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ETH Zürich

May 2022

Slides: bit.ly/disag av
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Motivation

Example: Decision Maker’s binary decision.

Choices (outcomes) Beliefs (probas)

Sure Project Unsure Project Expert 1 Expert 2
Bad state 0.5 0 0 0.5
Neutral state 0.5 0.5 1 0
Good state 0.5 1 0 0.5

For both experts, both choices have same expected utility: 0.5.

What should the DM do?

Unanimity principle? Indifferent.
Disagreement aversion? Sure Project.
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Contributions

A novel notion of disagreement aversion.

I Ambiguity aversion (e.g. Ghirardato & Marinacci, 2002) is a preference for
utility-consensus.

I Disagreement aversion is a preference for distribution-consensus.

A model allowing to account for disagreement aversion.

I Common models are monotonic and aggregate expected utilities (Cerreia-Vioglio et al.,
2011): UUA = I

(
Ep1 [u] , . . . ,EpN [u]

)
I We relax monotonicity and aggregate distributions: UDA = EI (p1,...,pN ) [u]

I Our distribution-aggregating model is more disagreement averse and more ambiguity averse
than EU-aggregating models.

Implications of disagreement aversion in concrete applications.

I EU-aggregating models: ore ambiguity aversion ; more cautious choices.

I Distribution-aggregating models: more disagreement aversion ⇒ more cautious choices.

Bommier, Fabre, Goussebäıle & Heyen Disagreement Aversion Slides: bit.ly/disag av 3 / 29



Contributions

A novel notion of disagreement aversion.

I Ambiguity aversion (e.g. Ghirardato & Marinacci, 2002) is a preference for
utility-consensus.

I Disagreement aversion is a preference for distribution-consensus.

A model allowing to account for disagreement aversion.

I Common models are monotonic and aggregate expected utilities (Cerreia-Vioglio et al.,
2011): UUA = I

(
Ep1 [u] , . . . ,EpN [u]

)
I We relax monotonicity and aggregate distributions: UDA = EI (p1,...,pN ) [u]

I Our distribution-aggregating model is more disagreement averse and more ambiguity averse
than EU-aggregating models.

Implications of disagreement aversion in concrete applications.

I EU-aggregating models: ore ambiguity aversion ; more cautious choices.

I Distribution-aggregating models: more disagreement aversion ⇒ more cautious choices.
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Why do we care?

In various applications, the decision-maker
may want to aggregate experts’ distributions
in a cautious way, e.g.:

Warming potential of CO2.

Asset returns.

Effectiveness and side effects of a vaccine.

Figure: Estimated probability density functions for
climate sensitivity from a variety of published
studies, collated by Meinshausen and al. (2009),
taken from Millner, Dietz & Heal (2013).
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Literature

Contributes to the aggregation of conflicting beliefs.

I DeGroot & Mortera (91); Esptein (ReStud, 99); Ghirardato & Marinacci (02); Crès et al.
(11); Gadjos et al. (13); Cerreia-Vioglio et al. (20).

Follows criticism of the unanimity principle (i.e., Pareto condition, monotonicity axiom).

I Gilboa, Samet, Schmeidler (JPE, 04); Mongin (16); Skiadas (13); Machina (AER, 14).

Provides an alternative to expected utility-aggregating models.

I Monotonic models: Gilboa & Schmeidler (89); Schmeidler (ECTA, 89); Hansen & Sargent
(AER, 01); Klibanoff, Marinacci, Mukerji (ECMA, 05); Cerreia-Vioglio et al. (11); Hansen
& Sargent (AER, 01); Maccheroni et al. (ECTA, 06).

I Exception: Bommier (17).

Is relevant to applied studies of decision-making under uncertainty.

I Gollier (ReStud, 11); Millner et al. (13); Berger (14); Berger et al. (21).
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Setting

Set of states of the world: Ω.

Space of outcomes: X = [X−;X+] ∈ R.

Choice α : Ω→ X . Its image: α1 < . . . < αKα . Sure choice of outcome x : x .

Expert i . Pi denotes i ’s belief, i.e. their subjective probability measure on Ω.

Expertise. P = (P1, . . . ,PN) is the expertise, given N experts {1; . . . ;N}.
A decision-rule <: P 7→<P maps expertises to preferences over choices.

Introductory example:

Choices (outcomes) Beliefs (probas)

Sure Project Unsure Project Expert 1 Expert 2
Bad state 0.5 0 0 0.5
Neutral state 0.5 0.5 1 0
Good state 0.5 1 0 0.5
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Bommier, Fabre, Goussebäıle & Heyen Disagreement Aversion Slides: bit.ly/disag av 7 / 29



Setting

Set of states of the world: Ω.

Space of outcomes: X = [X−;X+] ∈ R.

Choice α : Ω→ X . Its image: α1 < . . . < αKα . Sure choice of outcome x : x .

Expert i . Pi denotes i ’s belief, i.e. their subjective probability measure on Ω.

Expertise. P = (P1, . . . ,PN) is the expertise, given N experts {1; . . . ;N}.
A decision-rule <: P 7→<P maps expertises to preferences over choices.

Introductory example:

Choices (outcomes) Beliefs (probas)

Sure Project Unsure Project Expert 1 Expert 2
Bad state 0.5 0 0 0.5
Neutral state 0.5 0.5 1 0
Good state 0.5 1 0 0.5
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Bommier, Fabre, Goussebäıle & Heyen Disagreement Aversion Slides: bit.ly/disag av 7 / 29



Notations

For a choice α and an expert i , we denote pi =
(
pik
)
k≤Kα

the decumulative distribution

of outcomes, i.e. pik = Pi ({ω : α (ω) ≥ αk}).

Introductory example:

Decumulative
Distribution Function

Outcome

Expert 1

Expert 2

1

Sure Project

Decumulative
Distribution Function

Outcome

Expert 1

Expert 2

1

Unsure Project
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Risk preferences

In absence of disagreement (i.e., pi = p1, ∀i), we assume expected utility (EU):

U(α) = Ep1 [u (α)] in which u is an increasing bijection of [0, 1] .

Given that pik = Pi (α ≥ αk) is decumulative distribution of outcomes, EU writes:

Ep1 [u (α)] =
∑Kα−1

k=1
u (αk)

(
p1
k − p1

k+1

)
+ u (αKα) p1

Kα

Defining ∆uk = u (αk)− u (αk−1) ≥ 0, EU rewrites:

Ep1 [u (α)] =
∑Kα

k=1
∆ukp

1
k
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Notions of consensus

Utility consensus:
α is utility-consensual if experts agree on its expected utility level

∀i , Epi [u (α)] = Ep1 [u (α)]

Distribution consensus:
α is distribution-consensual if experts agree on the distribution of its outcomes

∀i ,∀k, pik = p1
k
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EU-aggregating decision-rules

Adapted from Cerreia-Vioglio and al. (2011). < is said EU-aggregating (or MBA) if its
risks preferences are EU and if it admits a representation (u, I ) of the form:

UUA (α) = I
(
Ep1 [u (α)] , . . . ,EpN [u (α)]

)
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Aggregators

Recall the EU-aggregating representation:

UUA (α) = I
(
Ep1 [u (α)] , . . . ,EpN [u (α)]

)
An aggregator I is a continuous function from [0, 1]N to [0, 1] which is component-wise

increasing and fulfills I (q, . . . , q) = q.

Examples of aggregators:

Arithmetic mean (linear pooling): Ilinear (u1, . . . , uN) = 1
N

∑N
i=1 ui .

Min: Imin (u1, . . . , uN) = min
1≤i≤N

{ui}.

Second-order EU (KMM): IKMM (u1, . . . , uN) = ψ−1
(

1
N

∑N
i=1 ψ (ui )

)
where ψ is smooth and increasing, e.g. ψ : x 7→ −e−λx .
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Aggregation of utilities: an illustration

U0 0.5 1
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Aggregation of utilities in our example

U0 0.5 1
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Disagreement aversion

Definition. < is said disagreement averse if for all expertise P, for all outcome x ,
for all choice α that is not distribution-consensual:(

x <Pi α, ∀i
)
⇒ x �P α

Definition. Pareto condition.
A decision-rule < is Paretian if for all expertise P = (P1, · · · ,PN) and choices α, β:(

α <Pi β,∀i
)
⇒ α <P β

Lemma. Violation of the Pareto Condition.

There is no decision-rule with EU risk preferences which is Paretian and
exhibits disagreement aversion.
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Comparative aversion

Definition. Comparative disagreement aversion.
Take two decision-rules <A and <B that share the same EU preferences (u) on
distribution-consensual choices. <A is more disagreement averse than <B if
for all non-distribution-consensual choices α, all expertise P, all sure choices x ,

x ∼PB α⇒ x �PA α

Definition. Comparative ambiguity aversion.
Take two decision-rules <A and <B that share the same EU preferences (u) on
distribution-consensual choices. <A is more ambiguity averse than <B if
for all non-utility-consensual choices α, all expertise P and all sure choices x ,

x ∼PB α⇒ x �PA α
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Bommier, Fabre, Goussebäıle & Heyen Disagreement Aversion Slides: bit.ly/disag av 16 / 29



Distribution-aggregating decision-rules

A decision-rule < is said distribution-aggregating, with representation (u, I ),
if there exist a utility-index u and an aggregator I s.t.:

UDA (α) = EI(p1,...,pN) [u (α)] =
Kα∑
k=1

∆uk I
(
p1
k , . . . , p

N
k

)
Recall the representation of EU-aggregating rules:

UUA (α) = I
(
Ep1 [u (α)] , . . . ,EpN [u (α)]

)
= I

(
Kα∑
k=1

∆ukp
1
k , . . . ,

Kα∑
k=1

∆ukp
N
k

)

The difference is the stage at which the aggregation occurs.
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Distribution-aggregating in the example

Decumulative

Distribution Function

Utility

0.25

0.50

0.75

1.00

Expert 1

Expert 2

Aggregation under

disagreement aversion

𝐼(1,0.5)

𝐼(0,0.5)

0 0.5 1

Distribution-aggregating utility: UP (α) =
∑Kα

k=1 ∆uk I
(
p1
k , . . . , p

N
k

)
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1 Disagreement aversion

2 Properties

3 Applications

4 Conclusion
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Characterization of cautiousness

Sufficient conditions for disagreement aversion (each one suffices) See proof See NSC

The aggregator I : [0, 1]N → [0, 1]N is strictly concave except on constant vectors.

There exist weights λi ≥ 0 summing to 1 s.t. I (p1, . . . , pN) <
∑N

i=1 λipi for all non
constant vector (p1, . . . , pN) ∈ [0, 1]N .

Characterization of comparative disagreement aversion

Consider two distribution-aggregating decision-rules <A and <B with aggregator IA and IB .
Then <A is more disagreement averse than <B if and only if IA (~p) < IB (~p) for all
non-constant vector ~p = (p1, . . . , pN) ∈ [0, 1]N and both share EU preferences u.

Characterization of comparative ambiguity aversion See proof

Take <A and <B , either both distribution-aggregating or both EU-aggregating.
Then <A is more ambiguity averse than <B if and only if IA (~p) < IB (~p) for all non-constant
vector ~p and both share EU preferences u.
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Link between distribution-aggregating and EU-aggregating rules

Proposition: “distribution-aggregating is more cautious than EU-aggregating” See proof

For any (u, I ), take the distribution-aggregating decision-rule <DA and the EU-aggregating
decision rule <UA with representations (u, I ).
If I is strictly concave then <DA exhibits more ambiguity aversion and more disagreement
aversion than <UA.

Proposition: distribution-aggregating ∩ Paretian = linear pooling See proof

A decision-rule is both distribution-aggregating and EU-aggregating if and only if its
aggregator I is linear, i.e. there are weights λi s.t. I (p1, . . . , pN) =

∑
i λipi .
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Distribution-aggregating is more cautious than EU-aggregating

linear pooling

σ𝑖 𝔼𝑝𝑖[𝑢]

Utility-Aggregating

𝐼 𝔼𝑝1 𝑢 ,… , 𝔼𝑝𝑁[𝑢]

Distribution-Aggregating

𝔼𝐼(𝑝1,…,𝑝𝑁)[𝑢]

greater ambiguity aversion

greater disagreement aversion

Figure: The relation between decision-rules when I is strictly concave.
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Axiomatization

The main axioms are: See proof

EU risk preferences.

monotonicity with respect to first-order stochastic dominance (M-FSD)

the comonotonic sure-thing principle.

continuity.

We add a last axiom to separate outcomes and probabilities and simplify the formula.
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Impact of greater ambiguity aversion for EU-aggregating models
The ex-post utility has now the form u(a, ω), with a a choice variable and ω a contingency.
With the example of climate, a is abatement and ω is the climate insensitivity:
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Impact of greater disagreement/ambiguity aversion

Assume a constant-sign cross-derivative. A’s decision is more cautious than B’s if: See why

EU-aggregating case:

IA < IB

experts’ beliefs are ordered in terms
of optimism (FOSD), and

IA, IB have KMM forms.

Distribution-aggregating case:

IA < IB
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Impact of greater ambiguity aversion for utility- vs.
distribution-aggregating

Example where experts’ beliefs are not ordered in terms of optimism (FOSD).
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Take home messages

We provide a cautious, probability-aggregating model where EU uses
a certainty-equivalent probability distribution of outcomes.

It is sensitive to disagreement over underlying beliefs, not only over utilities.

It yields intuitive implications for disagreement aversion, under mild assumptions.

Thank you!

Working paper: bit.ly/disagreement aversion
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Proof of representation result Back to properties

1 Definition of I , n = 1. EU on consensual choices gives u. Represent choices by pair:

image −→x , probas p = (−→pk)k , denote
−→
X =

(
X ,X

)
. For P, ∃!x , p such that(−→

X ,−→p
)
∼ x ∼

(−→
X , p

)
. Define Ĩ

(−→p ) = p, I = f ◦ Ĩ ◦ f −1.

2 Case n=2. Take any −→y = (y0, y1) and let p, y be unique pair s.t.(−→y ,−→p ) ∼ y ∼
(−→y , p). By EU on consensual choices y ∼

(−→y , p) implies
U (y) = U

(−→y , p) and by level-independent disagreement aversion:(−→y ,−→p ) ∼ (−→y , p)⇔ (−→
X ,−→p

)
∼ U

(−→y , p) so U (y) = U
(−→y ,−→p ).

3 General case Assume result shown when support of size ≤ n, take
α = ((x1, . . . , xn−1, xn, xn+1) , p). By continuity, there exist x̂n, x̂ s.t.
α ∼ x̂ ∼ ((x1, . . . , xn−1, x̂n, x̂n) , p) =: α̂. By the comonotonic sure-thing principle:
((x1, . . . , xn, xn, xn+1) , p) ∼ ((x1, . . . , xn, x̂n, x̂n) , p). By induction, representation hold
for these transformed choices, so we can equate their formulas. Re-arranging terms, we

obtain U (α) = U (α̂). As α̂ of size n, U (α) = U
(
x̂
)

. �
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Proof of representation result Back to properties

1 Definition of I , n = 1. EU on consensual choices gives u. Represent choices by pair:

image −→x , probas p = (−→pk)k , denote
−→
X =

(
X ,X

)
. For P, ∃!x , p such that(−→

X ,−→p
)
∼ x ∼

(−→
X , p

)
. Define Ĩ

(−→p ) = p, I = f ◦ Ĩ ◦ f −1.

2 Case n=2. Take any −→y = (y0, y1) and let p, y be unique pair s.t.(−→y ,−→p ) ∼ y ∼
(−→y , p). By EU on consensual choices y ∼

(−→y , p) implies
U (y) = U

(−→y , p) and by level-independent disagreement aversion:(−→y ,−→p ) ∼ (−→y , p)⇔ (−→
X ,−→p

)
∼ U

(−→y , p) so U (y) = U
(−→y ,−→p ).
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Proof of proposition on the impact of disagreement aversion Back to applications

The first-order condition of the maximization problem is:

K∑
k=2

(∂1u(a, tk)− ∂1u(a, tk−1)) IJ

(
p1
k , . . . , p

N
k )
)

+ ∂1u(a, t1)︸ ︷︷ ︸
U′
J(a)

= 0,

given that IJ
(
p1

1 , . . . , p
N
1

)
= 1. Since decision-maker A is more disagreement averse than B,

we have IA
(
p1
k , . . . , p

N
k

)
≤ IB

(
p1
k , . . . , p

N
k

)
for all k with strict inequality for some k since the

group of experts disagrees. If ∂1u(a, t) strictly increases with t, we have U ′A(a) < U ′B(a) and
a∗A < a∗B . If ∂1u(a, t) strictly decreases with t, we have U ′A(a) > U ′B(a) and a∗A > a∗B .
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Proof of proposition on the impact of ambiguity aversion Back to applications

The first-order condition of the maximization problem is:

N∑
i=1

λiψ
′
J

(∑K
k=1 ∆ukp

i
k

)
∑N

l=1 λlψ
′
J

(∑K
k=1 ∆ukp

l
k

)
︸ ︷︷ ︸

λ̃i (ψJ ,a)

·
(

K∑
k=2

(∂1u(a, tk)− ∂1u(a, tk−1)) pik + ∂1u(a, t1)

)
︸ ︷︷ ︸

ρi (a)

= 0.

We can view λ̃i (ψJ , a) as a distribution function where i would be the random variable. With
ψC = h ◦ ψD , the likelihood ratio of λ̃i (ψC , a) and λ̃i (ψD , a) writes:

λ̃i (ψC , a)

λ̃i (ψD , a)
= h′

(
ψD

(
K∑

k=1

∆ukp
i
k

))
·
∑N

l=1 λlψ
′
D

(∑K
k=1 ∆ukp

l
k

)
∑N

l=1 λlψ
′
C

(∑K
k=1 ∆ukp

l
k

) .
Thus λ̃i (ψD , a) first-order stochastically dominates λ̃i (ψC , a). If ∂1u(a, t) increases with t,
we get

∑N
i=1 λ̃i (ψC , a)ρi (a) <

∑N
i=1 λ̃i (ψD , a)ρi (a) for a given a, and a∗C < a∗D .
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Characterization of disagreement aversion characterization Back

A distribution-aggregating DM is disagreement averse iff I is such that for any(
qik
)
∈ [0, 1]N×K s.t. qi1 ≥ . . . ≥ qiK , and any (∆u1, . . . ,∆uK ) ∈ [0, 1]K s.t.

∑K
k ∆uk ≤ 1:

K∑
k=1

∆uk I
(
q1
k , . . . , q

N
k

)
≤ max

1≤j≤N

K∑
k=1

∆ukq
i
k

where the inequality is strict as soon as qik 6= qjk and ∆uk > 0 for some i , j , k . Proof:

There is a correspondence between a choice α and its pair (∆uk)k ,
(
qik
)
i ,k

.

By EU, if α is distribution-consensual, we have UPi (α) = UP (α) ,∀i so that∑Kα
k=1 ∆uk I

(
q1
k , . . . , q

N
k

)
= UP (α) = maxi U

Pi (α) = max1≤i≤N
∑Kα

k=1 ∆ukq
i
k .

Take α non distribution-consensual ⇔ there are i , j , k . s.t. qik 6= qjk and ∆uk > 0.

Take x s.t. x <Pi α, ∀i ⇔ u (x) ≥ maxi U
Pi (α)

Then x �P α⇔ maxi
∑Kα

k=1 ∆ukq
i
k >

∑Kα
k=1 ∆uk I

(
q1
k , . . . , q

N
k

)
, so both disagreement

aversion or the Proposition’s property imply the other.
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Proof of sufficiency conditions for disagreement aversion Back

For the first condition:

I
(
q1
k , . . . , q

N
k

)
≤

N∑
i=1

λiq
i
k ⇒

K∑
k=1

∆uk I
(
q1
k , . . . , q

N
k

)
≤

N∑
i=1

λi

K∑
k=1

∆ukq
i
k ≤ max

1≤i≤N

K∑
k=1

∆ukq
i
k (1)

For the second condition: Set ∆uK+1 = 1−∑K
k=1 ∆uk and qiK+1 = 0 for all 1 ≤ i ≤ N.

Then, using successively that I is concave and increasing:

K+1∑
k=1

∆uk I
(
q1
k , . . . , q

N
k

)
≤ I

(
K+1∑
k=1

∆ukq
1
k , . . . ,

K+1∑
k=1

∆ukq
N
k

)
≤ max

1≤i≤N

K∑
k=1

∆ukq
i
k (2)

In both cases the first inequality is strict when one has qik 6= qjk and ∆uk > 0 for some
indices i , j , k .
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Proof of characterization of comparative aversions
Back to comparative disagreement Back to comparative ambiguity

⇒ Take any non-constant vector ~p = (p1, . . . , pN) and any expertise P.

Let ~q = (p1, . . . , pN). Define x = u−1 (IA (~q)). Denote by
(
~X , ~p

)
the choice α with

only extremal outcomes s.t. DPi
α (X+) = pi , ∀i .

By comparative disagreement aversion,
(
~X , ~p

)
∼PA x ⇒

(
~X , ~p

)
�PB x . By definition,(

~X , ~p
)
∼PA x iff UA

((
~X , ~p

))
= u (x) = IA (~q), which holds by assumption. Thus,(

~X , ~p
)
�PB x , i.e. IB (~p) > IA (~p).

⇐ Take P, α non distribution-consensual and β distribution-consensual s.t. α ∼PA β.

Defining
(
pik
)

the probas of α, ~pk is non-constant for some k , for which
IA ( ~pk) < IB ( ~pk); and for remaining k ~pk is constant so IA ( ~pk) = IB ( ~pk) = pk .

As <A and <B share u and by Definition, this implies
UPB (β) = UPA (β) = UPA (α) < UPB (α), i.e. α �PB β.
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Proof that DA is more averse than UA Back

Take any P, α (with at least one non-extremal outcome), and distribution-consensual
choice β.

As <DA and <UA share u, they coincide on distribution-consensual choices, and 1. we
can denote UP (β) := UPUA (β) = UPDA (β); 2. if α is distribution-consensual,
α ∼PDA β ⇒ α ∼PUA β.

Take α non distribution-consensual, i.e. there are i , j , k . s.t. pik 6= pjk and ∆uk > 0. Set

∆uKα+1 = 1−∑Kα
k=1 ∆uk and piKα+1 = 0,∀i .

The strict concavity inequality yields:∑Kα+1
k=1 ∆uk I

(
p1
k , . . . , p

N
k

)
< I

(∑Kα+1
k=1 ∆ukp

1
k , . . . ,

∑Kα+1
k=1 ∆ukp

N
k

)
. i.e.

UPDA (α) < UPUA (α)

Thus, α <PDA β ⇒ UPUA (α) > UPDA (α) ≥ UP (β)⇒ α �PUA β.
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Proof that distribution-aggregating ∩ Paretian = linear pooling Back

⇐ By assumption, UPDA =
∑N

i=1 λiU
Pi . Take any α, β, P s.t. β <Pi α,∀i . Then

UPDA (β) =
∑N

i=1 λiU
Pi
DA (β) ≥∑N

i=1 λiU
Pi
DA (α) = UPDA (α), so that β <P α.

⇒ Sketch of proof of a weaker result: DA ∩ UA ⇒ linear (see paper for full proof).

Both UA and DA representations are equal up to an increasing bijection. Considering
special choices, we see that both representations share u, and I .

Considering choices s.t. ∆uk = 1
Kα
, ∀k, we obtain a functional equation for I :

Kα∑
k=1

1

Kα
I
(
p1
k , . . . , p

N
k

)
= I

(
Kα∑
k=1

1

Kα
p1
k , . . . ,

Kα∑
k=1

1

Kα
pNk

)
,

This is Jensen’s functional equation, whose solution is known to be affine (hence linear
as I (0, . . . , 0) = 0), modulo a domain restriction: pi1 ≥ . . . ≥ piKα

, ∀i .
To handle the domain restriction: as solution applies locally to any neighborhood in the
interior of the domain, we use the connectedness of the domain to show that the linear
function is the same on all these neighborhoods.
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Understanding risk preferences with the example Back

Decumulative

Distribution Function

Utility0.25
𝑢1

0.50 0.75
𝑢2

0.25

𝑝2 0.50

0.75

𝑝1 1.00

Expert 2

Expert 2: UP2 (α) =
∑

k u (αk)
(
p2
k − p2

k+1

)
=
∑

k ∆ukp
2
k
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Understanding risk preferences with the example Back
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Applications Back

The ex-post utility has now the form u(a, ω), with a a choice variable and ω a contingency.

↗⇒ a∗ ↗
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Bommier, Fabre, Goussebäıle & Heyen Disagreement Aversion Slides: bit.ly/disag av 10 / 10



Applications Back

The ex-post utility has now the form u(a, ω), with a a choice variable and ω a contingency.

Decumulative

Distribution Function

Utility1 3

.2

.8

1
Expert 1

Expert 2

.4

.6

Case   
𝜕𝑢

𝜕𝜔𝜕𝑎
< 0

2

𝑎 ↗

𝑎 ↗

DA model: Disagreement aversion ↗ ⇒ a∗ ↗
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Bommier, Fabre, Goussebäıle & Heyen Disagreement Aversion Slides: bit.ly/disag av 10 / 10



Applications Back

The ex-post utility has now the form u(a, ω), with a a choice variable and ω a contingency.

Decumulative

Distribution Function

Utility0 0.5 1

0.25

0.50

0.75

1.00
Expert 1’

Expert 2’

Case   
𝜕𝑢

𝜕𝜔𝜕𝑎
< 0

↗⇒ a∗ ↗
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