Deliberative Democracy and Utilitarianism

Antoine Billot and Xiangyu Qu

LEMMA – Université Paris-Panthéon-Assas

Social Choice under Risk and Uncertainty, Warwick, May 9, 2022

Homogeneous Beliefs and Utilitarian Aggregation

Bayesian paradigm

- Both individuals and society are represented by expected utility functions
- Pareto condition
 - If all the individuals prefer one social alternative to another, then so does society
- Utilitarian aggregation of individual values
 - vNM setting: objective probability [Harsanyi, 1957]
 - State-contingent settings: identical subjective probabilities [Blackorby-Donaldon-Weymark, 1999]
- Pareto condition is equivalent to *utilitarian* aggregation

Heterogeneous Beliefs and Aggregation

Savage: individuals have double disagreement

- Heterogeneity of beliefs:
 - Individuals disagree on likelihood assessments
- Heterogeneity of tastes:
 - Individuals have different tastes over outcomes
- Under Bayesian paradigm, Pareto condition is inconsistent with non-dictatorship aggregation rule [Hylland-Zeckhauser, 1979, Mongin, 1995]
- Preferences unanimity might be spurious if such a unanimity is induced by double disagreement on belief and tastes

Motivating Example

Spurious unanimity

$p_{1,2} \setminus \Omega$	Ε	Ec		$u_{1,2} \setminus X$	X	у	Ζ
p_1	0.85	0.15	and	u_1	1	-5	0
<i>p</i> ₂	0.15	0.85		<i>и</i> 2	-5	1	0

- Both individuals prefer act f = xEy to constant act g = z
- Pareto condition implies that society prefers f to g
- Yet, they radically diverge in beliefs and tastes
 - Can their judgment of probabilities be simultaneously correct? No...
 - Could information exchanges and probability updating provide an appropriate solution for alleviating spurious unanimity? Maybe...
- In this paper, we argue that, instead of restricting the Pareto Condition, deliberation may facilitate for possible result

Deliberative Democracy and Social Choice

Deliberative democracy

- Social decisions lie in
 - free deliberation of individuals
 - stability of choice setting from individuals to society

Social choice

- Social decisions lie in
 - rationality of individual preferences
 - unanimity principle: the Pareto Condition
- Can deliberative democracy and social choice be convergent?
- Can a deliberation produce a consensus?
- Can a consensus approach solve the issue of preference aggregation?

A social matrix D

- Confidence: Individuals put confidence on other individuals according to social experiments, meetings, reputation, etc.
 - Confidence impact on values: The confidence individual *i* puts on individual *j* is reflected through a weight d_{ij}, 0 ≤ d_{ij} ≤ 1, impacting *i*'s prior values, beliefs and tastes, after meeting *j*

An updating rule φ

- Sequential updating: Each deliberation step, *i.e.*, meeting, debate, information exchange, etc., modifies individual priors through **D**
 - Cumulative updating: As soon as one prior is updated after a meeting, all priors are updated through 'contagion'

The Framework

- Ω is a finite set of *m* states: $\Omega = \{1, \ldots, m\}$
- X is a topological space of *outcomes*
- $\mathcal{F} = \{f : \Omega \to X\}$ is the set of *social alternatives* (or *acts*)
- Society $\mathcal I$ is defined as a finite set of *n* individuals: $\mathcal I = \{1, \dots, n\}$
- Any individual $i \in \mathcal{I}$ has a preference relation $\succeq_i \subset \mathcal{F} \times \mathcal{F}$
- A probability profile is a vector $\overrightarrow{p} = (p_1, \dots, p_n) \in \Delta^n$, where p_i is *i*'s subjective probability
- A *utility profile* is a vector *u* = (u₁,..., u_n) ∈ Uⁿ, where u_i is i's utility function
- A social profile s consists of a pair $(\overrightarrow{p}, \overrightarrow{u})$ of a probability profile and a utility one

Both individual and social preferences are represented by expected utility functions

- Δ : collection of all probability measures on Ω
- U: collection of all continuous functions on X
- for each $p \in \Delta$, $u \in \mathbf{U}$ and $f \in \mathcal{F}$, we denote

$$\mathsf{E}(f|p,u) = \int_{\Omega} u(f) \mathrm{d}p$$

the expected utility of act f based on probability distribution p and utility function u.

Deliberation and Consensus I

When individual $i \in \mathcal{I}$ meets individuals j, he updates his prior beliefs $p_i \in \Delta$ (or u_i) accordingly:

First step: *i* weights *j*'s opinion by a coefficient d_{ij} , $d_{ij} \ge 0$, translating the confidence *i* puts on *j*'s information about Ω (or *X*) Second step: *i*'s posterior opinion is defined as a weighted average of all *j*'s opinions he heard during deliberation

- A deliberation is then described by:
 - A (n × n) nonnegative, stochastic and aperiodic matrix D = (d_{ij})_{i,j∈I×I}
 - A mapping φ call *updating rule* such that, for any $i \in \mathcal{I}$, all $k \in \mathbb{N}$:

$$p_i(k+1) = \varphi(\mathbf{D}, p_i(k))$$

• φ satisfies: $\varphi^k(\mathbf{D}, p_i) = \varphi(\mathbf{D}^k, p_i)$, for $p_i = p_i(0)$

Deliberation and Consensus II

- A belief k-deliberation is as a mapping ρ_{Δ} such that, for all $k \in \mathbb{N}$, $\rho_{\Delta}(s) = (\varphi^{k}(\mathbf{D}, \overrightarrow{\rho}), \overrightarrow{u})$
- A taste k-deliberation is as a mapping $\rho_{\mathbf{U}}$ such that, for all $k \in \mathbb{N}$, $\rho_{\mathbf{U}}(s) = (\overrightarrow{p}, \varphi^k(\mathbf{D}, \overrightarrow{u}))$
- A *belief consensus* is a probability profile $\overrightarrow{p}^* \in \Delta^n$ such that:

$$\lim_{k\to\infty}\varphi^k(\mathsf{D},\overrightarrow{p})=p^*$$

where $p_i^* = p^*$, for all $i \in \mathcal{I}$

- A taste consensus is a utility profile $\overrightarrow{u}^* \in \mathbf{U}^n$ such that $\lim_{k\to\infty} \varphi^k(\mathbf{D}, \overrightarrow{u}) = \overrightarrow{u}^*$ where $u_i^* = u^*$, for all $i \in \mathcal{I}$
- The pair (p^*, u^*) designates a general consensus

Self-confidence and Consensus

Self-Confidence (sc) For any $i \in \mathcal{I}$, $0 < d_{ii} < 1$.

• For social beliefs p_0 and social utility u_0 :

Theorem

Under SC, after a deliberation $(\rho_{\Delta}, \rho_{U})$, there exists a consensus (p^*, u^*) such that $p_0 = p^*$ and $u_0 = u^*$.

(The proof is based on DeGroot, 1974)

- The possibility of preference aggregation is not conceptually depending on the Pareto condition as suggested by Harsanyi
- A deliberation can play the same role than the Pareto condition as long as individuals respect self-confidence
- However, the consensus (p^*,u^*) cannot be proved to be unique since depending on the updating rule φ

Updating Rule: the Linear Case I

A social updating rule φ is *linear average* (φ_Σ) if, for *i* ∈ *I*, for all k ∈ N:

$$p_i(k+1) = arphi_{\Sigma}ig(\mathbf{D}, p_i(k)ig) = \sum_{j=1}^n d_{ij} p_j(k)$$

Proposition Assume all individuals update their beliefs according to the linear average rule. Under SC, the deliberation ρ_{Δ} reaches a belief consensus $\overrightarrow{\rho}^*_{\Sigma} \in \Delta^n$ such that:

$$\rho_{\Delta}(s) = \left(\varphi_{\Sigma}(\mathbf{D}^*, \overrightarrow{p}), \overrightarrow{u}\right) = \overrightarrow{p}_{\Sigma}^*$$

where $p_{\Sigma}^* = \sum_{j \in \mathcal{I}} d_{ij}^* p_j$, for all $i \in \mathcal{I}$.

Updating Rule: the Linear Case II

Suppose $\mathcal I$ is made of two individuals $\{1,2\}$ and $\boldsymbol D$ defined as follows:

$$\begin{pmatrix} 1/2 & 1/2 \\ 1/4 & 3/4 \end{pmatrix}$$

D admits a limit matrix **D***:

$$\mathbf{D}^* = \lim_{k \to \infty} \mathbf{D}^k = \begin{pmatrix} 1/3 & 2/3 \\ 1/3 & 2/3 \end{pmatrix}$$

Suppose Ω contains two different states. 1's beliefs are given by $p_1 = (1/4, 3/4)$ and 2's beliefs by $p_2 = (3/4, 1/4)$. The belief consensus p_{Σ}^* based on φ_{Σ} is then given by:

$$\begin{pmatrix} 1/4 & 3/4 \\ 3/4 & 1/4 \end{pmatrix} \cdot \begin{pmatrix} 1/3 & 2/3 \\ 1/3 & 2/3 \end{pmatrix} = \begin{pmatrix} 1/3 & 2/3 \\ 1/3 & 2/3 \end{pmatrix}$$

Hence, the belief consensus is $p^*_{\Sigma} = (1/3, 2/3).$

Updating Rule: the Geometric Case I

An individual *i*'s updating rule is *geometric average* (φ_Π) if, for *i* ∈ *I*, for all *k* ∈ N,

$$p_i(k+1) = \varphi_{\Pi}(\mathbf{D}, p_i(k)) = rac{\prod_j p_j(k)^{d_{ij}}}{\sum_i \prod_j p_j(k)^{d_{ij}}}$$

Proposition Assume all individuals update their beliefs according to the geometric average rule and all individual beliefs are full-support on Ω . Under SC, the deliberation ρ_{Δ} reaches a belief consensus $\overrightarrow{\rho}_{\Pi}^* \in \Delta^n$ where $p_{\Pi}^* = (\prod_j p_j^{d_{ij}^*})/(\sum_i \prod_j p_j^{d_{ij}^*})$, for all $i \in \mathcal{I}$. Assume that both individuals follow now the geometric average rule. According to the above result:

$$p_{\Pi}^{*}(s_{1}) = \frac{\frac{1}{4}^{\frac{1}{3}} \cdot \frac{3}{4}^{\frac{2}{3}}}{\frac{1}{4}^{\frac{1}{3}} \cdot \frac{3}{4}^{\frac{2}{3}} + \frac{3}{4}^{\frac{1}{3}} \cdot \frac{1}{4}^{\frac{2}{3}}} \approx 0.4.$$

Therefore, the consensus belief based on the geometric average rule is $p_{\Pi}^* = (0.4, 0.6) \neq p_{\Sigma}^*$.

- This example illustrates that, for the same set of individuals and the same deliberation matrix, the consensus belief differs according to the updating rule individuals choose to use
- The question is then natural of the existence of a criterion whereby social beliefs and utilities are of a utilitarian shape

Definition

A belief aggregation rule ρ_{Δ} is *utilitarian* if for any social state *s*, there exist $\{\beta_i(s)\}_{i=1}^n$ with $\sum_{i=1}^n \beta_i(s) = 1$ such that $\rho_{\Delta}(s) = \sum_{i=1}^n \beta_i(s) \cdot p_i$.

Definition

A utility aggregation rule ρ_U is *utilitarian* if, for any social state *s*, there exist $\{\alpha_i(s)\}_{i=1}^n$ with $\sum_{i=1}^n \alpha_i(s) = 1$ such that $\rho_U(s) = \sum_{i=1}^n \alpha_i(s) \cdot u_i$.

Back to Pareto

Pareto condition (PC) Given a social profile *s*, two acts $f, g \in \mathcal{F}$, — if $\mathbf{E}(f|p_i, \rho_{\mathbf{U}}(s)) \ge \mathbf{E}(g|p_i, \rho_{\mathbf{U}}(s))$ for every $i \in \mathcal{I}$, then $\mathbf{E}(f|\rho_{\Delta}(s), \rho_{\mathbf{U}}(s)) \ge \mathbf{E}(g|\rho_{\Delta}(s), \rho_{\mathbf{U}}(s))$

— if
$$\mathbf{E}(f|\rho_{\Delta}(s), u_i) \ge \mathbf{E}(g|\rho_{\Delta}(s), u_i)$$
 for every $i \in \mathcal{I}$, then
 $\mathbf{E}(f|\rho_{\Delta}(s), \rho_{\mathbf{U}}(s)) \ge \mathbf{E}(g|\rho_{\Delta}(s), \rho_{\mathbf{U}}(s))$

• PC means that if all individuals prefer f to g while they are equipped with their own opinions but have already accepted to switch them for deliberated consensual opinions, then society also prefers f to g.

Theorem

PC is satisfied if and only if the deliberation $(\rho_{\mathbf{U}}, \rho_{\mathbf{\Delta}})$ is utilitarian.

Conclusion

• Evidences demonstrate

- Unanimity induced by conflicting beliefs and tastes is sometimes spurious
- The possibility of spurious unanimity makes preference aggregation impossible

This paper argues

- Heterogeneity of individual beliefs and tastes can be solved through deliberations
- If a deliberation gets a consensus, this consensus is not unique
- The Pareto condition allows to select among consensus the one that corresponds to a utilitarian aggregation