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Harsanyi’s Social Aggregation Theorem (2/33)

Harsanyi (1955): Suppose that all individuals and society
are vNM expected utility maximizers.

Also, suppose that society satisfies the ex ante Pareto axiom.

Then the social vNM utility function (i.e. the SWF) must
be a weighted sum of individual vNM utility functions.

Upshot: (vNM rationality) + (Pareto) ⇒ utilitarianism.

Problem: vNM assumes that risks have known, objective probabilities.

But in many situations, there is no “objective” way to assign probabilities.

Question: Is there an analogy to Harsanyi’s social aggregation theorem in
the “Savage” framework, with purely subjective probabilities?
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Mongin’s Impossibility Theorem (3/33)

Mongin (1995):
In the Savage framework, Harsanyi’s theorem is false,
unless all agents have the same subjective beliefs.

Indeed, if agents have different beliefs, then it is im-
possible to satisfy the ex ante Pareto axiom.

(Related work: Hylland & Zeckhauser 1979 and Hammond

1981.)

Key problem. “Spurious unanimity”

Different people might have different utility functions and different beliefs.

But these differences might “cancel out”, so everyone ends up with the
same preferences between two acts α and β.

This unanimous preference is “spurious”, since it conceals disagreement in
the underlying beliefs and utilities.
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GSS Possibility Theorem (4/33)

Idea. Find a way to exclude “spurious unanimity” ....

Gilboa, Samet & Schmeidler (2004): Restrict ex ante Pareto to acts
where all agents have the same beliefs about the underlying events.

Theorem. The social planner satisfies this restricted ex ante Pareto iff:

I The SWF is weighted sum of individual utility functions.

I The social beliefs are a weighted average of individual beliefs.

Upshot: (Gilboa-Samet-Schmeidler “restricted Pareto” axiom) =⇒
(SWF is utilitarian, and social beliefs are linear pooling of individual beliefs).
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The problem of new information (6/33)

Recall: (Gilboa-Samet-Schmeidler “restricted Pareto” axiom) =⇒
(SWF is utilitarian, and social beliefs are linear pooling of individual beliefs).

Problem: Linear pooling does not respond correctly to new information.

Bayesian
update

[
Weighted

average

(
individual

beliefs

)]
6= Weighted

average

[
Bayesian

update

(
individual

beliefs

)]
.

In fact, GSS Pareto axiom does not respond well to new information, either.

Mongin & P. (2020) give examples where agents satisfy hypotheses of GSS
Pareto axiom because they update the same prior on different private
information, but then “spuriously” agree on the probabilities of certain
events.....
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Complementary ignorance (7/33)

Consider a social decision with two agents, Ann and Bob, and S = {r, s, t}.

Consider two acts α and β, which yield the same payoff for both agents in
each state of nature:

r s t

α 100 0 100

β 0 100 0

Ann and Bob begin with the same prior probability p:

p(r) = 0.49, p(s) = 0.02, and p(t) = 0.49.

Ann privately observes the event {r, s}, while Bob privately observes {s, t}.

After Bayesian updating, they have the
following posterior probabilities:

Info r s t

Prior 0.49 0.02 0.49

Ann {r,s} 0.96 0.04 0

Bob {s,t} 0 0.04 0.96
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Info r s t
Prior 0.49 0.02 0.49
Ann {r,s} 0.96 0.04 0
Bob {s,t} 0 0.04 0.96

r s t
α 100 0 100
β 0 100 0

Ann & Bob agree: Expected Utility(α) = 96, while Expected Utility(β) = 4.

Thus, α �Ann β and α �
Bob

β.

Also α and β are measurable relative to the algebra B = {S, {r, t}, {s}, ∅}.

Ann and Bob have the same beliefs about B.

Thus, even GSS’s restricted ex ante Pareto dictates that α � β.

Indeed, if P is the average of Ann’s and Bob’s beliefs (as GSS recommend),
then P also says Expected SWF(α) = 96, while Expected SWF(β) = 4.

However, clearly, the true state is s. So β is actually the better choice.

Upshot: In some cases, GSS Pareto and linear pooling are not appropriate.
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However, clearly, the true state is s. So β is actually the better choice.
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Social welfare vs. collective beliefs (9/33)

This malfunction of the GSS theorem has a broader message.

Different belief-aggregation rules are suitable in different contexts.

The criteria that determine the best belief-aggregation rule might not be
the criteria that determine the correct SWF.

The construction of a social welfare function is an ethical problem.

The construction of a collective belief is an epistemic problem.

There is no reason that these two problems should be solved by the same
theorem, or even with the same data.

We will focus on the ethical problem, leaving the epistemic problem to be
solved later by other methods.
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The problem of heterogeneous ambiguity attitudes (10/33)

Another concern. The aforementioned results all assume that all agents
are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?

Problem. Different agents might have different ambiguity attitudes.

Such heterogeneity yields impossibility theorems (Chambers & Hayashi
2006; Gajdos Tallon & Vergnaud 2008; Mongin & P. 2015; Zuber 2016).

Upshot. To satisfy ex ante Pareto, agents must be SEU maximizers.

Partial solution. Weaken the ex ante Pareto axiom (Alon & Gayer 2016;
Danan, Gajdos, Hill & Tallon 2016; Qu 2015; Hayashi & Lombardi 2019).

These papers characterize a SWF and a “linear” belief-aggregation rule.

So they are vulnerable to the same objections as GSS (2004).

Also, they impose a particular ambiguity attitude on society (either in
hypotheses or in conclusions).
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Goal (11/33)

Goal. An approach to group decisions under uncertainty that is compatible
with heterogeneity of beliefs and heterogeneity of ambiguity attitudes.

Idea. Use almost-objective uncertainty to formulate a weak Pareto axiom.

Main results. This axiom is both necessary and sufficient for the ex post
social welfare function to be utilitarian —i.e. a weighted sum of the
individual utility functions.

This holds for a variety of ambiguity attitudes.

And it does not impose any relationship between individual and collective
beliefs, or between individual and collective ambiguity attitudes.
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I. Almost objective uncertainty.
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Almost-objective uncertainty (14/33)

Notation. For any K ∈ N, let ∆K := {q = (q1, ..., qK) ∈ RK+ ;
K∑
k=1

qk = 1},

the set of K-dimensional probability vectors.

Let S be a measurable space.

Let R be a collection of probability measures on S.

Let K ∈ N and let q ∈ ∆K .

For all n ∈ N, let Gn := {Gn1 ,Gn2 , . . . ,GnK} be a K-element partition of S.

Definition. The sequence of partitions (G1,G2,G3, . . . . . .) is R-almost-
objectively uncertain and subordinate to q if, for all ρ ∈ R, we have

lim
n→∞

ρ(Gn1 ) = q1, lim
n→∞

ρ(Gn2 ) = q2, . . . . . . lim
n→∞

ρ(GnK) = qK .

Idea. The ρ-distribution of Gn converges to q as n→∞, for all ρ ∈ R.
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Almost-objective uncertainty on an interval (15/33)

Example. (Poincaré, 1912; Machina, 2004, 2005) Let S := [0, 1].

Let R := {probability measures on [0, 1] with continuous density functions}.

Let K := 2 and let q := (12 ,
1
2).

Consider the partitions G1,G2,G3, . . ., where Gn := {Gn1 ,Gn2 } for all n ∈ N.
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Almost-objective uncertainty on an interval (16/33)

Claim. The partition sequence (Gn)∞n=1 is R-almost-objectively uncertain,
and subordinate to (12 ,

1
2).

To see this, let ρ ∈ R. Suppose ρ has the density function f shown below.

It is easily seen that
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Almost-objective uncertainty on Polish spaces (17/33)

We will obtain almost-objectively uncertain partitions in any Polish space....

Let M(S) be the Banach space of signed measures on S.

Terminology. A closed subspace of M(S) is a linear subspace N ⊆M(S)
that is closed in the total variation norm topology.

N is separable if it is spanned by a countable subset.

(A subset H ⊆ N spans N if N is the norm-closure of the vector space of all finite linear

combinations of elements of H.)

N is nonatomic if all elements of N are nonatomic.

Notation. Let 〈N〉 := {µ ∈M(S); µ is absolutely continuous relative to
some ν ∈ N , and the Radon-Nikodym derivative dµ

dν is bounded}.

Definition. A collection R ⊆ ∆(S) is tame if there is a nonatomic,
separable, closed linear subspace N ⊆M(S) such that R ⊆ 〈N〉.
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Definition. A collection R ⊆ ∆(S) is tame if there is a nonatomic, separable,
closed linear subspace N ⊆M(S) such that R ⊆ 〈N〉.

Example. Let S = [0, 1]. Let R be the set of all probability measures on S
that are absolutely continuous with respect to Lebesgue, with density
functions in L∞[0, 1]. Then R is tame.

Recall. A Polish space is a topological space homeomorphic to a complete,
separable metric space. We equip it with the Borel sigma-algebra.

Proposition. Let S be any Polish space.

Let R be any tame set of probability measures on S.

For any K ∈ N and q ∈ ∆K , there is an R-almost-objectively uncertain
sequence of partitions of S that is subordinate to q.
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II. Axioms and main result

(for SEU preferences)



Decision theory terminology (20/33)

Let S and X be measurable spaces.

S is the state space. X is the outcome space.

An act is a measurable function α : S−→X taking finitely many values.

Let A be the set of all acts.

Let � be a preference order on A (e.g. some agent’s ex ante preferences).

A representation of � is a function V : A−→R such that

for all α, β ∈ A,
(
α � β

)
⇐⇒

(
V (α) ≥ V (β)

)
.

Example. A representation V is subjective expected utility (SEU) if there
is some ρ ∈ ∆(S) and a bounded measurable function u : X−→R such that

V (α) =

∫
S
u ◦ α dρ, for all α ∈ A.
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Almost-objective acts (21/33)

Let R be a collection of probability measures on the statespace S.

Let α = (α1, α2, α3, . . . . . .) be a sequence of acts.

Definition. α is an R-almost-objective act if there exists some
x = (x1, . . . , xK) ∈ XK , and an R-almost-objectively uncertain sequence
of K-cell partitions G = (Gn)∞n=1, with Gn := {Gn1 , . . . ,GnK} for all n ∈ N,
such that for all n ∈ N and k ∈ [1 . . .K] we have αn(s) = xk for all s ∈ Gnk .

Suppose G is subordinate to the probability vector q = (q1, . . . , qK) ∈ ∆K .

Then we say that α is subordinate to (q,x).

Idea: (α1, α2, . . .) “converges” to the objective lottery

(
q1 q2 . . . qK
x1 x2 . . . xK

)
.

Let β = (β1, β2, β3, . . .) be another almost-objective act.

α and β are compatible if βn is also Gn-measurable, for all n ∈ N.
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Asymptotic preferences (22/33)

Let � be a preference order on A. Let V be a representation of �.

Definition. V of � is contiguous if its image V (A) is an interval in R.

Let α = (αn)∞n=1 and β = (βn)∞n=1 be two almost-objective acts.

Definition. � asymptotically prefers α to β, and write α �∞ β, if there is
some contiguous representation V for �, some N ∈ N and some ε > 0 such
that V (αn) > V (βn) + ε for all n ≥ N .

This means αn � βn for all n ≥ N . But it is a stronger requirement: it
requires an ε-sized “margin of error” in the superiority of αn over βn .

Despite appearances, this definition does not depend on the choice of V ......

Lemma. Suppose � satisfies Statewise Dominance.

If V1 and V2 are contiguous representations for �, and there exist N ∈ N
and ε1 > 0 such that V1(α

n) > V1(β
n) + ε1 for all n ≥ N , then there exists

ε2 > 0 such that V2(α
n) > V2(β

n) + ε2 for all n ≥ N .
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This means αn � βn for all n ≥ N . But it is a stronger requirement: it
requires an ε-sized “margin of error” in the superiority of αn over βn .

Despite appearances, this definition does not depend on the choice of V ......

Lemma. Suppose � satisfies Statewise Dominance.

If V1 and V2 are contiguous representations for �, and there exist N ∈ N
and ε1 > 0 such that V1(α

n) > V1(β
n) + ε1 for all n ≥ N , then there exists

ε2 > 0 such that V2(α
n) > V2(β

n) + ε2 for all n ≥ N .



Asymptotic preferences (22/33)

Let � be a preference order on A. Let V be a representation of �.

Definition. V of � is contiguous if its image V (A) is an interval in R.

Let α = (αn)∞n=1 and β = (βn)∞n=1 be two almost-objective acts.

Definition. � asymptotically prefers α to β, and write α �∞ β, if there is
some contiguous representation V for �, some N ∈ N and some ε > 0 such
that V (αn) > V (βn) + ε for all n ≥ N .

This means αn � βn for all n ≥ N . But it is a stronger requirement: it
requires an ε-sized “margin of error” in the superiority of αn over βn .

Despite appearances, this definition does not depend on the choice of V ......

Lemma. Suppose � satisfies Statewise Dominance.

If V1 and V2 are contiguous representations for �, and there exist N ∈ N
and ε1 > 0 such that V1(α

n) > V1(β
n) + ε1 for all n ≥ N , then there exists

ε2 > 0 such that V2(α
n) > V2(β

n) + ε2 for all n ≥ N .



Almost-objective Pareto (23/33)

Let I be a set of individuals.

Let o be the social observer. Let J := I t {o}.

For all j ∈ J , let �j be a preference order on A.

We require �o to satisfy the following axiom, relative to {�i}i∈I and R:

Almost-objective Pareto. If α and β are compatible R-almost-objective
acts, and α �∞

i β for all i ∈ I, then α 6≺∞
o β.

Remark. We do not require α �∞
o β; we simply require the social planner

not to form the opposite asymptotic preference to that of the individuals.
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Utilitarianism and weak utilitarianism (24/33)

Definition. A set of utility functions {ui}i∈I satisfies Minimal Agreement
if there exist probability measures µ1 and µ2 on X such that∫

X
ui dµ1 >

∫
X
ui dµ2, for all i ∈ I.

Idea. There exist two “objective lotteries” over outcomes, for which all
individuals have the same strict preference.

Suppose uo is the ex post utility function for the social preference order �o.

Defn. uo is weakly utilitarian if there exist constants ci ≥ 0 for all i ∈ I and

b ∈ R such that uo = b+
∑
i∈I

ci ui. uo is utilitarian if ci > 0 for all i ∈ I,

Under mild hypotheses, (weak utilitarianism) =⇒ (utilitarianism).

Consequence. Our focus is on establishing weak utilitarianism.

We now come to our main result....
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Main result for SEU preferences (25/33)

Theorem 1. Let S be a Polish space.

Let R be a tame set of probability measures on S.

For all j ∈ J , let �j be a preference order on A admitting an SEU
representation with ρj ∈ R.

Suppose {ui}i∈I satisfy Minimal Agreement. Then:

�o satisfies Almost-objective Pareto ⇐⇒ uo is weakly utilitarian.

In fact, this is a special case of a much more general result.

But this requires some preliminaries....
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III. Non-SEU decision theories



Notation and terminology (27/33)

Recall.

S is the state space.

X is the outcome space.

A is the set of all acts (finitely valued measurable functions from S to X )

Let � be a preference order on A.

A representation of � is a function V : A−→R such that

for all α, β ∈ A,
(
α � β

)
⇐⇒

(
V (α) ≥ V (β)

)
.



Generalized Hurwicz representations. (28/33)

A representation V is generalized Hurwicz (GH) if there is a convex set
P ⊂ ∆(S) and a bounded function u : X−→R, such that for all α ∈ A,

inf
ρ∈P

∫
S
u ◦ α dρ ≤ V (α) ≤ sup

ρ∈P

∫
S
u ◦ α dρ.

Idea. P = {all probability distributions over S that are possible}.

Examples. SEU; Hurwicz; maximin SEU; variational prefs, etc.

• Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci & Siniscalchi, 2011:
Any monotone, Bernoullian, Archimedean (MBA) preference has GH repr.

• Danan, Gajdos, Hill & Tallon, 2016: Any transitive, Archimedean
completion of a Bewley preference has a GH representation.

• Herzberg (2013) and Zuber (2016): impossibility theorems for social
aggregation of MBA preferences.

Defn. V is compact if P is compact in the total variation norm on ∆(S).
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SOSEU representations (29/33)

A representation V is second order subjective expected utility (SOSEU) if

V (α) =

∫
P
φ

(∫
S
u ◦ α dρ

)
dµ[ρ], for all α ∈ A,

where....

I P is a set of probability measures on S, with the weak* topology;

I µ is a Borel probability measure on P (“second order belief”);

I u : X−→R is a bounded measurable (“utility”) function; and

I φ : R−→R is a concave, increasing function (“ambiguity aversion”).

SOSEU representations have been axiomatically characterized by Klibanoff,
Marinacci & Mukerji (2005).
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Main result for non-SEU preferences (30/33)

Theorem 2. Let S be a Polish space.

Let R be a tame set of probability measures on S.

For all j ∈ J , let �j be a preference order on A, such that either

I �j has a compact GH representation with Pj ⊆ R; or

I �j has a SOSEU representation with Pj ⊆ R.

Suppose {ui}i∈I satisfy Minimal Agreement. Then:

�o satisfies Almost-objective Pareto ⇐⇒ uo is weakly utilitarian.
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We have introduced a new Almost-objective Pareto axiom.

It is based on asymptotic preferences along sequences of acts that exhibit
“almost objective uncertainty”.

For agents with a variety of SEU or non-SEU preferences, with beliefs in a
tame collection of probability measures on any Polish space,
Almost-objective Pareto implies utilitarianism.

This result imposes no restrictions on the agents’ beliefs.

And it allows heterogeneous ambiguity attitudes.
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