use of Computer Simulation 
Models”. Macmillan, NY], is based on the χ2 goodness-of-fit test applied for selecting a time from which the 
numbers of observations below and above the running mean are equal in the statistical sense.”     
"…seems to be quite simple and independent of any system-related parameter." 

Positives Simple.  Independent of system related parameters [7]. 
Criticisms None found in literature 
Accuracy Unknown 
Simplicity Good 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 2 - Run length, batch size  
Computation time Good 
 
 
Method ID 18
Method Name Kelton and Law Regression Method 
Brief description Law & Kelton (1983) [11]:   

Make k independent replications of length m0.   
Average over the replications to obtain the single time series

0
,...,, 21 mXXX .    

Group the series into b batches and compute the b batch means. 
Using the Amemiya GLS procedure, fit a straight line through the batch means {p*b + 1,…,b}, where p* is 
the maximum initial deletion proportion.  Perform a test for zero slope at level β. 
If the test doesn’t reject the null hypothesis of zero slope move the ‘test window’ backwards towards the 
start of the data series, redraw line and test for zero slope again. 
If the test rejects the null hypothesis at the first try, add data to create a longer run length and repeat 
procedure.  
If the test rejects the null hypothesis after the first try then truncation point has been found. 
(see Law & Kelton (1983) [11], p646-p647, for more detailed instructions) 

Literature Review Roth (1994) [6]:   



Systems Studied:  51 M/M/k queuing systems with ρ = 0.1 to 0.9 and k = 1 to max.  
Performance Criteria:  Normal hypothesis test – H0: estimated mean = true mean (see paper [6] for details). 
Results:  Kelton-Law method (18) failed in 43% of cases - probably because run length was not long 
enough!.. 
 
Pawlikowski (1990) [7]: "..can be applied only in the case of monotonic convergence to steady state” but 
“Keifer and Wolfowitz (1955) proved that in any stable, initially empty and idle GI/G/c queuing system, the 
mean delay in queue grows monotonically in time.” 
“The procedure implementing this rule appears to be quite effective, especially in lowering the MSE of 
estimators (Roth 1985; Roth and Rutun 1985)." 
 
Kelton & Law (1983) [11]:   
Systems Studied: Parameter estimation carried out using an M/M/1 queue with ρ = 0.9, a triple tandem 
queue M/M/1/M/1/M/1, & a time shared computer model.   
Performance Criteria:  (FBIAS) = Future bias, (PEBIAS) = point estimator bias, (COVER) & (EHL) = 
coverage and expected 1/2 length of CI for µ, (MAD) = mean absolute deviation of point estimator, 
replication length, execution time…  
Testing of procedure used 13 stochastic models with known µ:  
M/M/1 ρ = 0.8; 0.9; 0.95;  M/M/4 ρ = 0.8; 
M/M/1 LIFO ρ = 0.8;  M/M/1/M/1/M/1 ρ = (0.5, 0.7, 0.9);  
M/M/1 SIRO ρ = 0.8;  Time shared comp model;  
M/M/1 L0=10 ρ = 0.8;  Central server comp model;   
E4/M/1 ρ = 0.8;  
M/H2/1 ρ = 0.8;  
M/M/2 ρ = 0.8;  

Further tests carried out on 2 more "complex" 
problems. 

Results:  Method performed quite well except for model M/M/1 ρ = 0.95.  Average CI coverage = 84% out 
of a desired 90%. Usually reduced bias <= 1%. 
 
Law (1983) [34]: No tests done - just algorithm explained & commented on: "…shown to perform well for a 
wide variety of stochastic models.  However, a theoretical limitation of the procedure is that it assumes that 



E[Y(i)] is a monotone function of i.  This limits the overall applicability of this procedure". 
 
Linton & Harmonsky (2002) [36]:    
Model1: Queuing model with 2 servers in sequence. Inter-arrival time is exponential with mean of 8; server1 
process time is exponential with a mean of 6; server2 process time is exponential with mean of 7.    
Model2:  Same as for model1 except all distributions are triangular; inter-arrival time distribution is 
therefore defined as{min = 6, mode = 8, max = 10}; server1 process time defined as{min = 4, mode = 6, 
max = 8}; server2 process time as {min = 5, mode = 7, max = 9} 
Performance criteria:   
i)  equality of variance (between methods) using Levene's test  
ii) equality of mean (between methods) using 2-sample t-test.    
Results:   Found able to adjust to changes in distributions of the inter-arrival times and processing times.   
Computationally intensive.  WARNING: Not tested to see if chosen truncation point was correct or efficient! 
 
Kimbler & Knight (1987) [46]:   
Systems Studied: M/M/1 queue with ρ = 0.9.  This is a "highly congested system …has an unusually gradual 
transition into steady state"      
Performance Criteria:  Steady state statistics (time in system) compared with theoretical solution using 
Dudewicz method for determining the best of k systems. 
Results:   Complex to (code) execute. Method worked well.  "…We also found that while the methods 
proposed by both Kelton (18) and Schruben (22) were very complex and sophisticated, the results which 
they produced did not warrant the additional level of difficulty" 
 
Gallagher et al (1996) [47]:   
Systems Studied:  (based on Kelton and Law 1983)   
M/M/1 queues ρ = 0.8, 0.90, 0.95, 0.8(LIFO), 0.8 (L0 = 10), 0.8(Lq).    
E4/M/1 ρ = 0.8;    
M/M/2 ρ = 0.8;   
M/M/4 ρ = 0.8;   
Open model is 3 M/M/1 queues in tandem;   



Time-sharing computer;   
Central server computer.   
Outputs are waiting times; queue lengths; sum of waiting times; job response times; processing times.       
Performance Criteria:  1) Point estimator bias  2) mean abs deviation  3) realised coverage rates (replications 
method)  4) average CI half widths. 
Results:   The MMAE (44) algorithm generally selected truncation points earlier in the output sequences 
than the Kelton and Law method (18).   
 
Law & Kelton (2000) [52]:  "…a theoretical limitation of the procedure is that it basically makes the 
assumption that E(Yi) is a monotone function of i." 
 
Roth & Josephy (1993) [57]:   
Systems Studied:  30 M/Ek/1 and 24 Ek/M/1 queuing systems (which begin at rest); ρ varies from 0.25 to 
0.925 by holding arrival rate fixed and varying service rate; k (parameter for the Erlang dist) varies from 1 to 
20.  Note: Experiments have fixed replication length.       
Performance Criteria: Bias = estimated mean - theoretical mean;  CI size - a function of the variance; MSE; 
observed coverage probability of CIs. 
Results:   "The relaxation time heuristic (17) satisfies the bias criterion in each experiment. The Kelton-Law 
(18) method, Cu-mean (3) and truncated mean (4) techniques are less consistent, causing rejection of the null 
hypothesis in 33, 10, and 3% of cases respectively."  "The confidence interval coverage probabilities are 
quite consistent for each truncation rule."  "K-L heuristic appears to be particularly successful in keeping the 
variance small…..suspect ..K-L heuristic yielded truncation pts smaller than those of the other rules." This is 
born out by the results!     

Positives The procedure implementing this rule appears to be quite effective, especially in lowering the MSE of 
estimators [7]. 
Found able to adjust to changes in distributions of the inter-arrival times and processing times. [36]  
Method worked well. [46]
“K-L heuristic yielded truncation pts smaller than those of the relaxation time heuristic (17), Cu-mean (3) , 
and truncated mean (4)" [57]



Criticisms Only fair performance for M/M/1 ρ = 0.95. [11]
Assumes that E[Y(i)] is a monotone fn of i.  This limits the overall applicability of this procedure" [52] [34] 
[7].  Computationally intensive.[36]  Complex to (code) execute. [46]  

Accuracy Good/Medium 
Simplicity Poor 
Automation potential Good 
Generality (No assumptions) Medium – assumes monotonic behaviour – but “Keifer and Wolfowitz (1955) proved that in any stable, 

initially empty and idle GI/G/c queueing system, the mean delay in queue grows monotonically in time.”[7]
Parameters to estimate? 9 – number of replications (k); initial run-length (m0); number of points added to each replication if 

necessary (Δm); maximum replication length (m*); number of batches (b); max initial deletion proportion 
(p*); min initial deletion proportion (p0); size of the test for zero slope (β); max number of segments over 
which a fit is made, including initial fit (f). 

Computation time Medium 
 
Method ID 19
Method Name Randomisation Tests for Initialisation Bias 
Brief description Mahajan & Ingalls(2004) [1]:  

Randomization tests are applied to test the null hypothesis that mean of the process is unchanged throughout 
the run. 
Null Hypothesis: No initialisation bias. 

1. Let Y1,Y2,…,Ym be a series of output from a run of length m. 
2. Batch the data into b batches of length k 
3. Obtain b batch means: bYYY ,...,, 21  
4. Partition the batch means into 2 groups.  For the 1st iteration the 1st group must include the 1st batch 

mean and the 2nd group contains the remaining b-1 batch means. 
5. For each iteration compare the grand means of each group: Abs[Grand mean(grp1)-Grand 

mean(grp2)].  If the difference is significantly different from zero then the null hypothesis of no 
initial bias is rejected.  To access the significance a distribution of difference is required.  Since it is 
unknown, randomization is used to obtain an empirical distribution. 



6. If the hypothesis is rejected, the groups are rearranged so that the 2nd batch mean moves into the 1st 
group leaving b-2 batch means in the 2nd group.  Step 5 is then repeated.  

7. If the hypothesis is not rejected then the warm-up is in group1 and the steady state output is in 
group2. 

Literature Review Mahajan & Ingalls (2004) [1]:  
Systems Studied:  Job Shop model consisting of 5 Cells, C(i), i=1…5.  Each cell has different number of 
machines (resources). There are 3 customer classes A,B,C.  Overall arrival rate is poisson.  Service times are 
exponential with mean dependent on customer class and cells.  Arriving parts are split into classes {A, B, C} 
with probability {0.5, 0.3, 0.2}.  3 types of utilisation are used:  TypeI is high utilisation with an average 
utilisation of 90%  and range 80-95%;  TypeII is moderate with an average utilisation of 70% and range 65-
80%;  TypeIII is Low with average utilisation of 50% with range 45-65%.   Models are started empty & idle.  
Initial run length is 1000 hrs, with 5 replications.                       
Performance criteria:  Final MSE & Variance, average computing time, percentage change in MSE, 
percentage change in variance.   Method said to perform well if it reduces both MSE and Variance and is 
computationally efficient. 
Results:  Recommended for use with highly utilised systems with a long run length.  Also recommended for 
use with low utilised systems.  “…no assumptions, like that of normality are required.” 
 
Yucesan (1993) [23]:  Generally more conservative than Conway Rule (10) or (graphical) Schruben (20).  
Performance of Randomisation tests (19) not satisfactory for case where output has high positive correlation.  
Advantage of this technique is that no assumptions are made regarding distribution of output. 

Positives Recommended for use with highly utilised systems with a long run length and with low utilised systems. [1]
No assumptions are made regarding distribution of output. [1] [23]

Criticisms Conservative.  Performance not satisfactory when output has high positive correlation. [23]
Fairly complicated and slow to run due to random shuffling. 

Accuracy Poor/Medium 
Simplicity Medium 
Automation potential Good 
Generality (No assumptions) Good 



Parameters to estimate? 2 – run length (m); number of batches (b) 
Computation time Poor 
 
Method ID 30
Method Name Algorithm for a Static Dataset (ASD) 
Brief description Let ( ))0(|~ SxFj  denote the empirical CDF of the k values from the independent replications.  Let xi,j be the 

jth observation of the ith replication with 1≤i≤k  and  1≤j≤n.   The sequence {xi,j, i=1,…,k} can be 
considered as an independent random sample of Xi. 
The maximum difference of 2 CDFs X1 and X2 is given by maxx|F1(x)-F2(x)| where Fi(x) is the proportion of 
Xi values less than or equal to x. 

1. Calculate  ( ))0(|~ SxFj  for 1≤j≤n by sorting {xi,j, i=1,…,k}. 

2. Compute the max differences {dj, j=1,…,n-1} of ( ))0(|~ SxFj  and ( ))0(|~ SxFn . 

3. Compute for all j with 1≤j≤n-1 the number of differences which miss the threshold in the interval 
[j,n-1] 

4. Choose truncation pt to be the minimum value of j after which only (a*100)% of the dj, dj+1, …, dn-1 
exceed the threshold z2,k;1-α. 

Literature Review Bause & Eickhoff (2003) [4]:   
System Studied: Artificial processes: Linear transient mean; Linear transient variance; Exponential transient 
mean; ARMA(5,5); Periodic; Non-Ergodic. 
Results:  Slower than methods Welch (6) & Cum-mean rule (3), but not significantly in practice; "ASD (30) 
and ADD (31) solve some problems of the methods of Fishman [Cum-mean rule (3)] and Welch (6) because 
they are based on the CDFs and not only the mean.  Thus they take the definition of steady state better into 
account."  "Even though the implementations of ASD and ADD (31) are not difficult, they are more 
complicated than the methods of Fishman (3) and Welch (6) .  Their execution is more costly too.  But this 
pays off when analyzing real-world models with complex transient behaviour."  " Whenever steady state can 
not be deduced from a steady mean or the transient behaviour is not roughly known, ASD and ADD (31) are 
a more adequate choice. Their additional running time is acceptable since they are able to find a proper 
truncation point for a larger amount of models." 



Positives “..Based on the CDFs and not only the mean.  Thus they take the definition of steady state better into 
account.”  “.. able to find a proper truncation point for a larger amount of models.”  [4]

Criticisms Slower than methods Welch (6) & Cum-mean rule (3). [4]
Accuracy Medium/Good (limited testing) 
Simplicity Medium 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 4 - Replication number (k), run length (n), truncation criteria coefficient (a), Sig % α 
Computation time Medium 
 
Method ID 31
Method Name Algorithm for a Dynamic Dataset (ADD) 
Brief description 1. Choose a ratio 1: r, and a level p (0≤ p ≤1). 

2. Initialise n to 0 
3. Observe r+1 new X-intervals of all replications and compute the r+1 new random samples: 
      {xi,n+1, i=1,..,k},…,{xi,n+r+1, i=1,..,k} 
4. Set n = n+(r+1) 
5. Set TS = {xi,n/(r+1), i=1,..,k} 
6. Compare TS with {xi,j, i=1,..,k} for j = [n/(r+1)]+1,…,n using the Kolmogoroff-Smirnov 2-sample 

test.   
7. If more than (p×100)% of the compared random samples {xi,j, i=1,..,k} have a different probability 

distribution than TS: Goto 2.  
Otherwise terminate with truncation pt = n/(r+1) 

 Bause & Eickhoff (2003) [4]:   
System Studied: Artificial processes: Linear transient mean; Linear transient variance; Exponential transient 
mean; ARMA(5,5); Periodic; Non-Ergodic. 
Results:  Slower than methods Welch (6) & Cum-mean rule (3), but not significantly in practice; "ASD (30) 
and ADD (31) solve some problems of the methods of Fishman [Cum-mean rule (3)] and Welch (6) because 
they are based on the CDFs and not only the mean.  Thus they take the definition of steady state better into 



account."  "Even though the implementations of ASD and ADD (31) are not difficult, they are more 
complicated than the methods of Fishman (3) and Welch (6) .  Their execution is more costly too.  But this 
pays off when analyzing real-world models with complex transient behaviour."  " Whenever steady state can 
not be deduced from a steady mean or the transient behaviour is not roughly known, ASD and ADD (31) are 
a more adequate choice. Their additional running time is acceptable since they are able to find a proper 
truncation point for a larger amount of models." 

Positives “..Based on the CDFs and not only the mean.  Thus they take the definition of steady state better into 
account.”  “.. able to find a proper truncation point for a larger amount of models.”  [4]
Analyses dynamically as output generated. 

Criticisms Slower than methods Welch (6) & Cum-mean rule (3). [4]
Accuracy Medium/Good (limited testing) 
Simplicity Medium 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? 4 - Replication number (k), ratio parameter (r),  truncation criteria coefficient (p), Sig % α 
Computation time Medium 
 
Method ID 34
Method Name Telephone Network Rule 
Brief description “Consider a network consisting of a set of nodes connected together by a series of links or paths, and 

suppose that these links represent cables through which telephone calls can travel from node to node within 
the system.  At any given time, a series of telephone calls may be in progress within this network, each one 
associated with an origin node from which the call was initiated, and also with a destination node which 
ultimately receives the call.  While the call is in progress it occupies a continuous pathway or route through 
this network connecting these origin and destination nodes.  Every origin/destination node pair, (OD pair), is 
associated with a unique set of such connecting routes.” 
“Our approach to determining the length of the start-up period involves comparing the observed arrival rate 
(rate at which calls are added to each OD pair) and departure rate (overall rate of departure from a given OD 
pair) of calls associated with each of the OD pairs in the network.  If for each OD pair the difference 



between these arrival and departure rates is not statistically significantly different from 0 then we can be 
fairly confident that the system is close to steady state.”  

Literature Review Zobel & Preston White Jnr (1999) [19]:   
Systems Studied:  4 representative 3-node networks. Arrival rates = (5,5,5/sec) & (8,3,1/sec), departure rates 
= 1 & 0.1/sec, link capacities = 4 & 20. 
Results:  Unclear - paper does not seem to show how well method does!?    But not a very general method as 
devised to be used specifically for telephone networks - though they briefly state that it may be useful in 
other types of queuing situations. 

Positives  
Criticisms Not a very general method as devised to be used specifically for telephone networks. 

Requires monitoring of each OD pair in model. 
Accuracy Unknown 
Simplicity Medium 
Automation potential Unknown 
Generality (No assumptions) Poor 
Parameters to estimate? None? 
Computation time Unknown 
 
Method ID 37
Method Name Glynn & Iglehart Bias Deletion Rule 
Brief description Let Y(t) = f(X(t)), where X = {X(t): t ≥ 0} is a continuous-time Markov chain on state space S ={0,1,2…}. 

Let πi be the stationary probabilities of X taken from the empirical steady-state distribution.  

Specifically let ∫ ==
t

i dsisXI
t

t
0

))((1)(π  

Let V(t) be the r.v with conditional distribution  
P{V(t)=i | X}= πi(t) 
And let   T(t) = inf{s≥0:X(s)=V(t)} 
Delete from the data set {Y(s): 0≤s≤t}, all observations collected prior to T(t). 



Literature Review Glynn & Iglehart (1987) [38]: No testing of method carried out.  Just explanation of method (theory).  
“[further work required], in order to determine the efficacy of the deletion estimator…” 

Positives  
Criticisms Very theoretical.  Practical application not proven to be effective. 
Accuracy unknown 
Simplicity unknown 
Automation potential unknown 
Generality (No assumptions) unknown 
Parameters to estimate? unknown 
Computation time unknown 
 
Method ID 38
Method Name Wavelet-based spectral method (WASSP) 
Brief description Algorithm divides the initial output into a fixed number of batches of uniform size. Batch means are 

computed for all batches and a randomness test (von Neumann test) applied to the set of batch means.   
The randomness test is used to construct a set of spaced batch means such that the inter-batch spacer 
preceding each batch is sufficiently large to ensure all computed batch means are approx i.i.d so they can be 
tested for normality later.  It is also used to determine an appropriate data truncation point – i.e. the inter-
batch spacer preceding the first batch, beyond which all computed batch means are approximately 
independent of initial bias. 
(The rest of the method is about constructing CIs using wavelet based estimator) 

Literature Review Lada et al (2003) [39]:  
Systems Studied: Performance evaluated using a M/M/1 queue process with 90% server utilisation, 
exponential inter-arrival times with mean 10/9, exponential service times with mean 1 and empty-and-idle 
initial conditions.  The steady state mean waiting time is 9. 
Results:  Satisfied the various precision criteria set.  This method, while deleting the warm-up, also produces 
CIs around an estimated mean value. 
 
Lada et al (2004) [54] & (2006) [56]:  Further testing of the WASSP method:    



Systems Studied:   
(1)  M/M/1 queue process with 90% server utilisation, exponential inter-arrival times with mean 10/9, 
exponential service times with mean 1 and empty-and-idle initial conditions.  The steady state mean waiting 
time is 9.   
(2)  AR(1) process with Normal errors.   
(3)  AR(1)-to-Pareto (ARTOP) process.       
Results:  "..test processes ..were specifically designed to explore the robustness of WASSP and its 
competitors against the statistical anomilies commonly encountered in the analysis of outputs generated from 
large scale steady-state simulation experiments." 
"..we believe WASSP represents an advance in spectral methods for simulation output analysis." 

Positives This method, while deleting the warm-up, also produces CIs around an estimated mean value. 
Criticisms  
Accuracy Unclear - as method is compared to batching methods rather than warm-up truncation methods  
Simplicity Medium 
Automation potential Good 
Generality (No assumptions) Good 
Parameters to estimate? Number of batches (k); batch size (m); (sig level α) 
Computation time Medium 
 
Method ID 39
Method Name Queueing approximations method (MSEASVT) 
Brief description  
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Where d is the true truncation point, n is the total data length, ϑ̂  is the approximation of the true mean value 
wanted. 

Literature Review Rossetti & Delaney (1995) [41]:  
Systems Studied:  A series of non-standard queuing models (i.e. not M/M/c) with traffic intensity ≥ 0.9. 
Ouput variable is waiting time.  E2/E2/4; U/LN/3; initial conditions are either empty and idle, or 



stochastically set.    
Performance criteria: mean Absolute bias + 95% CIs. 
Results:  The average performance of the method was superior to not truncating at all! 
“assumes no knowledge of the system based on pilot runs” 

Positives The average performance of the method was superior to not truncating at all! 
“assumes no knowledge of the system based on pilot runs”  [41]

Criticisms - 
Accuracy Unclear 
Simplicity Medium 
Automation potential Medium 
Generality (No assumptions) Medium - Applicable to steady state GI/G/m queueing models only. 
Parameters to estimate? 3 – Mean (ϑ̂ ), variance (V), run length (n) 
Computation time Medium (could depend on how variance estimated) 
 
Method ID 44
Method Name Kalman Filter method (MMAE – Multiple Model Adaptive Estimation) 
Brief description Gallagher et al (1996) [47]:  This method “estimates a state-space model for the simulation output, applies 

MMAE to provide a time-varying mean estimate, and selects a truncation point when the MMAE estimate is 
near a steady-state mean estimate.” 
(algorithm can be found in paper [47] and FORTRAN code is apparently available from the authors) 

Literature Review Gallagher et al (1996) [47]:   
Systems Studied:  (based on Kelton and Law 1983)   
M/M/1 queues ρ = 0.8, 0.90, 0.95, 0.8(LIFO), 0.8 (L0 = 10), 0.8(Lq).    
E4/M/1 ρ = 0.8;    
M/M/2 ρ = 0.8;   
M/M/4 ρ = 0.8;   
Open model is 3 M/M/1 queues in tandem;   
Time-sharing computer;   
Central server computer.   



Outputs are waiting times; queue lengths; sum of waiting times; job response times; processing times.       
Performance Criteria:  1) Point estimator bias  2) mean abs deviation  3) realised coverage rates (replications 
method)  4) average CI half widths. 
Results:  
Failure rate for the MMAE (44) algorithm was small apart from for the M/M/1 ρ = 0.95 model and M/M/4 
model.  Point estimate bias is small.  Mean absolute deviation values are relatively small except for the 
M/M/1 model with ρ = 0.95.  Coverage rates are near nominal rate of 0.9 except for the M/M/1 with ρ = 
0.95.  Average half widths are relatively small. 
This new algorithm "…appears to result in truncated sequences with better estimation characteristics than 
sequences truncated by existing methods".   " The MMAE (44) algorithm generally selected truncation 
points earlier in the output sequences than the [Kelton and Law method (18)].  …The MMAE (44) truncated 
sequences resulted in mean estimates with slightly larger bias and smaller mean average deviation, higher 
coverage rates and smaller average half widths (as there were more observations to use than for Kelton and 
Law method (18) truncated sequences)" 
 
Law & Kelton (2000) [52]:  In reviewing Gallagher, Bauer and Maybeck's paper [47] this book comments 
that "…they tested on 12 queuing models.  For the delay-in-queue process for the M/M/1 queue with ρ = 0.8 
and 0.9, their procedure produced average warm-up periods of L = 180 and 406 when the run length was 
equal to 1500.  In the latter case, E(Di) differs from the steady-state mean by less than 1 percent for i ≥ 780 
(approx)…"   (So procedure under estimates warmup? - not explained in book). 

Positives "...appears to result in truncated sequences with better estimation characteristics than sequences truncated by 
existing methods". "The MMAE algorithm generally selected truncation points earlier in the output 
sequences [than the Kelton and Law method (18) method]”  [47]

Criticisms Procedure underestimates warmup period for model M/M/1 rho=0.9. [52] 
Did not perform well for queue models with high rho e.g. 0.95. [47] 

Accuracy Medium 
Simplicity Poor 
Automation potential Medium 
Generality (No assumptions) Good 



Parameters to estimate? 7 – Variance (V), *
21 ,ˆ,ˆ, ky φφ  (see Gallagher et al (1996)[47]) and run length(n) and Number of replications 

(M). 
Computation time Medium/Poor ? 
 
 
 

(Return to top of document) 
 

GRAPHICAL METHODS 
 
Method ID 1
Method Name Simple Time Series Inspection  
Brief description Draw graph of time series and truncate where line appears to “flatten out”.  
Literature Review Gordon (1969) [48] advises that the cumulative mean (i.e. replications – see method Cumulative-

Mean Rule (3)) be used in preference to this simple method because of the large variation between 
replication outputs. 

Positives Very simple and quick.  Applicable to all systems. No assumptions or parameters to estimate. 
Criticisms Subjective.  Therefore accuracy probably affected by experience of user.  Large variation between 

single replication runs causes different truncations points for different runs [48].  Large variation in 
data output makes it difficult to judge where “flatness” occurs.  Requires user 
intervention/judgement.  Automation would require invention of automatic method to judge 
“flatness” of line.  

Accuracy Poor 
Simplicity Good 
Automation potential Poor 
Generality (No assumptions) Good 
Parameters to estimate? None 
Computation time Good 



 
 
Method ID 2 
Method Name Ensemble (Batch) Average Plots 
Brief description Perform replications.  Calculate batch means within each replication.  Average corresponding batch 

means across replications and plot them.  Choose as the truncation point the point where 
observations appear to vary around a common mean.  

Literature Review Algorithm explained in Banks et al (2001) [51]
Positives Very simple and quick.  Applicable to all systems. No assumptions.  Batching and replications may 

reduce autocorrelation. 
Criticisms Subjective.  Therefore accuracy probably affected by experience of user.   The parameter, batch 

size, needs to be estimated.  The batch size can affect accuracy.  Requires user 
intervention/judgement.  Automation would require invention of automatic method to judge 
“flatness” of line.   

Accuracy Poor 
Simplicity Good 
Automation potential Poor 
Generality (No assumptions) Good 
Parameters to estimate? 2 – batch size, number of replications 
Computation time Good 
 
 
Method ID 3
Method Name Cumulative-Mean Rule 
Brief description Perform replications.  Take the mean of each replication.  Plot cumulative mean w.r.t. number of 

observations (n).  Choose truncation point as point where cumulative mean becomes stable.   
Literature Review Bause & Eickhoff (2003) [4]: "The method of Fishman [i.e. Cumulative-Mean Rule (3)], smoothes the 

simulation data by calculating the mean at each time index.   This method is easy to implement and 
therefore very popular.  It creates expressive plots for simple transient behaviour.  But analysis of the 



steady-state phase just on the basis of the mean might lead to problems.  As Welch remarked (Welch 
1983 "The statistical analysis of simulation results", The computer performance modelling handbook. Ed. 
S Lavenberg, Academic Press 268-328) convergence of the mean is a necessary but not a sufficient 
condition for stationarity.  Therefore this method is not suitable for the analysis of complex transient 
behaviour.  In such cases it is advisable to compare the results with a plot of the original data."  "The 
method of (Fishman) Cumulative-Mean Rule (3) is very useful when estimating a steady mean.  If the 
transient behaviour is roughly known this method is adequate". 
 
Roth (1994) [6]:   
Systems Studied:  51 M/M/k queuing systems with ρ = 0.1 to 0.9 and k = 1 to max.  
Performance Criteria:  Normal hypothesis test – H0: estimated mean = true mean (see paper [6] for 
details). 
Results: This method, Cumulative-Mean Rule (3), failed the bias criteria just twice (out of 400 
experiments, each comprising of 40 replications) for ρ = 0.9. 
 
Nelson (1982) [16] explains this algorithm & comments that it is "subjective". 
 
Gafarian et al. (1978) [32]:   
Systems Studied:  M/M/1 queue with output variable as waiting time in queue per customer; ρ = 0.1, 0.5, 
0.7, 0.9. Method is tested 100 times.            
'Goodness' (Performance) Criteria:   

(xvi) Accuracy: The ratio,  mean of [estimated truncation values] / [true truncation value], is 
calculated and a value near 1 implies method accurate.    

(xvii) Precision:  Measure of variation in estimated truncation value is calculated as Sqrt(variance of 
estimated truncation points) / (mean of estimated truncation points).  A value close to zero 
implies method precise.    

(xviii) Generality: Judged to be general if the rule performs well across a broad range of systems and 
parameters within a system.   

(xix) Cost:  Expense in computer time.    
(xx) Simplicity:  Accessible to average practitioner.       



(i) Accuaracy, (ii) Precision and (iii) Generality are considered first.  Any method not satisfactory on all 
three is discarded. Computer cost is a last priority. 
WARNING: Only ONE test run carried out!   
Results: Simplicity criteria satisfied.  Very poor results. Fails accuracy criteria: Grossly overestimates 
truncation point - large positive bias. 
 
Wilson & Pritsker (1978) [35] comments that this rule requires user judgment. “Law (1975)…found that” 
this method “grossly overestimated the number of observations to be deleted - "not surprising" as it uses 
cumulative statistics which react slowly to changes in system status.  However Law based his results on a 
single application of the rule rather than considering random variation in truncation point.  Gafarian et al 
[32] applied this method to an M/M/1/infinity queue, ρ = 0.1, 0.5, 0.7, 0.9.  Found it yielded large 
truncation pts and took excessive computing time. 
 
Fishman (2001) [37] describes the cumulative-mean algorithm. 
 
Sandikci & Sabuncuoglu (2006) [45]: 
Systems Studied: Uses 2 types of manufacturing system model: (1) serial production lines  (2) job-shops.  
Output variable is ‘time in system’.   
Results: Subjective and can tend to over estimate truncation point. 
 
Gordon (1969) [48]  describes the cumulative-mean rule algorithm and comments that this method is 
preferable to the simple method (1) because of the large variation between replication outputs. 
 
Banks et al (2001) [51] briefly describes cumulative-mean rule and criticises cumulative average methods 
in general: "…become less variable as more data are averaged.  Therefore it is expected that the left side 
of the curve will always be less smooth than the right side.  More importantly, cumulative averages tend 
to converge more slowly to long-run performance than do ensemble averages, because cumulative 
averages contain all observations, including the most biased ones form the beginning of the run.  For this 
reason cumulative averages should be used only if it is not feasible to compute ensemble averages such as 
when only a single replication is possible". 



 
Roth & Josephy (1993) [57]:   
Systems Studied:  30 M/Ek/1 and 24 Ek/M/1 queuing systems (which begin at rest); ρ varies from 0.25 to 
0.925 by holding arrival rate fixed and varying service rate; k (parameter for the Erlang dist) varies from 
1 to 20.  Note: Experiments have fixed replication length.       
Performance Criteria: Bias = estimated mean - theoretical mean;  CI size - a function of the variance; 
MSE; observed coverage probability of CIs. 
Results: "The Kelton-Law method (18), Cum-mean (3) and truncated mean (4) techniques are less 
consistent [than the relaxation time heuristic (17)], causing rejection of the null hypothesis in 33, 10, and 
3% of cases respectively."  "The confidence interval coverage probabilities are quite consistent for each 
truncation rule." 

Positives Easy to implement and therefore very popular.  It creates expressive plots for simple transient behaviour  
[4]. 

Criticisms Subjective [16][45].  Therefore, accuracy probably affected by experience of user.  Uses cumulative 
statistics which react slowly to changes in system status [35][51].  Cumulative averages tend to converge 
more slowly to long-run performance than do ensemble averages [35].   Hence tends to overestimate 
truncation point with a large positive bias [32] [35] [45].  Requires user intervention/judgement.  
Automation would require invention of automatic method to judge “flatness” of line.    

Accuracy Poor 
Simplicity Good 
Automation potential Poor 
Generality (No assumptions) Good 
Parameters to estimate? 1 – number of replications 
Computation time Good 
 
 
Method ID 4
Method Name Deleting-The-Cumulative-Mean Rule 
Brief description Perform replications.  Calculate batch mean within each replication.  Average corresponding batch means 



across replications.  Plot cumulative mean w.r.t. number of batches (n).  Delete initial batch means one by 
one, calculating new cumulative mean until initialisation bias is removed.  Can do this by eye or using a 
criteria for ‘closeness’ of the batch means. 

Literature Review Roth & Josephy (1993) [57]:   
Systems Studied:  30 M/Ek/1 and 24 Ek/M/1 queuing systems (which begin at rest); ρ varies from 0.25 to 
0.925 by holding arrival rate fixed and varying service rate; k (parameter for the Erlang dist) varies from 
1 to 20.  Note: Experiments have fixed replication length.       
Performance Criteria: Bias = estimated mean - theoretical mean;  CI size - a function of the variance; 
MSE; observed coverage probability of CIs. 
Results: "The Kelton-Law method (18), Cum-mean (3) and truncated mean (4) techniques are less 
consistent [than the relaxation time heuristic (17)], causing rejection of the null hypothesis in 33, 10, and 
3% of cases respectively."  "The confidence interval coverage probabilities are quite consistent for each 
truncation rule." 

Positives Fairly simple.  Uses the truncated sample mean as the testing instrument in order to correct for the slow 
reaction of cumulative means. 

Criticisms Several parameters required.  Preliminary run required. 
Accuracy Poor/Medium   
Simplicity Good 
Automation potential Medium 
Generality (No assumptions) Good 
Parameters to estimate? 4 – batch size, replication number, closeness parameter, and run length or batch number. 
Computation time Good 
 
Method ID 5
Method Name CUSUM Plots 
Brief description Calculate and plot the Cumulative Sum Statistic, S, for one long run divided into batches (or can use 

batches and replications).   
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 , where j = 1,..,m, where m is the total number of batches. 

S0=Sm=0.  With no initial bias the values for Sj, j not equal to 0 or m, should appear to vary around zero. 
With initial bias present Sj values are expected to be consistently above or below zero.  

Literature Review Nelson (1982) [16] "Schruben derived a plot that can be formed from a single long replication, and that is 
particulary sensitive to the presence of initial-condition bias." 
 
www.itl.nist.gov:  In reference to CUSUM charts: while not as intuitive and simple to operate as 
Shewhart charts, CUSUM charts have been shown to be more efficient in detecting small shifts in the 
mean of a process. In particular, analyzing Average Run Length's for CUSUM control charts shows that 
they are better than Shewhart control charts when it is desired to detect shifts in the mean that are 2 sigma 
or less. 

Positives Simple.  A sensitive test. 
Criticisms Preliminary run required. 
Accuracy Unknown 
Simplicity Good 
Automation potential Poor 
Generality (No assumptions) Good 
Parameters to estimate? Batch size 
Computation time Good 
 
Method ID 6
Method Name Welch’s Method 
Brief description Produce k replications of run length n.   Calculate the n means across these k replications.  For a given time 

window w, plot the moving averages against number of observations (1,..,n).   If the plot is reasonably 
smooth (judged by eye), choose as the truncation point the point on the graph where line becomes ‘flat’ 
(judged by eye).  If not smooth enough,  choose a different window (w) size and redraw plot etc...   

Literature Review Mahajan & Ingalls (2004) [1]:  

http://www.itl.nist.gov/


Systems Studied:  Job Shop model consisting of 5 Cells, C(i), i=1…5.  Each cell has different number of 
machines (resources). There are 3 customer classes A,B,C.  Overall arrival rate is poisson.  Service times are 
exponential with mean dependent on customer class and cells.  Arriving parts are split into classes {A, B, C} 
with probability {0.5, 0.3, 0.2}.  3 types of utilisation are used:  TypeI is high utilisation with an average 
utilisation of 90%  and range 80-95%;  TypeII is moderate with an average utilisation of 70% and range 65-
80%;  TypeIII is Low with average utilisation of 50% with range 45-65%.   Models are started empty & idle.  
Initial run length is 1000 hrs, with 5 replications.                       
Performance criteria:  Final MSE & Variance, average computing time, percentage change in MSE, 
percentage change in variance.   Method said to perform well if it reduces both MSE and Variance and is 
computationally efficient. 
Results:  Method didn’t work well for most experiments - It is highly subjective. 
 
Bause & Eickhoff (2003) [4]:   
System Studied: Artificial processes: Linear transient mean; Linear transient variance; Exponential transient 
mean; ARMA(5,5); Periodic; Non-Ergodic. 
Results: "The method of Welch (6)  is based on the column average…  It has the same advantages as the 
method of Fishman [i.e. Cum-mean rule (3)], but suffers also from the same disadvantages."  "This method 
is easy to implement and therefore very popular.  It creates expressive plots for simple transient behaviour.  
But analysis of the steady-state phase just on the basis of the mean might lead to problems.  As Welch 
remarked (Welch 1983 "The statistical analysis of simulation results", The computer performance modelling 
handbook. Ed. S Lavenberg, Academic Press 268-328) convergence of the mean is a necessary but not a 
sufficient condition for stationarity.  Therefore this method is not suitable for the analysis of complex 
transient behaviour.  In such cases it is advisable to compare the results with a plot of the original data."   
"The extension is that the column averages are smoothed again by calculating the means of the sliding 
window.  This gives a better distinction between the random and the systematic error.  But smoothing might 
lead to inaccurate results: the moving average is calculated from the means at different points in time and in 
general the process changes over time.  E.g. smoothness of the kink depends on window size.  A more 
serious problem occurs e.g. when analysing periodic processes especially if the window size conforms to the 
cycle length."  "The methods of Fishman (3) and Welch (6)  are very useful when estimating a steady mean.  
If the transient behaviour is roughly known these two methods are adequate". 



 
Pawlikowski (1990) [7]: "…as has been indicated by Conway (1963), accumulative statistics such as 
running mean usually stabilize very slowly with time, and therefore usually give over estimated values of.." 
the warm-up length. 
 
Law (1983) [34]: No tests done (just an illustration of method) - algorithm explained & commented on: "The 
parameters need to be determined by trial and error…..One drawback of Welch's procedure is that it might 
require a large number of replications to make the plot reasonably stable if the process is highly variable." 
 
Linton & Harmonsky (2002) [36]:    
Model1: Queuing model with 2 servers in sequence. Inter-arrival time is exponential with mean of 8; server1 
process time is exponential with a mean of 6; server2 process time is exponential with mean of 7.    
Model2:  Same as for model1 except all distributions are triangular; inter-arrival time distribution is 
therefore defined as{min = 6, mode = 8, max = 10}; server1 process time defined as{min = 4, mode = 6, 
max = 8}; server2 process time as {min = 5, mode = 7, max = 9} 
Performance criteria:   
i)  equality of variance (between methods) using Levene's test  
ii) equality of mean (between methods) using 2-sample t-test.    
Results: Produced comparable results with relaxation heuristic method (17).  Found able to adjust to changes 
in distributions of the inter-arrival times and processing times.  More practical method especially as not 
based on any assumptions about type of system.  WARNING: Not tested to see if chosen truncation point 
was correct or efficient! 
 
Sandikci & Sabuncuoglu (2006) [45]: 
Systems Studied: Uses 2 types of manufacturing system model: (1) serial production lines  (2) job-shops.  
Output variable is ‘time in system’.   
Results:  "Instead of cumulative averages plot, one can think of using Welch's technique due to its 
popularity.  However (Fig1 [see [45]] shows that) these two techniques do not produce significantly different 
results.  Besides, Welch's technique requires the analyst to decide on a window size (w) by trial and error 
which makes it practically less applicable." 



 
Banks et al (2001) [51]: Briefly touches upon Welch method as one of several smoothing methods. 
 
Law & Kelton (2000) [52]: Sets out the Welch method with instructions and recommendations on choosing 
the parameters.  "The major difficulty in applying Welch's procedure in practice is that the required number 
of replications may be relatively large if the process is highly variable.  Also the choice of [truncation point] 
is somewhat subjective". 
 
Alexopoulos & Seila (1998) [53]: Sets out the Welch method with instructions and an example.  "It should 
be noted that the method of Welch may be difficult to apply in congested systems with output time series 
having autocorrelation functions with very long tails." 

Positives Easy to implement and therefore very popular.  It creates expressive plots for simple transient behaviour [4].   
Found able to adjust to changes in distributions of the inter-arrival times and processing times.  More 
practical method especially as not based on any assumptions about type of system [36].   

Criticisms Highly subjective [1] [52].  Smoothing might lead to inaccurate results as the moving average is calculated 
from the means at different points in time and in general the process changes over time. This can particularly 
be a problem when analysing periodic processes especially if the window size conforms to the cycle length 
[4].  Accumulative statistics such as running mean usually stabilize very slowly with time, and therefore 
usually give a conservative estimate of warm-up period.  Might require a large number of replications to 
make the plot reasonably stable if the process is highly variable [34] [52].   Cumulative averages plot, and 
Welch do not produce significantly different results.  Welch's technique requires the analyst to decide on a 
window size (w) by trial and error which makes it practically less applicable [45].   The parameters need to 
be determined by trial and error [34].  The method of Welch may be difficult to apply in congested systems 
with output time series having autocorrelation functions with very long tails [53].   Requires automation of 
judging when line is ‘smooth’ (i.e. window size estimation) and judging when line is ‘flat’. 

Accuracy Poor 
Simplicity Good 
Automation potential Poor 
Generality (No assumptions) Good 



Parameters to estimate? 3 - smoothing average window size (w),  number of replications (k) and run length (n) 
Computation time Good 
 
Method ID 7
Method Name Variance Plots (or Gordon’s Rule) 
Brief description Gordon (1969) [48] “In the absence of initial bias the standard deviation can be expected to be inversely 

proportional to square root of n”, where n is the number of observations.  “By examining the way the standard 
deviation changes with sample length, it is possible to see whether this relationship is being met.”    Make k 
replications to estimate the variance.  Plot log(standard deviation) against log(n).  Take as the truncation point 
the point where the graph “approximates a straight line sloping downwards at the rate of 1 in 2 (for equi-
scaled axes).”   

Literature Review Pawlikowski (1990) [7]: "This rule was analysed in Gafarian et al 1978 and Wilson & Pritsker 1978b using [a 
specific variance estimator (see these papers [32][35])]….In this case the rule can give an overestimated value 
of [warm-up length]. No results have been published on the effectiveness of this rule when more accurate 
estimators of [variance] are applied." 
 
Gafarian et al. (1978) [32]:   
Systems Studied:  M/M/1 queue with output variable as waiting time in queue per customer; ρ = 0.1, 0.5, 0.7, 
0.9. Method is tested 100 times.            
'Goodness' (Performance) Criteria:   

(i) Accuracy: The ratio,  mean of [estimated truncation values] / [true truncation value], is calculated 
and a value near 1 implies method accurate.    

(ii) Precision:  Measure of variation in estimated truncation value is calculated as Sqrt(variance of 
estimated truncation points) / (mean of estimated truncation points).  A value close to zero implies 
method precise.    

(iii) Generality: Judged to be general if the rule performs well across a broad range of systems and 
parameters within a system.   

(iv) Cost:  Expense in computer time.    
(v) Simplicity:  Accessible to average practitioner.       



(i) Accuaracy, (ii) Precision and (iii) Generality are considered first.  Any method not satisfactory on all three 
is discarded. Computer cost is a last priority. 
WARNING: Only ONE test run carried out!        
Results:   Simplicity criteria satisfied.  Fails accuracy criteria: Grossly overestimates truncation pt - large 
positive bias. 
 
Wilson&Pritsker (1978) [35]:  Requires user judgment.  Law 1975 found that this method grossly 
overestimated deletion point - "not surprising" as it uses cumulative statistics which react slowly to changes in 
system status.  However Law based has results on a single application of the rule rather than considering 
random variation in truncation point.  Gafarian et al [32] applied this method to an M/M/1/infinity queue. ρ = 
0.1, 0.5, 0.7, 0.9.  Found it yielded large truncation pts and took excessive computation time. 
 
Gordon (1969) [48]:  Instructional book - Describes variance plots algorithm.  “The chosen values are 
probably conservative because they are accumulated statistics.” 

Positives Simple [32]
Criticisms Rule can give an overestimated value of warm-up length. (No results have been published on the effectiveness 

of this rule when more accurate estimators of variance are applied) [7].   Grossly overestimates truncation pt - 
large positive bias [32].  Requires user judgment.  Law 1975 found that this method grossly overestimated 
deletion point - "not surprising" as it uses cumulative statistics which react slowly to changes in system status.  
However Law based has results on a single application of the rule rather than considering random variation in 
truncation point [35].   

Accuracy Poor 
Simplicity Good 
Automation potential Medium 
Generality (No assumptions) Good 
Parameters to estimate? 2 - number of replications (k) and variance (V) 
Computation time Good 
 
Method ID 8



Method Name Statistical Process Control Method (SPC) 
Brief description Robinson (2005) [8]:   

Perform k replications of run-length n.  Collect output data and calculate n means over the k replications.  
Test that this output meets the assumptions of SPC – that the data are normally distributed and not correlated 
– by  calculating batch means ( est. batch length m using Von Neumann (1941) test  for correlation); then 
using  a normality test (e.g. Anderson-Darling (1954)).  If number of batches (b) falls below 20 carry out 
further model runs. Once assumptions met, construct a control chart for the batched data.  Estimate the 
population mean and standard deviation from the 2nd half of the time series (assumption: that mean and 
standard deviation stable in 2nd half of data).  Identify the initial transient by viewing the chart and 
identifying the point at which the time series data are in control and remain in control.  

Literature Review Mahajan & Ingalls (2004) [1]:  
Systems Studied:  Job Shop model consisting of 5 Cells, C(i), i=1…5.  Each cell has different number of 
machines (resources). There are 3 customer classes A,B,C.  Overall arrival rate is poisson.  Service times are 
exponential with mean dependent on customer class and cells.  Arriving parts are split into classes {A, B, C} 
with probability {0.5, 0.3, 0.2}.  3 types of utilisation are used:  TypeI is high utilisation with an average 
utilisation of 90%  and range 80-95%;  TypeII is moderate with an average utilisation of 70% and range 65-
80%;  TypeIII is Low with average utilisation of 50% with range 45-65%.   Models are started empty & idle.  
Initial run length is 1000 hrs, with 5 replications.                       
Performance criteria:  Final MSE & Variance, average computing time, percentage change in MSE, 
percentage change in variance.   Method said to perform well if it reduces both MSE and Variance and is 
computationally efficient. 
Results: Recommended for use with highly utilised systems with a long run length. 
 
Robinson (2005) [8]:   
Systems Studied:  AR(1) with Normal errors and Exponential errors; M/M/1 with arrival rate = 0.8, service 
rate=1, starts empty & idle; GSS M/M/1. 
Results:  Performs well.  Slight concern for small sample sizes.  Simple to implement but not easily 
automatable; assumes normality & low autocorrelation (though some what alleviated by batching & reps); 
need to estimate 5 parameters. 



 
Law & Kelton (2000) [52]: In reviewing Robinson's paper [8] this book comments that "…He tested the 
procedure on several stochastic models including the delay-in-queue process D1,D2,…for the M/M/1 queue 
with ρ = 0.8.  The procedure produced average warm-up periods of L = 502 and 1006 when the run length 
was equal to 2000 and 4000 respectively.  Since E(Di) differs from the steady-state mean by less than 1 
percent for i ≥182, it would appear that the SPC procedure produces conservative estimates of the warm-up 
period for this particular problem." 

Positives Simple [8].   Recommended for use with highly utilised systems with a long run length [1].
Criticisms Not easily automatable; assumes normality & low autocorrelation (though some what alleviated by batching 

& replications); need to estimate 5 parameters.  Slight concern over performance for small sample sizes [8].  
Appears that the SPC procedure produces conservative estimates of the warm-up period for delay-in-queue 
process D1,D2,…for the M/M/1 queue with ρ = 0.8. [52]

Accuracy Medium 
Simplicity Good 
Automation potential Poor 
Generality (No assumptions) Medium  - assumes normality & low autocorrelation (though both some what alleviated by batching & reps) 
Parameters to estimate? 5 – number of replications (k); run-length (n); batch size (m); mean and variance (V) of data. 
Computation time Good 
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HYBRID TESTS 
 
Method ID 27
Method Name Pawlikowski’s Sequential Method 
Brief description Based on the Optimal test (22). 



First use any graphical or heuristic method to estimate the truncation point and delete data up to this point. 
Then, test the stationarity of the next nt observations (collecting more observations if necessary to do so) 
using the Optimal test (22).  If the sequence is not deemed stationary, delete a number of the observations 
from the beginning of the tested sequence, collect more observations if necessary and retest another nt 
observations from the beginning of the sequence.  Carry on till stationarity is found.   

Literature Review Pawlikowski (1990) [7]:  No testing of method.  Paper details creation of a Hybrid of a graphical 
method/heuristic method and the Optimal test (22).  Computer code is written down in this paper. "Despite 
the sophisticated theory hidden behind these tests, they appear to be simple numerically and can be applied 
to a wide class of simulated processes"…"The main practical problem with their implementation is that they 
require a priori knowledge of the variance estimator of the simulated process in steady state." 

Positives “..appear to be simple numerically and can be applied to a wide class of simulated processes" [7]
Criticisms “..require a priori knowledge of the variance estimator of the simulated process in steady state." [7]
Accuracy Depends on first bias test used.  If graphical or heuristic method overestimated truncation point in first place 

then a conservative warm-up period would be accepted without considering a shorter period.  
Simplicity Medium - depends on first bias test used. 
Automation potential Depends on first bias test used. And need to either decide if bias is positive or negative or use the two-sided 

test for optimal test. 
Generality (No assumptions) Medium – Asymptotic assumptions a possible problem 

– need to either decide if bias is positive or negative or use the two-sided test.  And depends on first bias test 
used. 

Parameters to estimate? ? – from first graphical or heuristic truncation point method 
4/5 – from Optimal test[22]:  Variance (V), degrees of freedom (d), run length (n), number of reps (k).  May 
need to use batches (b)  
 7 - from hybrid algorithm:  nmax the max allowed length of run; n0,max the max allowed length of the warm-
up period;  nv the length of sequence used for estimating the steady-state variance;  nt the length of the 
sequence tested for stationarity; αt sig level; γv the safety coefficient for the estimate of variance to represent 
the steady state; γ the exchange coefficient determining the number of new observations included in each 
sequential test for stationarity (i.e. how many obs to discard each time) 

Computation time Depends on initialisation bias methods used 



 
Method ID 28
Method Name Scale Invariant Truncation Point Method (SIT) 
Brief description Let X1,X2,…,Xn be a set of observations. 

Divide this set into b (b>3) equal batches of m points.   
Start with a small value for m = minit and increase m by a multiplicative factor Δm until a test for bias shows 
{true, false, false} when applied to the first three batches.  “More complicated and intelligent search 
strategies may give improved results”.  The tests for bias could be any ‘good’ or combination of initialisation 
bias tests e.g. the Optimal test (22). 

Literature Review Jackway & deSilva (1992) [17]:   
Systems Studied:   
Model1:   M/M/1 queue system with ρ = 0.9.  The output variable is ‘waiting time’. 
Model2:   3 capacitated M/M/s queues with feedback.  The output variable is ‘number of customers in 
system’.    
Model3:   Time-share computer system. The output variable is response time.    
Model4:   Central server computer system. The output variable is response time.    
Model5:   AR(2) time series with artificial bias:  X(i) = 0.75X(i-1)-0.5X(i-2)+e(i)+b(i), where e(i)~N(0,1) & 
b(i) = (i-30)/30, i ≤ 30. 
Results:  
Results not very convincing. The average truncation pt for SIT method is compared with 3 other methods’ 
average truncation pt results as well as the theoretical value.  All methods majorly underestimate with SIT 
being the best of the methods (but not enough info given to identify other methods at this time AND these 
methods may not have been optimising the same criteria therefore irrelevant comparison?).  Mean 
percentage of runs (out of 10) where bias was detected given for SIT for each of the 5 models tested: range 
from 40% for model3 to 100% for models 2 & 5. 

Positives - 
Criticisms Variable results.   
Accuracy Unknown - Not well tested. 
Simplicity Good/Medium 



Automation potential Depends on procedures used 
Generality (No assumptions) Depends on initialisation bias methods used 
Parameters to estimate? 3 -  Run length (n), Δm – multiplicative factor, minit – starting size of batches 

Plus all those from other procedures used. 
Computation time Depends on initialisation bias methods used 
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