Bayesian social aggregation with almost-objective uncertainty

Marcus Pivato and Élise Flore Tchouante

> THEMA, Université de Cergy-Pontoise
> Labex MME-DII (ANR11-LBX-0023-01).

Workshop on social choice under risk and uncertainty University of Warwick 9 May 2022

Harsanyi's Social Aggregation Theorem

Harsanyi (1955): Suppose that all individuals and society are vNM expected utility maximizers.

Also, suppose that society satisfies the ex ante Pareto axiom Then the social vNM utility function (i.e. the SWE) must be a weighted sum of individual vNM utility functions. Upshot: (vNM rationality) + (Pareto) \Rightarrow utilitarianism. Problem: vNM assumes that risks have known, objective probabilities. But in many situations, there is no "objective" way to assign probabilities. Question: Is there an analogy to Harsanyi's social aggregation theorem in framework, with nurely subiective nrohahilities?

Harsanyi's Social Aggregation Theorem

Harsanyi (1955): Suppose that all individuals and society are vNM expected utility maximizers.

Also, suppose that society satisfies the ex ante Pareto axiom.

Upshot: (vNM rationality) $+($ Pareto $) \Rightarrow$ utilitarianism

Problem: vNM assumes that risks have known, objective probabilities

But in many situations, there is no "objective" way to assign probabilities

Question: Is there an analogy to Harsanyi's social aggregation theorem in framewnok with nurely suhiective nrohahilities?

Harsanyi's Social Aggregation Theorem

Harsanyi (1955): Suppose that all individuals and society are vNM expected utility maximizers.

Also, suppose that society satisfies the ex ante Pareto axiom.
Then the social vNM utility function (i.e. the SWF) must be a weighted sum of individual vNM utility functions.

Upshot: (vNM rationality) + (Pareto) \Rightarrow utilitarianism

Problem: vNM assumes that risks have known, objective probabilities

But in many situations, there is no "objective" way to assign probabilities.

Question: Is there an analogy to Harsanyi's social aggregation theorem in framownork, with nuraly subiective nrohabilities?

Harsanyi's Social Aggregation Theorem

Harsanyi (1955): Suppose that all individuals and society are vNM expected utility maximizers.

Also, suppose that society satisfies the ex ante Pareto axiom.
Then the social vNM utility function (i.e. the SWF) must be a weighted sum of individual vNM utility functions.

Upshot: $(\mathrm{vNM}$ rationality $)+($ Pareto $) \Rightarrow$ utilitarianism.

Problem: vNM assumes that risks have known, objective probabilities

But in many situations, there is no "objective" way to assign probabilities.

Question: Is there an analogy to Harsanyi's social aggregation theorem in
fromemork, with nuroly suhiective prohahilities?

Harsanyi's Social Aggregation Theorem

Harsanyi (1955): Suppose that all individuals and society are vNM expected utility maximizers.

Also, suppose that society satisfies the ex ante Pareto axiom.
Then the social vNM utility function (i.e. the SWF) must be a weighted sum of individual vNM utility functions.

Upshot: $(\mathrm{vNM}$ rationality $)+($ Pareto $) \Rightarrow$ utilitarianism.
Problem: vNM assumes that risks have known, objective probabilities.

But in many situations, there is no "objective" way to assign probabilities Question: Is there an analogy to Harsanyi's social aggregation theorem in framemork, with nurely suhiective nrohahilities?

Harsanyi's Social Aggregation Theorem

Harsanyi (1955): Suppose that all individuals and society are vNM expected utility maximizers.

Also, suppose that society satisfies the ex ante Pareto axiom.
Then the social vNM utility function (i.e. the SWF) must be a weighted sum of individual vNM utility functions.

Upshot: $(\mathrm{vNM}$ rationality $)+($ Pareto $) \Rightarrow$ utilitarianism.
Problem: vNM assumes that risks have known, objective probabilities.
But in many situations, there is no "objective" way to assign probabilities.
Question: Is there an analogy to Harsanyi's social aggregation theorem in framework, with purely subjective probabilities?

Harsanyi's Social Aggregation Theorem

Harsanyi (1955): Suppose that all individuals and society are vNM expected utility maximizers.

Also, suppose that society satisfies the ex ante Pareto axiom.
Then the social vNM utility function (i.e. the SWF) must be a weighted sum of individual vNM utility functions.

Upshot: $(\mathrm{vNM}$ rationality $)+($ Pareto $) \Rightarrow$ utilitarianism.
Problem: vNM assumes that risks have known, objective probabilities.
But in many situations, there is no "objective" way to assign probabilities.
Question: Is there an analogy to Harsanyi's social aggregation theorem in the "Savage" framework, with purely subjective probabilities?

Mongin's Impossibility Theorem

Mongin (1995):

In the Savage framework, Harsanyi's theorem is false, unless all agents have the same subjective beliefs.

Indeed, if agents have different beliefs, then it is impossible to satisfy the ex ante Pareto axiom (Related work: Hylland \& Zeckhauser 1979 and Hammond 1981.
Key problem.

Spurious unanimity"

Different people might have different utility functions and different beliefs. But these differences might "cancel out", so everyone ends up with the same preferences between two acts α and This unanimous preference is "spurious", since it conceals disagreement in the underlving heliefs and utilities

Mongin's Impossibility Theorem

Mongin (1995):
 In the Savage framework, Harsanyi's theorem is false, unless all agents have the same subjective beliefs.
 Indeed, if agents have different beliefs, then it is impossible to satisfy the ex ante Pareto axiom.
 (Related work: Hylland \& Zeckhauser 1979 and Hammond 1981.)

Mongin's Impossibility Theorem

Mongin (1995):
 In the Savage framework, Harsanyi's theorem is false, unless all agents have the same subjective beliefs.
 Indeed, if agents have different beliefs, then it is impossible to satisfy the ex ante Pareto axiom.
 (Related work: Hylland \& Zeckhauser 1979 and Hammond 1981.)

Key problem. "Spurious unanimity"
Different people might have different utility functions and different beliefs But these differences might "cancel out", so everyone ends up with the same preferences hotwieen twio acts and This unanimous preference is "spurious", since it conceals disagreement in

Mongin's Impossibility Theorem

Mongin (1995):
 In the Savage framework, Harsanyi's theorem is false, unless all agents have the same subjective beliefs.
 Indeed, if agents have different beliefs, then it is impossible to satisfy the ex ante Pareto axiom.
 (Related work: Hylland \& Zeckhauser 1979 and Hammond 1981.)

Key problem. "Spurious unanimity"
Different people might have different utility functions and different beliefs.
But these differences might "cancel out", so everyone ends up with the same preferences between two acts α and

This unanimous nroferanco is "snurious" since it conceals disagreement in the underlying beliefs and utilities.

Mongin's Impossibility Theorem

Mongin (1995):
 In the Savage framework, Harsanyi's theorem is false, unless all agents have the same subjective beliefs.
 Indeed, if agents have different beliefs, then it is impossible to satisfy the ex ante Pareto axiom.
 (Related work: Hylland \& Zeckhauser 1979 and Hammond 1981.)

Key problem. "Spurious unanimity"
Different people might have different utility functions and different beliefs.
But these differences might "cancel out", so everyone ends up with the same preferences between two acts α and β.

Mongin's Impossibility Theorem

Mongin (1995):
 In the Savage framework, Harsanyi's theorem is false, unless all agents have the same subjective beliefs.
 Indeed, if agents have different beliefs, then it is impossible to satisfy the ex ante Pareto axiom.
 (Related work: Hylland \& Zeckhauser 1979 and Hammond 1981.)

Key problem. "Spurious unanimity"
Different people might have different utility functions and different beliefs.
But these differences might "cancel out", so everyone ends up with the same preferences between two acts α and β.

This unanimous preference is "spurious", since it conceals disagreement in the underlying beliefs and utilities.

GSS Possibility Theorem

Idea. Find a way to exclude "spurious unanimity"

Gilboa, Samet \& Schmeidler (2004): Restrict ex ante Pareto to acts where all agents have the same beliefs about the underlying events.

Theorem. The social planner satisfies this restricted ex ante Pareto iff:
The SWF is weighted sum of individual utility functions.
The social beliefs are a weighted average of individual beliefs.
Upshot: (Gilboa-Samet-Schmeidler "restricted Pareto" axiom) \Longrightarrow (SWF is utilitarian, and social beliefs are linear pooling of individual beliefs)

GSS Possibility Theorem

Idea. Find a way to exclude "spurious unanimity"

Gilboa, Samet \& Schmeidler (2004): Restrict ex ante Pareto to acts where all agents have the same beliefs about the underlying events.

Theorem. The social planner satisfies this restricted ex ante Pareto iff: The SWF is weighted sum of individual utility functions. The social beliefs are a weighted average of individual beliefs Upshot: (Gilboa-Samet-Schmeidler "restricted Pareto" axiom) (SM/F is utilitarian and social heliefs are linear noolino of individual beliefs

GSS Possibility Theorem

Idea. Find a way to exclude "spurious unanimity"

Gilboa, Samet \& Schmeidler (2004): Restrict ex ante Pareto to acts where all agents have the same beliefs about the underlying events.

Theorem. The social planner satisfies this restricted ex ante Pareto iff:
The SWF is weighted sum of individual utility functions.

The social beliefs are a weighted average of individual beliefs

Upshot: (Gilboa-Samet-Schmeidler "restricted Pareto" axiom)
(SWF is utilitarian and social heliefs are linear noolino of individual beliefs

GSS Possibility Theorem

Idea. Find a way to exclude "spurious unanimity"

Gilboa, Samet \& Schmeidler (2004): Restrict ex ante Pareto to acts where all agents have the same beliefs about the underlying events.

Theorem. The social planner satisfies this restricted ex ante Pareto iff:

- The SWF is weighted sum of individual utility functions.
\qquad

GSS Possibility Theorem

Idea. Find a way to exclude "spurious unanimity"

Gilboa, Samet \& Schmeidler (2004): Restrict ex ante Pareto to acts where all agents have the same beliefs about the underlying events.

Theorem. The social planner satisfies this restricted ex ante Pareto iff:

- The SWF is weighted sum of individual utility functions.
- The social beliefs are a weighted average of individual beliefs.

GSS Possibility Theorem

Idea. Find a way to exclude "spurious unanimity"

Gilboa, Samet \& Schmeidler (2004): Restrict ex ante Pareto to acts where all agents have the same beliefs about the underlying events.

Theorem. The social planner satisfies this restricted ex ante Pareto iff:

- The SWF is weighted sum of individual utility functions.
- The social beliefs are a weighted average of individual beliefs.

Upshot: (Gilboa-Samet-Schmeidler "restricted Pareto" axiom) \Longrightarrow (SWF is utilitarian, and social beliefs are linear pooling of individual beliefs).

Many other important papers have been written on this topic, including:

- Chambers, C., Hayashi, T., 2006. Preference aggregation under uncertainty: Savage vs. Pareto. Games Econom. Behav. 54, 430-440.
- Chambers, C., Hayashi, T., 2014. Preference aggregation with incomplete information. Econometrica 82 (2), 589-599.
- Gilboa, I., Samuelson, L., Schmeidler, D., 2014. No-betting Pareto dominance. Econometrica 82, 1405-1442.
- Alon, S., Gayer, G., 2016. Utilitarian preferences with multiple priors. Econometrica 84 (3), 1181-1201.
- Danan, E., Gajdos, T., Hill, B., Tallon, J.-M., 2016. Robust social decisions. Am. Econ. Rev. 106 (9), 2407-2425.
- Billot, A., Vergopoulos, V. 2016, Aggregation of Paretian preferences for independent individual uncertainties. Soc. Choice Welf. 47(4), 973-984.
- Zuber, S., 2016. Harsanyi's theorem without the sure-thing principle. Journal of Mathematical Economics 63, pp.78-83.
- Qu, X., 2017. Separate aggregation of beliefs and values under ambiguity. Economic Theory 63 (2), 503-519.
- Sprumont, Y., 2018. Belief-weighted Nash aggregation of Savage preferences. Journal of Economic Theory 178, 222-245.
- Sprumont, Y., 2019. Relative utilitarianism under uncertainty. Social Choice and Welfare 53 (4), 621-639.
- Hayashi, T., Lombardi, M., 2019. Fair social decision under uncertainty and responsibility for beliefs. Economic Theory 67 (4), 775-816.
- Ceron, F., Vergopoulos, V., 2019. Aggregation of Bayesian preferences: unanimity vs monotonicity. Social Choice and Welfare 52 (3), 419-451.
- Dietrich, F., 2021. Fully Bayesian aggregation. Journal of Economic Theory 194, 105255.
- Brandl, Florian, 2021. Belief-averaged relative utilitarianism. Journal of Economic Theory 198, 105368.

The problem of new information

Recall: (Gilboa-Samet-Schmeidler "restricted Pareto" axiom) \Longrightarrow (SWF is utilitarian, and social beliefs are linear pooling of individual beliefs).

The problem of new information

Recall: (Gilboa-Samet-Schmeidler "restricted Pareto" axiom) \Longrightarrow (SWF is utilitarian, and social beliefs are linear pooling of individual beliefs).

Problem: Linear pooling does not respond correctly to new information.
\(\underset{baydate}{Bayesian}\left[\begin{array}{c}Weighted

average\end{array}\binom{\right.\) individual }{ beliefs }$] \neq$| Weighted |
| :---: |
| average |\(\left[\begin{array}{c}Bayesian

update\end{array}\binom{\right.\) individual }{ beliefs }$]$.

The problem of new information

Recall: (Gilboa-Samet-Schmeidler "restricted Pareto" axiom) \Longrightarrow (SWF is utilitarian, and social beliefs are linear pooling of individual beliefs).

Problem: Linear pooling does not respond correctly to new information.
\(\underset{baydate}{Bayesian}\left[\begin{array}{c}Weighted

average\end{array}\binom{\right.\) individual }{ beliefs }$] \neq$| Weighted |
| :---: |
| average |\(\left[\begin{array}{c}Bayesian

update\end{array}\binom{\right.\) individual }{ beliefs }$]$.

In fact, GSS Pareto axiom does not respond well to new information, either.

The problem of new information

Recall: (Gilboa-Samet-Schmeidler "restricted Pareto" axiom) \Longrightarrow (SWF is utilitarian, and social beliefs are linear pooling of individual beliefs).

Problem: Linear pooling does not respond correctly to new information.

Bayesian
update

average\end{array}\binom{\right.\) individual }{ beliefs }$] \neq$| Weighted |
| ---: |
| average |\(\left[\begin{array}{c}Bayesian

update\end{array}\binom{\right.\) individual }{ beliefs }$]$.

In fact, GSS Pareto axiom does not respond well to new information, either.

Mongin \& P. (2020) give examples where agents satisfy hypotheses of GSS Pareto axiom because they update the same prior on different private information, but then "spuriously" agree on the probabilities of certain events.....

Complementary ignorance

Consider a social decision with two agents, Ann and Bob, and $\mathcal{S}=\{r, s, t\}$. Consider two acts α and β, which yield the same payoff for both agents in each state of nature:

Complementary ignorance

Consider a social decision with two agents, Ann and Bob, and $\mathcal{S}=\{r, s, t\}$. Consider two acts α and β, which yield the same payoff for both agents in each state of nature:

	r	s	t
α	100	0	100
β	0	100	0

Ann and Bob begin with the same prior probability

Complementary ignorance

Consider a social decision with two agents, Ann and Bob, and $\mathcal{S}=\{r, s, t\}$.
Consider two acts α and β, which yield the same payoff for both agents in each state of nature:

	r	s	t
α	100	0	100
β	0	100	0

Ann and Bob begin with the same prior probability p :

$$
p(r)=0.49, \quad p(s)=0.02, \quad \text { and } \quad p(t)=0.49
$$

After Bayesian updating, they have the
following posterior probabilities:

Complementary ignorance

Consider a social decision with two agents, Ann and Bob, and $\mathcal{S}=\{r, s, t\}$.
Consider two acts α and β, which yield the same payoff for both agents in each state of nature:

	r	s	t
α	100	0	100
β	0	100	0

Ann and Bob begin with the same prior probability p :

$$
p(r)=0.49, \quad p(s)=0.02, \quad \text { and } \quad p(t)=0.49
$$

Ann privately observes the event $\{r, s\}$, while Bob privately observes $\{s, t\}$.

Complementary ignorance

Consider a social decision with two agents, Ann and Bob, and $\mathcal{S}=\{r, s, t\}$. Consider two acts α and β, which yield the same payoff for both agents in each state of nature:

	r	s	t
α	100	0	100
β	0	100	0

Ann and Bob begin with the same prior probability p :

$$
p(r)=0.49, \quad p(s)=0.02, \quad \text { and } \quad p(t)=0.49
$$

Ann privately observes the event $\{r, s\}$, while Bob privately observes $\{s, t\}$.
After Bayesian updating, they have the following posterior probabilities:

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{s, t\}$	0	0.04	0.96

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{s, t\}$	0	0.04	0.96

	r	s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$,

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{s, t\}$	0	0.04	0.96

	r	s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected Utility $(\beta)=4$.

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{\mathbf{s}, \mathrm{t}\}$	0	0.04	0.96

	r	s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$. Thus, $\alpha \succ_{\text {Ann }^{n}} \beta$ and $\alpha \succ_{\text {Bob }} \beta$.

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{\mathrm{r}, \mathrm{s}\}$	0.96	0.04	0
Bob	$\{\mathrm{s}, \mathrm{t}\}$	0	0.04	0.96

		s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$. Thus, $\alpha \succ_{\text {Ann }} \beta$ and $\alpha \succ_{\text {Bob }} \beta$.
Also α and β are measurable relative to the algebra $\mathfrak{B}=\{\mathcal{S},\{r, t\},\{s\}, \emptyset\}$.

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{\mathrm{r}, \mathrm{s}\}$	0.96	0.04	0
Bob	$\{\mathrm{s}, \mathrm{t}\}$	0	0.04	0.96

		s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$. Thus, $\alpha \succ_{\text {Ann }} \beta$ and $\alpha \succ_{\text {Bob }} \beta$.
Also α and β are measurable relative to the algebra $\mathfrak{B}=\{\mathcal{S},\{r, t\},\{s\}, \emptyset\}$.
Ann and Bob have the same beliefs about \mathfrak{B}.

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{\mathrm{r}, \mathrm{s}\}$	0.96	0.04	0
Bob	$\{\mathrm{s}, \mathrm{t}\}$	0	0.04	0.96

		s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$. Thus, $\alpha \succ_{\text {Ann }} \beta$ and $\alpha \succ_{\text {Bob }} \beta$.
Also α and β are measurable relative to the algebra $\mathfrak{B}=\{\mathcal{S},\{r, t\},\{s\}, \emptyset\}$.
Ann and Bob have the same beliefs about \mathfrak{B}.
Thus, even GSS's restricted ex ante Pareto dictates that $\alpha \succ \beta$.

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{s, t\}$	0	0.04	0.96
Average		0.48	0.04	0.48

	r	s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$. Thus, $\alpha \succ_{\text {Ann }} \beta$ and $\alpha \succ_{\text {Bob }} \beta$.
Also α and β are measurable relative to the algebra $\mathfrak{B}=\{\mathcal{S},\{r, t\},\{s\}, \emptyset\}$.
Ann and Bob have the same beliefs about \mathfrak{B}.
Thus, even GSS's restricted ex ante Pareto dictates that $\alpha \succ \beta$. Indeed, if P is the average of Ann's and Bob's beliefs (as GSS recommend), then P also says Expected $\operatorname{SWF}(\alpha)=96$,

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{s, t\}$	0	0.04	0.96
Average		0.48	0.04	0.48

	r	s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$. Thus, $\alpha \succ_{\text {Ann }} \beta$ and $\alpha \succ_{\text {Bob }} \beta$.
Also α and β are measurable relative to the algebra $\mathfrak{B}=\{\mathcal{S},\{r, t\},\{s\}, \emptyset\}$.
Ann and Bob have the same beliefs about \mathfrak{B}.
Thus, even GSS's restricted ex ante Pareto dictates that $\alpha \succ \beta$. Indeed, if P is the average of Ann's and Bob's beliefs (as GSS recommend), then P also says Expected $\operatorname{SWF}(\alpha)=96$, while Expected $\operatorname{SWF}(\beta)=4$.

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{s, t\}$	0	0.04	0.96
Average		0.48	0.04	0.48

	r	s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$.

Also α and β are measurable relative to the algebra $\mathfrak{B}=\{\mathcal{S},\{r, t\},\{s\}, \emptyset\}$.
Ann and Bob have the same beliefs about \mathfrak{B}.
Thus, even GSS's restricted ex ante Pareto dictates that $\alpha \succ \beta$. Indeed, if P is the average of Ann's and Bob's beliefs (as GSS recommend), then P also says Expected $\operatorname{SWF}(\alpha)=96$, while Expected $\operatorname{SWF}(\beta)=4$.

However, clearly, the true state is s.

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{s, t\}$	0	0.04	0.96
Average		0.48	0.04	0.48

	r	s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$.

Also α and β are measurable relative to the algebra $\mathfrak{B}=\{\mathcal{S},\{r, t\},\{s\}, \emptyset\}$.
Ann and Bob have the same beliefs about \mathfrak{B}.
Thus, even GSS's restricted ex ante Pareto dictates that $\alpha \succ \beta$. Indeed, if P is the average of Ann's and Bob's beliefs (as GSS recommend), then P also says Expected $\operatorname{SWF}(\alpha)=96$, while Expected $\operatorname{SWF}(\beta)=4$.

However, clearly, the true state is s. So β is actually the better choice.

	Info	r	s	t
Prior		0.49	0.02	0.49
Ann	$\{r, s\}$	0.96	0.04	0
Bob	$\{s, t\}$	0	0.04	0.96
Average		0.48	0.04	0.48

	r	s	t
α	100	0	100
β	0	100	0

Ann \& Bob agree: Expected Utility $(\alpha)=96$, while Expected $\operatorname{Utility}(\beta)=4$.

Also α and β are measurable relative to the algebra $\mathfrak{B}=\{\mathcal{S},\{r, t\},\{s\}, \emptyset\}$.
Ann and Bob have the same beliefs about \mathfrak{B}.
Thus, even GSS's restricted ex ante Pareto dictates that $\alpha \succ \beta$. Indeed, if P is the average of Ann's and Bob's beliefs (as GSS recommend), then P also says Expected $\operatorname{SWF}(\alpha)=96$, while Expected $\operatorname{SWF}(\beta)=4$.

However, clearly, the true state is s. So β is actually the better choice.
Upshot: In some cases, GSS Pareto and linear pooling are not appropriate.

Social welfare vs. collective beliefs

This malfunction of the GSS theorem has a broader message.
Different belief-aggregation rules are suitable in different contexts.
The criteria that determine the best belief-acaregation rule might not be the criteria that determine the correct SWF

The construction of a social welfare function is an ethical problem The construction of a collective helief is an enistemic nrohlem There is no reason that these two problems should be solved by the same theorem, or even with the same data

Social welfare vs. collective beliefs

This malfunction of the GSS theorem has a broader message.
Different belief-aggregation rules are suitable in different contexts.
The criteria that determine the best belief-aggregation rule might not be the criteria that determine the correct SWF.

The construction of a social welfare function is an ethical problem. The construction of a collective helief is an enistemic nroblem There is no reason that these two problems should be solved by the same theorem, or even with the same data.

Social welfare vs. collective beliefs

This malfunction of the GSS theorem has a broader message.
Different belief-aggregation rules are suitable in different contexts.
The criteria that determine the best belief-aggregation rule might not be the criteria that determine the correct SWF.

The construction of a social welfare function is an ethical problem.
\qquad
\qquad theorem, or even with the same data.
\qquad solved later by other methods.

Social welfare vs. collective beliefs

This malfunction of the GSS theorem has a broader message.
Different belief-aggregation rules are suitable in different contexts.
The criteria that determine the best belief-aggregation rule might not be the criteria that determine the correct SWF.

The construction of a social welfare function is an ethical problem.
The construction of a collective belief is an epistemic problem.
\qquad theorem, or even with the same data
\qquad solved later by other methods.

Social welfare vs. collective beliefs

This malfunction of the GSS theorem has a broader message.
Different belief-aggregation rules are suitable in different contexts.
The criteria that determine the best belief-aggregation rule might not be the criteria that determine the correct SWF.

The construction of a social welfare function is an ethical problem.
The construction of a collective belief is an epistemic problem.
There is no reason that these two problems should be solved by the same theorem, or even with the same data.

Social welfare vs. collective beliefs

This malfunction of the GSS theorem has a broader message.
Different belief-aggregation rules are suitable in different contexts.
The criteria that determine the best belief-aggregation rule might not be the criteria that determine the correct SWF.

The construction of a social welfare function is an ethical problem.
The construction of a collective belief is an epistemic problem.
There is no reason that these two problems should be solved by the same theorem, or even with the same data.

We will focus on the ethical problem, leaving the epistemic problem to be solved later by other methods.

The problem of heterogeneous ambiguity attitudes

Another concern. The aforementioned results all assume that all agents are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?

Problem. Different agents might have different ambiguity attitudes
Such heterogeneity yields impossibility theorems (Chambers \& Hayashi Upshot. To satisfy ex ante Pareto, agents must be SEU maximizers Partial solution. Weaken the ex ante Pareto axiom (Alon \& Gayer 2016 Gajdos, Hill \& Tallon 2016; Qu 2015; Hayashi \& Lombardi 2019)

The problem of heterogeneous ambiguity attitudes

Another concern. The aforementioned results all assume that all agents are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?

The problem of heterogeneous ambiguity attitudes

Another concern. The aforementioned results all assume that all agents are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?
Problem. Different agents might have different ambiguity attitudes.

The problem of heterogeneous ambiguity attitudes

Another concern. The aforementioned results all assume that all agents are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?
Problem. Different agents might have different ambiguity attitudes.
Such heterogeneity yields impossibility theorems (Chambers \& Hayashi 2006; Gajdos Tallon \& Vergnaud 2008; Mongin \& P. 2015; Zuber 2016).

Upshot. To satisfy ex ante Pareto, agents must be SEU maximizers Partial solution

The problem of heterogeneous ambiguity attitudes

Another concern. The aforementioned results all assume that all agents are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?
Problem. Different agents might have different ambiguity attitudes.
Such heterogeneity yields impossibility theorems (Chambers \& Hayashi 2006; Gajdos Tallon \& Vergnaud 2008; Mongin \& P. 2015; Zuber 2016).

Upshot. To satisfy ex ante Pareto, agents must be SEU maximizers.

The problem of heterogeneous ambiguity attitudes

Another concern. The aforementioned results all assume that all agents are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?
Problem. Different agents might have different ambiguity attitudes.
Such heterogeneity yields impossibility theorems (Chambers \& Hayashi 2006; Gajdos Tallon \& Vergnaud 2008; Mongin \& P. 2015; Zuber 2016).

Upshot. To satisfy ex ante Pareto, agents must be SEU maximizers.
Partial solution. Weaken the ex ante Pareto axiom (Alon \& Gayer 2016; Danan, Gajdos, Hill \& Tallon 2016; Qu 2015; Hayashi \& Lombardi 2019).

The problem of heterogeneous ambiguity attitudes

Another concern. The aforementioned results all assume that all agents are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?
Problem. Different agents might have different ambiguity attitudes. Such heterogeneity yields impossibility theorems (Chambers \& Hayashi 2006; Gajdos Tallon \& Vergnaud 2008; Mongin \& P. 2015; Zuber 2016).

Upshot. To satisfy ex ante Pareto, agents must be SEU maximizers.
Partial solution. Weaken the ex ante Pareto axiom (Alon \& Gayer 2016; Danan, Gajdos, Hill \& Tallon 2016; Qu 2015; Hayashi \& Lombardi 2019). These papers characterize a SWF and a "linear" belief-aggregation rule. So they are vulnerable to the same objections as GSS (2004).

The problem of heterogeneous ambiguity attitudes

Another concern. The aforementioned results all assume that all agents are expected utility maximizers.

Question. Can non-SEU ambiguity attitudes enter into group decisions?
Problem. Different agents might have different ambiguity attitudes. Such heterogeneity yields impossibility theorems (Chambers \& Hayashi 2006; Gajdos Tallon \& Vergnaud 2008; Mongin \& P. 2015; Zuber 2016).

Upshot. To satisfy ex ante Pareto, agents must be SEU maximizers.
Partial solution. Weaken the ex ante Pareto axiom (Alon \& Gayer 2016; Danan, Gajdos, Hill \& Tallon 2016; Qu 2015; Hayashi \& Lombardi 2019).

These papers characterize a SWF and a "linear" belief-aggregation rule. So they are vulnerable to the same objections as GSS (2004).

Also, they impose a particular ambiguity attitude on society (either in hypotheses or in conclusions).

Goal

Goal. An approach to group decisions under uncertainty that is compatible with heterogeneity of beliefs and heterogeneity of ambiguity attitudes.

Idea. Use almost-objective uncertainty to formulate a weak Pareto axiom

Main results. This axiom is both necessary and sufficient for the ex post social melfare function to he utilitarian -ie a weighted sum of the individual utility functions.

This holds for a variety of ambiguity attitudes.

Goal

Goal. An approach to group decisions under uncertainty that is compatible with heterogeneity of beliefs and heterogeneity of ambiguity attitudes.

Idea. Use almost-objective uncertainty to formulate a weak Pareto axiom.

Goal

Goal. An approach to group decisions under uncertainty that is compatible with heterogeneity of beliefs and heterogeneity of ambiguity attitudes.

Idea. Use almost-objective uncertainty to formulate a weak Pareto axiom.

Main results. This axiom is both necessary and sufficient for the ex post social welfare function to be utilitarian -i.e. a weighted sum of the individual utility functions.

This holds for a variety of ambiguity attitudes.

And it does not impose any relationship between individual and collective
heliefs, or hetumen individual and collentive amhiruity attitudes

Goal

Goal. An approach to group decisions under uncertainty that is compatible with heterogeneity of beliefs and heterogeneity of ambiguity attitudes.

Idea. Use almost-objective uncertainty to formulate a weak Pareto axiom.

Main results. This axiom is both necessary and sufficient for the ex post social welfare function to be utilitarian -i.e. a weighted sum of the individual utility functions.

This holds for a variety of ambiguity attitudes.

And it does not impose any relationship between individual and collective beliefs, or between individual and collective ambiguity attitudes.

Overview.
I. Almost objective uncertainty.
II. Axioms and main result for SEU preferences.
III. Main result for non-SEU preferences.

I. Almost objective uncertainty

Almost-objective uncertainty

Notation. For any $K \in \mathbb{N}$, let $\Delta^{K}:=\left\{\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \mathbb{R}_{+}^{K} ; \sum_{k=1}^{K} q_{k}=1\right\}$, the set of K-dimensional probability vectors.

Almost-objective uncertainty

Notation. For any $K \in \mathbb{N}$, let $\Delta^{K}:=\left\{\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \mathbb{R}_{+}^{K} ; \sum_{k=1}^{K} q_{k}=1\right\}$, the set of K-dimensional probability vectors.

Let \mathcal{S} be a measurable space.

Almost-objective uncertainty

Notation. For any $K \in \mathbb{N}$, let $\Delta^{K}:=\left\{\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \mathbb{R}_{+}^{K} ; \sum_{k=1}^{K} q_{k}=1\right\}$, the set of K-dimensional probability vectors.

Let \mathcal{S} be a measurable space.
Let \mathcal{R} be a collection of probability measures on \mathcal{S}.

Almost-objective uncertainty

Notation. For any $K \in \mathbb{N}$, let $\Delta^{K}:=\left\{\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \mathbb{R}_{+}^{K} ; \sum_{k=1}^{K} q_{k}=1\right\}$, the set of K-dimensional probability vectors.

Let \mathcal{S} be a measurable space.
Let \mathcal{R} be a collection of probability measures on \mathcal{S}.
Let $K \in \mathbb{N}$ and let $\mathrm{q} \in \Delta^{K}$.

Definition. The sequence of partitions $\left(\mathfrak{G}^{1}, \mathfrak{G}^{2}, \mathfrak{G}^{3}, \ldots \ldots\right)$) is \mathcal{R}-almostobjectively uncertain and subordinate to \mathbf{q} if, for all $\rho \in \mathcal{R}$, we have

Almost-objective uncertainty

Notation. For any $K \in \mathbb{N}$, let $\Delta^{K}:=\left\{\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \mathbb{R}_{+}^{K} ; \sum_{k=1}^{K} q_{k}=1\right\}$, the set of K-dimensional probability vectors.

Let \mathcal{S} be a measurable space.
Let \mathcal{R} be a collection of probability measures on \mathcal{S}.
Let $K \in \mathbb{N}$ and let $\mathbf{q} \in \Delta^{K}$.
For all $n \in \mathbb{N}$, let $\mathfrak{G}^{n}:=\left\{\mathcal{G}_{1}^{n}, \mathcal{G}_{2}^{n}, \ldots, \mathcal{G}_{K}^{n}\right\}$ be a K-element partition of \mathcal{S}.

Almost-objective uncertainty

Notation. For any $K \in \mathbb{N}$, let $\Delta^{K}:=\left\{\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \mathbb{R}_{+}^{K} ; \sum_{k=1}^{K} q_{k}=1\right\}$, the set of K-dimensional probability vectors.

Let \mathcal{S} be a measurable space.
Let \mathcal{R} be a collection of probability measures on \mathcal{S}.
Let $K \in \mathbb{N}$ and let $\mathbf{q} \in \Delta^{K}$.
For all $n \in \mathbb{N}$, let $\mathfrak{G}^{n}:=\left\{\mathcal{G}_{1}^{n}, \mathcal{G}_{2}^{n}, \ldots, \mathcal{G}_{K}^{n}\right\}$ be a K-element partition of \mathcal{S}.
Definition. The sequence of partitions $\left(\mathfrak{G}^{1}, \mathfrak{G}^{2}, \mathfrak{G}^{3}, \ldots \ldots\right)$ is \mathcal{R}-almostobjectively uncertain and subordinate to \mathbf{q} if, for all $\rho \in \mathcal{R}$, we have

$$
\lim _{n \rightarrow \infty} \rho\left(\mathcal{G}_{1}^{n}\right)=q_{1}, \quad \lim _{n \rightarrow \infty} \rho\left(\mathcal{G}_{2}^{n}\right)=q_{2}, \ldots \ldots \lim _{n \rightarrow \infty} \rho\left(\mathcal{G}_{K}^{n}\right)=q_{K}
$$

Idea. The ρ-distribution of \mathfrak{G}^{n} converges to \mathbf{q} as $n \rightarrow \infty$, for all $\rho \in \mathcal{R}$.

Almost-objective uncertainty on an interval

Example. (Poincaré, 1912; Machina, 2004, 2005) Let $\mathcal{S}:=[0,1]$.
Let $\mathcal{R}:=\{$ probability measures on $[0,1]$ with continuous density functions $\}$.

Almost-objective uncertainty on an interval

Example. (Poincaré, 1912; Machina, 2004, 2005) Let $\mathcal{S}:=[0,1]$.
Let $\mathcal{R}:=\{$ probability measures on $[0,1]$ with continuous density functions $\}$.
Let $K:=2$ and let $\mathbf{q}:=\left(\frac{1}{2}, \frac{1}{2}\right)$.
Consider the partitions $\mathfrak{G}^{1}, \mathscr{G}^{2}, \mathscr{G}^{3}, \ldots$, where $\mathscr{G}^{n}:=\left\{\mathcal{G}_{1}^{n}, \mathcal{G}_{2}^{n}\right\}$ for all

Almost-objective uncertainty on an interval

Example. (Poincaré, 1912; Machina, 2004, 2005) Let $\mathcal{S}:=[0,1]$.
Let $\mathcal{R}:=\{$ probability measures on $[0,1]$ with continuous density functions $\}$.
Let $K:=2$ and let $\mathbf{q}:=\left(\frac{1}{2}, \frac{1}{2}\right)$.
Consider the partitions $\mathfrak{G}^{1}, \mathfrak{G}^{2}, \mathfrak{G}^{3}, \ldots$, where $\mathfrak{G}^{n}:=\left\{\mathcal{G}_{1}^{n}, \mathcal{G}_{2}^{n}\right\}$ for all $n \in \mathbb{N}$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.
It is easily seen that $\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{1}^{n}} f(x) \mathrm{d} x=\frac{1}{2}=\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{2}^{n}} f(x) \mathrm{d} x$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.
It is easily seen that $\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{1}^{n}} f(x) \mathrm{d} x=\frac{1}{2}=\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{2}^{n}} f(x) \mathrm{d} x$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.
It is easily seen that $\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{1}^{n}} f(x) \mathrm{d} x=\frac{1}{2}=\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{2}^{n}} f(x) \mathrm{d} x$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.
It is easily seen that $\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{1}^{n}} f(x) \mathrm{d} x=\frac{1}{2}=\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{2}^{n}} f(x) \mathrm{d} x$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.
It is easily seen that $\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{1}^{n}} f(x) \mathrm{d} x=\frac{1}{2}=\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{2}^{n}} f(x) \mathrm{d} x$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.
It is easily seen that $\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{1}^{n}} f(x) \mathrm{d} x=\frac{1}{2}=\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{2}^{n}} f(x) \mathrm{d} x$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.
It is easily seen that $\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{1}^{n}} f(x) \mathrm{d} x=\frac{1}{2}=\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{2}^{n}} f(x) \mathrm{d} x$.

Almost-objective uncertainty on an interval

Claim. The partition sequence $\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$ is \mathcal{R}-almost-objectively uncertain, and subordinate to $\left(\frac{1}{2}, \frac{1}{2}\right)$.

To see this, let $\rho \in \mathcal{R}$. Suppose ρ has the density function f shown below.
It is easily seen that $\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{1}^{n}} f(x) \mathrm{d} x=\frac{1}{2}=\lim _{n \rightarrow \infty} \int_{\mathcal{G}_{2}^{n}} f(x) \mathrm{d} x$.

Almost-objective uncertainty on Polish spaces

We will obtain almost-objectively uncertain partitions in any Polish space....

\qquad

Almost-objective uncertainty on Polish spaces

We will obtain almost-objectively uncertain partitions in any Polish space.... Let $\mathcal{M}(\mathcal{S})$ be the Banach space of signed measures on \mathcal{S}.
\qquad

Almost-objective uncertainty on Polish spaces

We will obtain almost-objectively uncertain partitions in any Polish space.... Let $\mathcal{M}(\mathcal{S})$ be the Banach space of signed measures on \mathcal{S}.

Terminology. A closed subspace of $\mathcal{M}(\mathcal{S})$ is a linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ that is closed in the total variation norm topology.

Almost-objective uncertainty on Polish spaces

We will obtain almost-objectively uncertain partitions in any Polish space.... Let $\mathcal{M}(\mathcal{S})$ be the Banach space of signed measures on \mathcal{S}.

Terminology. A closed subspace of $\mathcal{M}(\mathcal{S})$ is a linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ that is closed in the total variation norm topology.
\mathcal{N} is separable if it is spanned by a countable subset.
(A subset $\mathcal{H} \subseteq \mathcal{N}$ spans \mathcal{N} if \mathcal{N} is the norm-closure of the vector space of all finite linear combinations of elements of \mathcal{H}.)

Almost-objective uncertainty on Polish spaces

We will obtain almost-objectively uncertain partitions in any Polish space.... Let $\mathcal{M}(\mathcal{S})$ be the Banach space of signed measures on \mathcal{S}.

Terminology. A closed subspace of $\mathcal{M}(\mathcal{S})$ is a linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ that is closed in the total variation norm topology.
\mathcal{N} is separable if it is spanned by a countable subset.
(A subset $\mathcal{H} \subseteq \mathcal{N}$ spans \mathcal{N} if \mathcal{N} is the norm-closure of the vector space of all finite linear combinations of elements of \mathcal{H}.)
\mathcal{N} is nonatomic if all elements of \mathcal{N} are nonatomic.

Almost-objective uncertainty on Polish spaces

We will obtain almost-objectively uncertain partitions in any Polish space.... Let $\mathcal{M}(\mathcal{S})$ be the Banach space of signed measures on \mathcal{S}.

Terminology. A closed subspace of $\mathcal{M}(\mathcal{S})$ is a linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ that is closed in the total variation norm topology.
\mathcal{N} is separable if it is spanned by a countable subset.
(A subset $\mathcal{H} \subseteq \mathcal{N}$ spans \mathcal{N} if \mathcal{N} is the norm-closure of the vector space of all finite linear combinations of elements of \mathcal{H}.)
\mathcal{N} is nonatomic if all elements of \mathcal{N} are nonatomic.
Notation. Let $\langle\mathcal{N}\rangle:=\{\mu \in \mathcal{M}(\mathcal{S}) ; \mu$ is absolutely continuous relative to some $\nu \in \mathcal{N}$, and the Radon-Nikodym derivative $\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$ is bounded $\}$.

Almost-objective uncertainty on Polish spaces

We will obtain almost-objectively uncertain partitions in any Polish space.... Let $\mathcal{M}(\mathcal{S})$ be the Banach space of signed measures on \mathcal{S}.

Terminology. A closed subspace of $\mathcal{M}(\mathcal{S})$ is a linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ that is closed in the total variation norm topology.
\mathcal{N} is separable if it is spanned by a countable subset.
(A subset $\mathcal{H} \subseteq \mathcal{N}$ spans \mathcal{N} if \mathcal{N} is the norm-closure of the vector space of all finite linear combinations of elements of \mathcal{H}.)
\mathcal{N} is nonatomic if all elements of \mathcal{N} are nonatomic.
Notation. Let $\langle\mathcal{N}\rangle:=\{\mu \in \mathcal{M}(\mathcal{S}) ; \mu$ is absolutely continuous relative to some $\nu \in \mathcal{N}$, and the Radon-Nikodym derivative $\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$ is bounded $\}$.

Definition. A collection $\mathcal{R} \subseteq \Delta(\mathcal{S})$ is tame if there is a nonatomic, separable, closed linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ such that $\mathcal{R} \subseteq\langle\mathcal{N}\rangle$.

Almost-objective uncertainty on Polish spaces

Definition. A collection $\mathcal{R} \subseteq \Delta(\mathcal{S})$ is tame if there is a nonatomic, separable, closed linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ such that $\mathcal{R} \subseteq\langle\mathcal{N}\rangle$.

that are absolutely continuous with respect to Lebesgue, with density functions in $\rho^{\infty}\left[\begin{array}{l}n \\ 11\end{array}\right.$ Then \mathcal{R} is tame

Recall. A Polish space is a topological space homeomorphic to a complete, senarahle metric snace. N/e equin it writh the Rorel sigma-algehra Let \mathcal{R} be any tame set of probability measures on \mathcal{S} sequence of partitions of \mathcal{S} that is subordinate to \mathbf{q}

Almost-objective uncertainty on Polish spaces

Definition. A collection $\mathcal{R} \subseteq \Delta(\mathcal{S})$ is tame if there is a nonatomic, separable, closed linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ such that $\mathcal{R} \subseteq\langle\mathcal{N}\rangle$.

Example. Let $\mathcal{S}=[0,1]$. Let \mathcal{R} be the set of all probability measures on \mathcal{S} that are absolutely continuous with respect to Lebesgue, with density functions in $\mathcal{L}^{\infty}[0,1]$. Then \mathcal{R} is tame.

Almost-objective uncertainty on Polish spaces

Definition. A collection $\mathcal{R} \subseteq \Delta(\mathcal{S})$ is tame if there is a nonatomic, separable, closed linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ such that $\mathcal{R} \subseteq\langle\mathcal{N}\rangle$.

Example. Let $\mathcal{S}=[0,1]$. Let \mathcal{R} be the set of all probability measures on \mathcal{S} that are absolutely continuous with respect to Lebesgue, with density functions in $\mathcal{L}^{\infty}[0,1]$. Then \mathcal{R} is tame.

Recall. A Polish space is a topological space homeomorphic to a complete, separable metric space. We equip it with the Borel sigma-algebra.

Almost-objective uncertainty on Polish spaces

Definition. A collection $\mathcal{R} \subseteq \Delta(\mathcal{S})$ is tame if there is a nonatomic, separable, closed linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ such that $\mathcal{R} \subseteq\langle\mathcal{N}\rangle$.

Example. Let $\mathcal{S}=[0,1]$. Let \mathcal{R} be the set of all probability measures on \mathcal{S} that are absolutely continuous with respect to Lebesgue, with density functions in $\mathcal{L}^{\infty}[0,1]$. Then \mathcal{R} is tame.

Recall. A Polish space is a topological space homeomorphic to a complete, separable metric space. We equip it with the Borel sigma-algebra.

Proposition. Let \mathcal{S} be any Polish space.

Almost-objective uncertainty on Polish spaces

Definition. A collection $\mathcal{R} \subseteq \Delta(\mathcal{S})$ is tame if there is a nonatomic, separable, closed linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ such that $\mathcal{R} \subseteq\langle\mathcal{N}\rangle$.

Example. Let $\mathcal{S}=[0,1]$. Let \mathcal{R} be the set of all probability measures on \mathcal{S} that are absolutely continuous with respect to Lebesgue, with density functions in $\mathcal{L}^{\infty}[0,1]$. Then \mathcal{R} is tame.

Recall. A Polish space is a topological space homeomorphic to a complete, separable metric space. We equip it with the Borel sigma-algebra.

Proposition. Let \mathcal{S} be any Polish space.
Let \mathcal{R} be any tame set of probability measures on \mathcal{S}.

Almost-objective uncertainty on Polish spaces

Definition. A collection $\mathcal{R} \subseteq \Delta(\mathcal{S})$ is tame if there is a nonatomic, separable, closed linear subspace $\mathcal{N} \subseteq \mathcal{M}(\mathcal{S})$ such that $\mathcal{R} \subseteq\langle\mathcal{N}\rangle$.

Example. Let $\mathcal{S}=[0,1]$. Let \mathcal{R} be the set of all probability measures on \mathcal{S} that are absolutely continuous with respect to Lebesgue, with density functions in $\mathcal{L}^{\infty}[0,1]$. Then \mathcal{R} is tame.

Recall. A Polish space is a topological space homeomorphic to a complete, separable metric space. We equip it with the Borel sigma-algebra.

Proposition. Let \mathcal{S} be any Polish space.
Let \mathcal{R} be any tame set of probability measures on \mathcal{S}.
For any $K \in \mathbb{N}$ and $\mathbf{q} \in \Delta^{K}$, there is an \mathcal{R}-almost-objectively uncertain sequence of partitions of \mathcal{S} that is subordinate to \mathbf{q}.

II. Axioms and main result

 (for SEU preferences)
Decision theory terminology

Let \mathcal{S} and \mathcal{X} be measurable spaces.

A representation of \succeq is a function $V: \mathcal{A} \longrightarrow \mathbb{R}$ such that

Example. A representation V is subjective expected utility (SEU) if there is some $n \in \Lambda(S)$ and a hounded measurahle function $u \cdot \mathcal{X} \longrightarrow \mathbb{R}$ such that

Decision theory terminology

Let \mathcal{S} and \mathcal{X} be measurable spaces. \mathcal{S} is the state space. \mathcal{X} is the outcome space. An act is a measurable function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$ taking finitely many values Let \mathcal{A} be the set of all acts. Let \succeq be a preference order on \mathcal{A} (e.g. some agent's ex ante preferences) A representation of is a function ${ }^{T}: A-\bar{R}$ such that Example. A representation V is subjective expected utility (SEU) if there is some $\rho \in \Delta(\mathcal{S})$ and a bounded measurable function $u: \mathcal{X} \longrightarrow \mathbb{R}$ such that

Decision theory terminology

Let \mathcal{S} and \mathcal{X} be measurable spaces.
\mathcal{S} is the state space.
\mathcal{X} is the outcome space.
An act is a measurable function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$ taking finitely many values. Let \mathcal{A} be the set of all acts.

Decision theory terminology

Let \mathcal{S} and \mathcal{X} be measurable spaces.
\mathcal{S} is the state space.
\mathcal{X} is the outcome space.
An act is a measurable function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$ taking finitely many values. Let \mathcal{A} be the set of all acts.

Let \succeq be a preference order on \mathcal{A} (e.g. some agent's ex ante preferences).

Decision theory terminology

Let \mathcal{S} and \mathcal{X} be measurable spaces.
\mathcal{S} is the state space.
\mathcal{X} is the outcome space.
An act is a measurable function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$ taking finitely many values. Let \mathcal{A} be the set of all acts.

Let \succeq be a preference order on \mathcal{A} (e.g. some agent's ex ante preferences).
A representation of \succeq is a function $V: \mathcal{A} \longrightarrow \mathbb{R}$ such that

$$
\text { for all } \alpha, \beta \in \mathcal{A}, \quad(\alpha \succeq \beta) \quad \Longleftrightarrow \quad(V(\alpha) \geq V(\beta)) \text {. }
$$

Decision theory terminology

Let \mathcal{S} and \mathcal{X} be measurable spaces. \mathcal{S} is the state space. \mathcal{X} is the outcome space.

An act is a measurable function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$ taking finitely many values. Let \mathcal{A} be the set of all acts.

Let \succeq be a preference order on \mathcal{A} (e.g. some agent's ex ante preferences).
A representation of \succeq is a function $V: \mathcal{A} \longrightarrow \mathbb{R}$ such that

$$
\text { for all } \alpha, \beta \in \mathcal{A}, \quad(\alpha \succeq \beta) \quad \Longleftrightarrow \quad(V(\alpha) \geq V(\beta)) \text {. }
$$

Example. A representation V is subjective expected utility (SEU) if there is some $\rho \in \Delta(\mathcal{S})$ and a bounded measurable function $u: \mathcal{X} \longrightarrow \mathbb{R}$ such that

$$
V(\alpha)=\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho, \quad \text { for all } \alpha \in \mathcal{A} \text {. }
$$

Almost-objective acts

Let \mathcal{R} be a collection of probability measures on the statespace \mathcal{S}.

Almost-objective acts

Let \mathcal{R} be a collection of probability measures on the statespace \mathcal{S}. Let $\boldsymbol{\alpha}=\left(\alpha^{1}, \alpha^{2}, \alpha^{3}, \ldots \ldots\right)$ be a sequence of acts.

Almost-objective acts

Let \mathcal{R} be a collection of probability measures on the statespace \mathcal{S}.
Let $\boldsymbol{\alpha}=\left(\alpha^{1}, \alpha^{2}, \alpha^{3}, \ldots \ldots\right)$ be a sequence of acts.

Definition. $\boldsymbol{\alpha}$ is an \mathcal{R}-almost-objective act if there exists some $\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \in \mathcal{X}^{K}$, and an \mathcal{R}-almost-objectively uncertain sequence of K-cell partitions $\mathcal{G}=\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$, with $\mathfrak{G}^{n}:=\left\{\mathcal{G}_{1}^{n}, \ldots, \mathcal{G}_{K}^{n}\right\}$ for all $n \in \mathbb{N}$, such that for all $n \in \mathbb{N}$ and $k \in[1 \ldots K]$ we have $\alpha^{n}(s)=x_{k}$ for all $s \in \mathcal{G}_{k}^{n}$.

Almost-objective acts

Let \mathcal{R} be a collection of probability measures on the statespace \mathcal{S}.
Let $\boldsymbol{\alpha}=\left(\alpha^{1}, \alpha^{2}, \alpha^{3}, \ldots \ldots\right)$ be a sequence of acts.

Definition. $\boldsymbol{\alpha}$ is an \mathcal{R}-almost-objective act if there exists some $\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \in \mathcal{X}^{K}$, and an \mathcal{R}-almost-objectively uncertain sequence of K-cell partitions $\mathcal{G}=\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$, with $\mathfrak{G}^{n}:=\left\{\mathcal{G}_{1}^{n}, \ldots, \mathcal{G}_{K}^{n}\right\}$ for all $n \in \mathbb{N}$, such that for all $n \in \mathbb{N}$ and $k \in[1 \ldots K]$ we have $\alpha^{n}(s)=x_{k}$ for all $s \in \mathcal{G}_{k}^{n}$.

Suppose \mathcal{G} is subordinate to the probability vector $\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \Delta^{K}$. Then we say that $\boldsymbol{\alpha}$ is subordinate to (\mathbf{q}, \mathbf{x}).
Idea: $\left(\alpha^{1}, \alpha^{2}, \ldots\right)$ "converges" to the objective lottery $\left(\begin{array}{cccc}q_{1} & q_{2} & \ldots & q_{K} \\ x_{1} & x_{2} & \ldots & x_{K}\end{array}\right)$.

Almost-objective acts

Let \mathcal{R} be a collection of probability measures on the statespace \mathcal{S}.
Let $\boldsymbol{\alpha}=\left(\alpha^{1}, \alpha^{2}, \alpha^{3}, \ldots \ldots\right)$ be a sequence of acts.

Definition. $\boldsymbol{\alpha}$ is an \mathcal{R}-almost-objective act if there exists some $\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \in \mathcal{X}^{K}$, and an \mathcal{R}-almost-objectively uncertain sequence of K-cell partitions $\mathcal{G}=\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$, with $\mathfrak{G}^{n}:=\left\{\mathcal{G}_{1}^{n}, \ldots, \mathcal{G}_{K}^{n}\right\}$ for all $n \in \mathbb{N}$, such that for all $n \in \mathbb{N}$ and $k \in[1 \ldots K]$ we have $\alpha^{n}(s)=x_{k}$ for all $s \in \mathcal{G}_{k}^{n}$.

Suppose \mathcal{G} is subordinate to the probability vector $\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \Delta^{K}$. Then we say that α is subordinate to (\mathbf{q}, \mathbf{x}).
Idea: $\left(\alpha^{1}, \alpha^{2}, \ldots\right)$ "converges" to the objective lottery $\left(\begin{array}{cccc}q_{1} & q_{2} & \ldots & q_{K} \\ x_{1} & x_{2} & \ldots & x_{K}\end{array}\right)$.
Let $\boldsymbol{\beta}=\left(\beta^{1}, \beta^{2}, \beta^{3}, \ldots\right)$ be another almost-objective act.

Almost-objective acts

Let \mathcal{R} be a collection of probability measures on the statespace \mathcal{S}.
Let $\boldsymbol{\alpha}=\left(\alpha^{1}, \alpha^{2}, \alpha^{3}, \ldots \ldots\right)$ be a sequence of acts.

Definition. $\boldsymbol{\alpha}$ is an \mathcal{R}-almost-objective act if there exists some $\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \in \mathcal{X}^{K}$, and an \mathcal{R}-almost-objectively uncertain sequence of K-cell partitions $\mathcal{G}=\left(\mathfrak{G}^{n}\right)_{n=1}^{\infty}$, with $\mathfrak{G}^{n}:=\left\{\mathcal{G}_{1}^{n}, \ldots, \mathcal{G}_{K}^{n}\right\}$ for all $n \in \mathbb{N}$, such that for all $n \in \mathbb{N}$ and $k \in[1 \ldots K]$ we have $\alpha^{n}(s)=x_{k}$ for all $s \in \mathcal{G}_{k}^{n}$.

Suppose \mathcal{G} is subordinate to the probability vector $\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right) \in \Delta^{K}$. Then we say that α is subordinate to (\mathbf{q}, \mathbf{x}).
Idea: $\left(\alpha^{1}, \alpha^{2}, \ldots\right)$ "converges" to the objective lottery $\left(\begin{array}{cccc}q_{1} & q_{2} & \ldots & q_{K} \\ x_{1} & x_{2} & \ldots & x_{K}\end{array}\right)$.
Let $\boldsymbol{\beta}=\left(\beta^{1}, \beta^{2}, \beta^{3}, \ldots\right)$ be another almost-objective act.
$\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are compatible if β^{n} is also \mathfrak{G}^{n}-measurable, for all $n \in \mathbb{N}$.

Asymptotic preferences

Let \succeq be a preference order on \mathcal{A}.

Definition.

Asymptotic preferences

Let \succeq be a preference order on \mathcal{A}. Let V be a representation of \succeq.

Asymptotic preferences

Let \succeq be a preference order on \mathcal{A}. Let V be a representation of \succeq.
Definition. V of \succeq is contiguous if its image $V(\mathcal{A})$ is an interval in \mathbb{R}.

Asymptotic preferences

Let \succeq be a preference order on \mathcal{A}. Let V be a representation of \succeq.
Definition. V of \succeq is contiguous if its image $V(\mathcal{A})$ is an interval in \mathbb{R}.
Let $\boldsymbol{\alpha}=\left(\alpha^{n}\right)_{n=1}^{\infty}$ and $\boldsymbol{\beta}=\left(\beta^{n}\right)_{n=1}^{\infty}$ be two almost-objective acts.

Asymptotic preferences

Let \succeq be a preference order on \mathcal{A}. Let V be a representation of \succeq.
Definition. V of \succeq is contiguous if its image $V(\mathcal{A})$ is an interval in \mathbb{R}.
Let $\boldsymbol{\alpha}=\left(\alpha^{n}\right)_{n=1}^{\infty}$ and $\boldsymbol{\beta}=\left(\beta^{n}\right)_{n=1}^{\infty}$ be two almost-objective acts.
Definition. \succeq asymptotically prefers $\boldsymbol{\alpha}$ to $\boldsymbol{\beta}$, and write $\alpha \succ^{\infty} \boldsymbol{\beta}$, if there is some contiguous representation V for \succeq, some $N \in \mathbb{N}$ and some $\epsilon>0$ such that $V\left(\alpha^{n}\right)>V\left(\beta^{n}\right)+\epsilon$ for all $n \geq N$.

Asymptotic preferences

Let \succeq be a preference order on \mathcal{A}. Let V be a representation of \succeq.
Definition. V of \succeq is contiguous if its image $V(\mathcal{A})$ is an interval in \mathbb{R}.
Let $\boldsymbol{\alpha}=\left(\alpha^{n}\right)_{n=1}^{\infty}$ and $\boldsymbol{\beta}=\left(\beta^{n}\right)_{n=1}^{\infty}$ be two almost-objective acts.
Definition. \succeq asymptotically prefers $\boldsymbol{\alpha}$ to $\boldsymbol{\beta}$, and write $\boldsymbol{\alpha} \succ^{\infty} \boldsymbol{\beta}$, if there is some contiguous representation V for \succeq, some $N \in \mathbb{N}$ and some $\epsilon>0$ such that $V\left(\alpha^{n}\right)>V\left(\beta^{n}\right)+\epsilon$ for all $n \geq N$.

This means $\alpha^{n} \succ \beta^{n}$ for all $n \geq N$. But it is a stronger requirement: it requires an ϵ-sized "margin of error" in the superiority of α^{n} over β^{n}.
Despite appearances, this definition does not depend on the choice of

Asymptotic preferences

Let \succeq be a preference order on \mathcal{A}. Let V be a representation of \succeq.
Definition. V of \succeq is contiguous if its image $V(\mathcal{A})$ is an interval in \mathbb{R}.
Let $\boldsymbol{\alpha}=\left(\alpha^{n}\right)_{n=1}^{\infty}$ and $\boldsymbol{\beta}=\left(\beta^{n}\right)_{n=1}^{\infty}$ be two almost-objective acts.
Definition. \succeq asymptotically prefers $\boldsymbol{\alpha}$ to $\boldsymbol{\beta}$, and write $\boldsymbol{\alpha} \succ^{\infty} \boldsymbol{\beta}$, if there is some contiguous representation V for \succeq, some $N \in \mathbb{N}$ and some $\epsilon>0$ such that $V\left(\alpha^{n}\right)>V\left(\beta^{n}\right)+\epsilon$ for all $n \geq N$.

This means $\alpha^{n} \succ \beta^{n}$ for all $n \geq N$. But it is a stronger requirement: it requires an ϵ-sized "margin of error" in the superiority of α^{n} over β^{n}.
Despite appearances, this definition does not depend on the choice of $V \ldots \ldots$
Lemma. Suppose \succeq satisfies Statewise Dominance.

Asymptotic preferences

Let \succeq be a preference order on \mathcal{A}. Let V be a representation of \succeq.
Definition. V of \succeq is contiguous if its image $V(\mathcal{A})$ is an interval in \mathbb{R}.
Let $\boldsymbol{\alpha}=\left(\alpha^{n}\right)_{n=1}^{\infty}$ and $\boldsymbol{\beta}=\left(\beta^{n}\right)_{n=1}^{\infty}$ be two almost-objective acts.
Definition. \succeq asymptotically prefers $\boldsymbol{\alpha}$ to $\boldsymbol{\beta}$, and write $\boldsymbol{\alpha} \succ^{\infty} \boldsymbol{\beta}$, if there is some contiguous representation V for \succeq, some $N \in \mathbb{N}$ and some $\epsilon>0$ such that $V\left(\alpha^{n}\right)>V\left(\beta^{n}\right)+\epsilon$ for all $n \geq N$.

This means $\alpha^{n} \succ \beta^{n}$ for all $n \geq N$. But it is a stronger requirement: it requires an ϵ-sized "margin of error" in the superiority of α^{n} over β^{n}.
Despite appearances, this definition does not depend on the choice of $V \ldots \ldots$
Lemma. Suppose \succeq satisfies Statewise Dominance.
If V_{1} and V_{2} are contiguous representations for \succeq, and there exist $N \in \mathbb{N}$ and $\epsilon_{1}>0$ such that $V_{1}\left(\alpha^{n}\right)>V_{1}\left(\beta^{n}\right)+\epsilon_{1}$ for all $n \geq N$, then there exists $\epsilon_{2}>0$ such that $V_{2}\left(\alpha^{n}\right)>V_{2}\left(\beta^{n}\right)+\epsilon_{2}$ for all $n \geq N$.

Almost-objective Pareto

Let \mathcal{I} be a set of individuals.

For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}.

We require \succeq_{o} to satisfy the following axiom, relative to $\left\{\succeq_{i}\right\}_{i \in \mathcal{I}}$ and \mathcal{R} : Almost-objective Pareto. If α and $\boldsymbol{\beta}$ are compatible $\mathcal{\mathcal { R }}$-almost-objective acts, and $\boldsymbol{\alpha} \succ_{i}^{\infty} \boldsymbol{\beta}$ for all $i \in \mathcal{I}$, then $\boldsymbol{\alpha} \not \wp_{o}^{\infty} \boldsymbol{\beta}$ Remark. We do not require $\alpha \succ_{o}^{\infty} \boldsymbol{\beta}$; we simply require the social planner not to form the opposite asymptotic preference to that of the individuals.

Almost-objective Pareto

Let \mathcal{I} be a set of individuals.

Let o be the social observer. Let $\mathcal{J}:=\mathcal{I} \sqcup\{o\}$.

Almost-objective Pareto

Let \mathcal{I} be a set of individuals.

Let o be the social observer. Let $\mathcal{J}:=\mathcal{I} \sqcup\{o\}$.

For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}.

Almost-objective Pareto

Let \mathcal{I} be a set of individuals.

Let o be the social observer. Let $\mathcal{J}:=\mathcal{I} \sqcup\{o\}$.

For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}.

We require \succeq_{o} to satisfy the following axiom, relative to $\left\{\succeq_{i}\right\}_{i \in \mathcal{I}}$ and \mathcal{R} :

Almost-objective Pareto

Let \mathcal{I} be a set of individuals.

Let o be the social observer. Let $\mathcal{J}:=\mathcal{I} \sqcup\{o\}$.

For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}.

We require \succeq_{o} to satisfy the following axiom, relative to $\left\{\succeq_{i}\right\}_{i \in \mathcal{I}}$ and \mathcal{R} :

Almost-objective Pareto. If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are compatible \mathcal{R}-almost-objective acts, and $\boldsymbol{\alpha} \succ_{i}^{\infty} \boldsymbol{\beta}$ for all $i \in \mathcal{I}$, then $\boldsymbol{\alpha} \nprec_{o}^{\infty} \boldsymbol{\beta}$.

Almost-objective Pareto

Let \mathcal{I} be a set of individuals.

Let o be the social observer. Let $\mathcal{J}:=\mathcal{I} \sqcup\{o\}$.

For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}.

We require \succeq_{o} to satisfy the following axiom, relative to $\left\{\succeq_{i}\right\}_{i \in \mathcal{I}}$ and \mathcal{R} :

Almost-objective Pareto. If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are compatible \mathcal{R}-almost-objective acts, and $\boldsymbol{\alpha} \succ_{i}^{\infty} \boldsymbol{\beta}$ for all $i \in \mathcal{I}$, then $\boldsymbol{\alpha} \not_{o}^{\infty} \boldsymbol{\beta}$.

Remark. We do not require $\boldsymbol{\alpha} \succ_{o}^{\infty} \boldsymbol{\beta}$; we simply require the social planner not to form the opposite asymptotic preference to that of the individuals.

Utilitarianism and weak utilitarianism

Definition. A set of utility functions $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfies Minimal Agreement if there exist probability measures μ_{1} and μ_{2} on \mathcal{X} such that

$$
\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{1}>\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{2}, \quad \text { for all } i \in \mathcal{I} .
$$

Idea. There exist two "objective lotteries" over outcomes, for which all individuals have the same strict preference.

Utilitarianism and weak utilitarianism

Definition. A set of utility functions $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfies Minimal Agreement if there exist probability measures μ_{1} and μ_{2} on \mathcal{X} such that

$$
\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{1}>\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{2}, \quad \text { for all } i \in \mathcal{I} .
$$

Idea. There exist two "objective lotteries" over outcomes, for which all individuals have the same strict preference.

Suppose u_{o} is the ex post utility function for the social preference order \succeq_{o}.
\square

Consequence. Our focus is on establishing weak utilitarianism

Utilitarianism and weak utilitarianism

Definition. A set of utility functions $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfies Minimal Agreement if there exist probability measures μ_{1} and μ_{2} on \mathcal{X} such that

$$
\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{1}>\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{2}, \quad \text { for all } i \in \mathcal{I} .
$$

Idea. There exist two "objective lotteries" over outcomes, for which all individuals have the same strict preference.

Suppose u_{o} is the ex post utility function for the social preference order \succeq_{o}.
Defn. u_{o} is weakly utilitarian if there exist constants $c_{i} \geq 0$ for all $i \in \mathcal{I}$ and $b \in \mathbb{R}$ such that $u_{o}=b+\sum_{i \in \mathcal{I}} c_{i} u_{i}$.
\qquad

Utilitarianism and weak utilitarianism

Definition. A set of utility functions $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfies Minimal Agreement if there exist probability measures μ_{1} and μ_{2} on \mathcal{X} such that

$$
\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{1}>\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{2}, \quad \text { for all } i \in \mathcal{I} .
$$

Idea. There exist two "objective lotteries" over outcomes, for which all individuals have the same strict preference.

Suppose u_{o} is the ex post utility function for the social preference order \succeq_{o}.
Defn. u_{o} is weakly utilitarian if there exist constants $c_{i} \geq 0$ for all $i \in \mathcal{I}$ and $b \in \mathbb{R}$ such that $u_{o}=b+\sum_{i \in \mathcal{I}} c_{i} u_{i} . \quad u_{o}$ is utilitarian if $c_{i}>0$ for all $i \in \mathcal{I}$,
\qquad

Utilitarianism and weak utilitarianism

Definition. A set of utility functions $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfies Minimal Agreement if there exist probability measures μ_{1} and μ_{2} on \mathcal{X} such that

$$
\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{1}>\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{2}, \quad \text { for all } i \in \mathcal{I}
$$

Idea. There exist two "objective lotteries" over outcomes, for which all individuals have the same strict preference.

Suppose u_{o} is the ex post utility function for the social preference order \succeq_{o}.
Defn. u_{o} is weakly utilitarian if there exist constants $c_{i} \geq 0$ for all $i \in \mathcal{I}$ and $b \in \mathbb{R}$ such that $u_{o}=b+\sum_{i \in \mathcal{I}} c_{i} u_{i} . \quad u_{o}$ is utilitarian if $c_{i}>0$ for all $i \in \mathcal{I}$,
Under mild hypotheses, (weak utilitarianism) \Longrightarrow (utilitarianism).
Consequence. Our focus is on establishing weak utilitarianism.

Utilitarianism and weak utilitarianism

Definition. A set of utility functions $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfies Minimal Agreement if there exist probability measures μ_{1} and μ_{2} on \mathcal{X} such that

$$
\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{1}>\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{2}, \quad \text { for all } i \in \mathcal{I}
$$

Idea. There exist two "objective lotteries" over outcomes, for which all individuals have the same strict preference.

Suppose u_{o} is the ex post utility function for the social preference order \succeq_{o}.
Defn. u_{o} is weakly utilitarian if there exist constants $c_{i} \geq 0$ for all $i \in \mathcal{I}$ and $b \in \mathbb{R}$ such that $u_{o}=b+\sum_{i \in \mathcal{I}} c_{i} u_{i} . \quad u_{o}$ is utilitarian if $c_{i}>0$ for all $i \in \mathcal{I}$,
Under mild hypotheses, (weak utilitarianism) \Longrightarrow (utilitarianism).
Consequence. Our focus is on establishing weak utilitarianism.

Utilitarianism and weak utilitarianism

Definition. A set of utility functions $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfies Minimal Agreement if there exist probability measures μ_{1} and μ_{2} on \mathcal{X} such that

$$
\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{1}>\int_{\mathcal{X}} u_{i} \mathrm{~d} \mu_{2}, \quad \text { for all } i \in \mathcal{I}
$$

Idea. There exist two "objective lotteries" over outcomes, for which all individuals have the same strict preference.

Suppose u_{o} is the ex post utility function for the social preference order \succeq_{o}.
Defn. u_{o} is weakly utilitarian if there exist constants $c_{i} \geq 0$ for all $i \in \mathcal{I}$ and $b \in \mathbb{R}$ such that $u_{o}=b+\sum_{i \in \mathcal{I}} c_{i} u_{i} . \quad u_{o}$ is utilitarian if $c_{i}>0$ for all $i \in \mathcal{I}$,
Under mild hypotheses, (weak utilitarianism) \Longrightarrow (utilitarianism).
Consequence. Our focus is on establishing weak utilitarianism.
We now come to our main result....

Main result for SEU preferences

Theorem 1. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting an SEU representation with $\rho_{j} \in \mathcal{R}$

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then.
satisfies Almost-objective Pareto $\Longleftrightarrow u_{o}$ is weakly utilitarian.

In fact, this is a special case of a much more general result.
But this resuires some nreliminaries

Main result for SEU preferences

Theorem 1. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting an SEU representation with $\rho_{j} \in \mathcal{R}$

Sumnoce Sn.l. . - eoticfi, Minimal Agreement. Then
satisfies Almost-objective Pareto $\Longleftrightarrow u_{o}$ is weakly utilitarian

In fact, this is a special case of a much more general result
But this recuires some nreliminaries

Main result for SEU preferences

Theorem 1. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting an SEU representation with $\rho_{j} \in \mathcal{R}$.

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then. satisfies Almost-objective Pareto $\Longleftrightarrow u_{o}$ is weakly utilitarian.

Main result for SEU preferences

Theorem 1. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting an SEU representation with $\rho_{j} \in \mathcal{R}$.

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then:

In fact, this is a special case of a much more general result.
But this reauires some nreliminaries

Main result for SEU preferences

Theorem 1. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting an SEU representation with $\rho_{j} \in \mathcal{R}$.

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then:
\succeq_{o} satisfies Almost-objective Pareto $\Longleftrightarrow u_{o}$ is weakly utilitarian.

Main result for SEU preferences

Theorem 1. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting an SEU representation with $\rho_{j} \in \mathcal{R}$.

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then:
\succeq_{o} satisfies Almost-objective Pareto $\Longleftrightarrow u_{o}$ is weakly utilitarian.

In fact, this is a special case of a much more general result.
But this requires some preliminaries....
III. Non-SEU decision theories

Notation and terminology

Recall.

\mathcal{S} is the state space.
\mathcal{X} is the outcome space.
\mathcal{A} is the set of all acts (finitely valued measurable functions from \mathcal{S} to \mathcal{X})
Let \succeq be a preference order on \mathcal{A}.
A representation of \succeq is a function $V: \mathcal{A} \longrightarrow \mathbb{R}$ such that

$$
\text { for all } \alpha, \beta \in \mathcal{A}, \quad(\alpha \succeq \beta) \quad \Longleftrightarrow \quad(V(\alpha) \geq V(\beta)) \text {. }
$$

Generalized Hurwicz representations.

A representation V is generalized Hurwicz (GH) if there is a convex set $\mathcal{P} \subset \Delta(\mathcal{S})$ and a bounded function $u: \mathcal{X} \longrightarrow \mathbb{R}$, such that for all $\alpha \in \mathcal{A}$,

$$
\inf _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho \leq V(\alpha) \leq \sup _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho
$$

Idea. $\mathcal{P}=\{$ all probability distributions over \mathcal{S} that are possible $\}$
Examples. SEU; Hurwicz; maximin SEU; variational prefs, etc. Any monotone, Bernoullian, Archimedean (MBA) preference has GH repr - Danan, Gajdos, Hill \& Tallon, 2016: Any transitive, Archimedean completion of a Bewley preference has a GH representation Herzberg (2013) and Zuber (2016): impossibility theorems for social aggregation of MBA preferences.

Generalized Hurwicz representations.

A representation V is generalized Hurwicz (GH) if there is a convex set $\mathcal{P} \subset \Delta(\mathcal{S})$ and a bounded function $u: \mathcal{X} \longrightarrow \mathbb{R}$, such that for all $\alpha \in \mathcal{A}$,

$$
\inf _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho \leq V(\alpha) \leq \sup _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho
$$

Idea. $\mathcal{P}=\{$ all probability distributions over \mathcal{S} that are possible $\}$.

Generalized Hurwicz representations.

A representation V is generalized Hurwicz (GH) if there is a convex set $\mathcal{P} \subset \Delta(\mathcal{S})$ and a bounded function $u: \mathcal{X} \longrightarrow \mathbb{R}$, such that for all $\alpha \in \mathcal{A}$,

$$
\inf _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho \leq V(\alpha) \leq \sup _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho
$$

Idea. $\mathcal{P}=\{$ all probability distributions over \mathcal{S} that are possible $\}$.
Examples. SEU; Hurwicz; maximin SEU; variational prefs, etc.
\qquad
\qquad

Generalized Hurwicz representations.

A representation V is generalized Hurwicz (GH) if there is a convex set $\mathcal{P} \subset \Delta(\mathcal{S})$ and a bounded function $u: \mathcal{X} \longrightarrow \mathbb{R}$, such that for all $\alpha \in \mathcal{A}$,

$$
\inf _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho \leq V(\alpha) \leq \sup _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho
$$

Idea. $\mathcal{P}=\{$ all probability distributions over \mathcal{S} that are possible $\}$.
Examples. SEU; Hurwicz; maximin SEU; variational prefs, etc.

- Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci \& Siniscalchi, 2011: Any monotone, Bernoullian, Archimedean (MBA) preference has GH repr.

Generalized Hurwicz representations.

A representation V is generalized Hurwicz (GH) if there is a convex set $\mathcal{P} \subset \Delta(\mathcal{S})$ and a bounded function $u: \mathcal{X} \longrightarrow \mathbb{R}$, such that for all $\alpha \in \mathcal{A}$,

$$
\inf _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho \leq V(\alpha) \leq \sup _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho
$$

Idea. $\mathcal{P}=\{$ all probability distributions over \mathcal{S} that are possible $\}$.
Examples. SEU; Hurwicz; maximin SEU; variational prefs, etc.

- Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci \& Siniscalchi, 2011: Any monotone, Bernoullian, Archimedean (MBA) preference has GH repr.
- Danan, Gajdos, Hill \& Tallon, 2016: Any transitive, Archimedean completion of a Bewley preference has a GH representation.

Generalized Hurwicz representations.

A representation V is generalized Hurwicz (GH) if there is a convex set $\mathcal{P} \subset \Delta(\mathcal{S})$ and a bounded function $u: \mathcal{X} \longrightarrow \mathbb{R}$, such that for all $\alpha \in \mathcal{A}$,

$$
\inf _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho \leq V(\alpha) \leq \sup _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho
$$

Idea. $\mathcal{P}=\{$ all probability distributions over \mathcal{S} that are possible $\}$.
Examples. SEU; Hurwicz; maximin SEU; variational prefs, etc.

- Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci \& Siniscalchi, 2011: Any monotone, Bernoullian, Archimedean (MBA) preference has GH repr.
- Danan, Gajdos, Hill \& Tallon, 2016: Any transitive, Archimedean completion of a Bewley preference has a GH representation.
- Herzberg (2013) and Zuber (2016): impossibility theorems for social aggregation of MBA preferences.

Generalized Hurwicz representations.

A representation V is generalized Hurwicz (GH) if there is a convex set $\mathcal{P} \subset \Delta(\mathcal{S})$ and a bounded function $u: \mathcal{X} \longrightarrow \mathbb{R}$, such that for all $\alpha \in \mathcal{A}$,

$$
\inf _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho \leq V(\alpha) \leq \sup _{\rho \in \mathcal{P}} \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho
$$

Idea. $\mathcal{P}=\{$ all probability distributions over \mathcal{S} that are possible $\}$.
Examples. SEU; Hurwicz; maximin SEU; variational prefs, etc.

- Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci \& Siniscalchi, 2011: Any monotone, Bernoullian, Archimedean (MBA) preference has GH repr.
- Danan, Gajdos, Hill \& Tallon, 2016: Any transitive, Archimedean completion of a Bewley preference has a GH representation.
- Herzberg (2013) and Zuber (2016): impossibility theorems for social aggregation of MBA preferences.

Defn. V is compact if \mathcal{P} is compact in the total variation norm on $\Delta(\mathcal{S})$.

SOSEU representations

A representation V is second order subjective expected utility (SOSEU) if

$$
V(\alpha)=\int_{\mathcal{P}} \phi\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho\right) \mathrm{d} \mu[\rho], \quad \text { for all } \alpha \in \mathcal{A},
$$

where....
s a set of probability measures on \mathcal{S}, with the weak* topology; μ is a Borel probability measure on \mathcal{P} ("second order belief"); : v. im is a bounded measurable ("utility") function; and $\mathbb{R} \longrightarrow \mathbb{R}$ is a concave, increasing function ("ambiguity aversion")

SOSEU representations

A representation V is second order subjective expected utility (SOSEU) if

$$
V(\alpha)=\int_{\mathcal{P}} \phi\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho\right) \mathrm{d} \mu[\rho], \quad \text { for all } \alpha \in \mathcal{A},
$$

where....

- \mathcal{P} is a set of probability measures on \mathcal{S}, with the weak* topology; ι is a Borel probability measure on \mathcal{P} ("second order belief"); is a bounded measurable ("utility") function; and

SOSEU representations

A representation V is second order subjective expected utility (SOSEU) if

$$
V(\alpha)=\int_{\mathcal{P}} \phi\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho\right) \mathrm{d} \mu[\rho], \quad \text { for all } \alpha \in \mathcal{A},
$$

where....

- \mathcal{P} is a set of probability measures on \mathcal{S}, with the weak* topology;
- μ is a Borel probability measure on \mathcal{P} ("second order belief");

SOSEU representations

A representation V is second order subjective expected utility (SOSEU) if

$$
V(\alpha)=\int_{\mathcal{P}} \phi\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho\right) \mathrm{d} \mu[\rho], \quad \text { for all } \alpha \in \mathcal{A}
$$

where....

- \mathcal{P} is a set of probability measures on \mathcal{S}, with the weak* topology;
- μ is a Borel probability measure on \mathcal{P} ("second order belief");
- $u: \mathcal{X} \longrightarrow \mathbb{R}$ is a bounded measurable ("utility") function; and

SOSEU representations

A representation V is second order subjective expected utility (SOSEU) if

$$
V(\alpha)=\int_{\mathcal{P}} \phi\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho\right) \mathrm{d} \mu[\rho], \quad \text { for all } \alpha \in \mathcal{A}
$$

where....

- \mathcal{P} is a set of probability measures on \mathcal{S}, with the weak* topology;
- μ is a Borel probability measure on \mathcal{P} ("second order belief");
- $u: \mathcal{X} \longrightarrow \mathbb{R}$ is a bounded measurable ("utility") function; and
- $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ is a concave, increasing function ("ambiguity aversion").

SOSEU representations

A representation V is second order subjective expected utility (SOSEU) if

$$
V(\alpha)=\int_{\mathcal{P}} \phi\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \rho\right) \mathrm{d} \mu[\rho], \quad \text { for all } \alpha \in \mathcal{A}
$$

where....

- \mathcal{P} is a set of probability measures on \mathcal{S}, with the weak* topology;
- μ is a Borel probability measure on \mathcal{P} ("second order belief");
- $u: \mathcal{X} \longrightarrow \mathbb{R}$ is a bounded measurable ("utility") function; and
$-\phi: \mathbb{R} \longrightarrow \mathbb{R}$ is a concave, increasing function ("ambiguity aversion").

SOSEU representations have been axiomatically characterized by Klibanoff, Marinacci \& Mukerji (2005).

Main result for non-SEU preferences

Theorem 2. Let \mathcal{S} be a Polish space.
\square -et \mathcal{R} be a tame set of probability measures on \mathcal{S}. For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}, such that either has a compact $G H$ representation with $\mathcal{P}_{i} \subseteq \mathcal{R}$; or has a SOSEU representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$ Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then satisfies Almost-nhiective Paretn $\Longleftrightarrow u$ is meakly utilitarian

Main result for non-SEU preferences

Theorem 2. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
has a compact $G H$ representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$; or
has a SOSEU representation with $\mathcal{P}_{i} \subseteq \mathcal{R}$
Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then:
satisfies Almost-objective Pareto $\Longleftrightarrow u_{o}$ is weakly utilitarian.

Main result for non-SEU preferences

Theorem 2. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}, such that either

- \succeq_{j} has a compact $G H$ representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$; or

Main result for non-SEU preferences

Theorem 2. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}, such that either

- \succeq_{j} has a compact $G H$ representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$; or
- \succeq_{j} has a SOSEU representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$.

Main result for non-SEU preferences

Theorem 2. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}, such that either

- \succeq_{j} has a compact $G H$ representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$; or
- \succeq_{j} has a SOSEU representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$.

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then:

Main result for non-SEU preferences

Theorem 2. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A}, such that either

- \succeq_{j} has a compact $G H$ representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$; or
- \succeq_{j} has a SOSEU representation with $\mathcal{P}_{j} \subseteq \mathcal{R}$.

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then:
\succeq_{o} satisfies Almost-objective Pareto $\Longleftrightarrow u_{o}$ is weakly utilitarian.

Utilitarianism with state-dependent utilities

A state-dependent SEU representation for a preference on \mathcal{A} has the form

$$
V(\alpha)=\int_{\mathcal{S}} w(s) u(\alpha(s)) \mathrm{d} \rho[s], \quad \text { for all } \alpha \in \mathcal{A} .
$$

where $u: \mathcal{X} \longrightarrow \mathbb{R}$ and $w: \mathcal{S} \longrightarrow \mathbb{R}_{+}$are bounded measurable functions.
Idea. u is an underlying state-independent utility function
to this utility in some states than in others.

Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.For all jeJ, let bi be a preference order on A admitting a state-dependent $S E U$ representation with $\rho_{j} \in \mathcal{R}$

Utilitarianism with state-dependent utilities

A state-dependent SEU representation for a preference on \mathcal{A} has the form

$$
V(\alpha)=\int_{\mathcal{S}} w(s) u(\alpha(s)) \mathrm{d} \rho[s], \quad \text { for all } \alpha \in \mathcal{A} .
$$

where $u: \mathcal{X} \longrightarrow \mathbb{R}$ and $w: \mathcal{S} \longrightarrow \mathbb{R}_{+}$are bounded measurable functions.
Idea. u is an underlying state-independent utility function, \qquad

Utilitarianism with state-dependent utilities

A state-dependent SEU representation for a preference on \mathcal{A} has the form

$$
V(\alpha)=\int_{\mathcal{S}} w(s) u(\alpha(s)) \mathrm{d} \rho[s], \quad \text { for all } \alpha \in \mathcal{A} .
$$

where $u: \mathcal{X} \longrightarrow \mathbb{R}$ and $w: \mathcal{S} \longrightarrow \mathbb{R}_{+}$are bounded measurable functions.
Idea. u is an underlying state-independent utility function, w assigns more "weight" to this utility in some states than in others.

Utilitarianism with state-dependent utilities

A state-dependent SEU representation for a preference on \mathcal{A} has the form

$$
V(\alpha)=\int_{\mathcal{S}} w(s) u(\alpha(s)) \mathrm{d} \rho[s], \quad \text { for all } \alpha \in \mathcal{A}
$$

where $u: \mathcal{X} \longrightarrow \mathbb{R}$ and $w: \mathcal{S} \longrightarrow \mathbb{R}_{+}$are bounded measurable functions.
Idea. u is an underlying state-independent utility function, w assigns more "weight" to this utility in some states than in others.

Theorem 3. Let \mathcal{S} be a Polish space.

Utilitarianism with state-dependent utilities

A state-dependent SEU representation for a preference on \mathcal{A} has the form

$$
V(\alpha)=\int_{\mathcal{S}} w(s) u(\alpha(s)) \mathrm{d} \rho[s], \quad \text { for all } \alpha \in \mathcal{A}
$$

where $u: \mathcal{X} \longrightarrow \mathbb{R}$ and $w: \mathcal{S} \longrightarrow \mathbb{R}_{+}$are bounded measurable functions.
Idea. u is an underlying state-independent utility function, w assigns more "weight" to this utility in some states than in others.

Theorem 3. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.

Utilitarianism with state-dependent utilities

A state-dependent SEU representation for a preference on \mathcal{A} has the form

$$
V(\alpha)=\int_{\mathcal{S}} w(s) u(\alpha(s)) \mathrm{d} \rho[s], \quad \text { for all } \alpha \in \mathcal{A} .
$$

where $u: \mathcal{X} \longrightarrow \mathbb{R}$ and $w: \mathcal{S} \longrightarrow \mathbb{R}_{+}$are bounded measurable functions.
Idea. u is an underlying state-independent utility function, w assigns more "weight" to this utility in some states than in others.

Theorem 3. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting a state-dependent $S E U$ representation with $\rho_{j} \in \mathcal{R}$.

Utilitarianism with state-dependent utilities

A state-dependent SEU representation for a preference on \mathcal{A} has the form

$$
V(\alpha)=\int_{\mathcal{S}} w(s) u(\alpha(s)) \mathrm{d} \rho[s], \quad \text { for all } \alpha \in \mathcal{A} .
$$

where $u: \mathcal{X} \longrightarrow \mathbb{R}$ and $w: \mathcal{S} \longrightarrow \mathbb{R}_{+}$are bounded measurable functions.
Idea. u is an underlying state-independent utility function, w assigns more "weight" to this utility in some states than in others.

Theorem 3. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting a state-dependent SEU representation with $\rho_{j} \in \mathcal{R}$.

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then:

Utilitarianism with state-dependent utilities

A state-dependent SEU representation for a preference on \mathcal{A} has the form

$$
V(\alpha)=\int_{\mathcal{S}} w(s) u(\alpha(s)) \mathrm{d} \rho[s], \quad \text { for all } \alpha \in \mathcal{A}
$$

where $u: \mathcal{X} \longrightarrow \mathbb{R}$ and $w: \mathcal{S} \longrightarrow \mathbb{R}_{+}$are bounded measurable functions.
Idea. u is an underlying state-independent utility function, w assigns more "weight" to this utility in some states than in others.

Theorem 3. Let \mathcal{S} be a Polish space.
Let \mathcal{R} be a tame set of probability measures on \mathcal{S}.
For all $j \in \mathcal{J}$, let \succeq_{j} be a preference order on \mathcal{A} admitting a state-dependent SEU representation with $\rho_{j} \in \mathcal{R}$.

Suppose $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ satisfy Minimal Agreement. Then:
\succeq_{o} satisfies Almost-objective Pareto $\Longleftrightarrow u_{o}$ is weakly utilitarian.

Conclusion

We have introduced a new Almost-objective Pareto axiom.
It is based on asymptotic preferences along sequences of acts that exhibit "almost objective uncertainty".

Conclusion

We have introduced a new Almost-objective Pareto axiom.
It is based on asymptotic preferences along sequences of acts that exhibit "almost objective uncertainty".

For agents with a variety of SEU or non-SEU preferences, with beliefs in a tame collection of probability measures on any Polish space, Almost-objective Pareto implies utilitarianism.

Conclusion

We have introduced a new Almost-objective Pareto axiom.
It is based on asymptotic preferences along sequences of acts that exhibit "almost objective uncertainty".

For agents with a variety of SEU or non-SEU preferences, with beliefs in a tame collection of probability measures on any Polish space, Almost-objective Pareto implies utilitarianism.

This result imposes no restrictions on the agents' beliefs.
And it allows heterogeneous ambiguity attitudes.

Thank you.

