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Abstract

Much behaviour and cognition involves choosing between alternatives—
whether in the context of consumer decisions, voting, or mem-
ory. A fundamental aspect of choice is that it is probabilistic: An
organism faced with the same evidence will not always make the
same choice. Despite widespread acknowledgement that probabilistic
choice is a necessary element in models of cognition, it has long
been treated as distracting from the core process driving behaviour.
Recently, however, researchers across various fields in the cogni-
tive and behavioural sciences have started to recognise the vital
role of probabilistic choice for understanding cognition. This arti-
cle reviews and synthesizes these developments, distinguishing three
main origins of probabilistic choice and proposing future research
avenues that integrate probabilistic choice into theories of cognition.
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2 Probabilistic Choice

Probabilistic choice becomes a focus of research1

Much behaviour and cognition involves choosing between alternatives. When2

people formulate their preferences—whether between consumer goods, eco-3

nomic alternatives or political parties—they evaluate, compare and finally4

choose one of the available alternatives. When people retrieve information from5

memory, they select content from several candidate items. When they classify6

objects, they pick a response from a set of possible categories.7

A fundamental feature of choice is that it is probabilistic: When given8

the same evidence on different occasions, people do not always make the9

same choice. The probabilistic nature of choice has been noted across a wide10

variety of disciplines in the cognitive and behavioural sciences, including eco-11

nomics, political science, biology, psychology, and neuroscience. Despite the12

widespread acknowledgement that probabilistic choice (see Glossary) needs13

to be included in models of cognition, it is usually treated as peripheral and14

as a nuisance factor with little theoretical relevance. In formal treatments it is15

often relegated to an auxiliary, residual term, and no principled assumptions16

are made about the internal and external processes that contribute to choice17

being probabilistic (see Box 1).18

In recent years, however, interest in probabilistic choice has been grow-19

ing and researchers in psychology, neuroscience and economics have made it20

the focus of their investigations. This article reviews this emerging trend and21

elaborates on its implications for models of cognition. First, we highlight that22

probabilistic choice may be a feature rather than a bug of the cognitive system.23

We review findings suggesting that it is an indispensable tool for learning, con-24

fers an advantage in competition and is necessary for the efficient processing of25

information in the face of cognitive constraints and environmental uncertainty.26



Probabilistic Choice 3

Second, we review work illustrating how the measurement of probabilistic27

choice can be exploited to test and refine behavioural theories. We discuss28

how cognitive models can be compared and validated based on the observable29

patterns of probabilistic choice and how a more principled approach toward30

accommodating stochasticity in cognitive models can help explain seemingly31

irrational behavioural tendencies.32

Finally, we synthesize existing ideas regarding the origins of probabilis-33

tic choice into a framework by distinguishing three main sources: variability34

of internal processing, uncertainty in the environment, and stochasticity in35

behavioural implementation. Based on our proposed framework, we identify36

new research avenues that focus on both an enhanced understanding and sys-37

tematic measurement of probabilistic choice. We believe that a more targeted38

investigation of probabilistic choice can in turn inform a better understanding39

of behaviour.40

Probabilistic choice is a feature, not a bug41

Although probabilistic choice can indeed be a nuisance in some cases (e.g.,42

decision-making by judges or medical professionals, where consistency is43

important), its very ubiquity gives cause for pause. In addition to asking how44

probabilistic choice can be eliminated, it is also worth asking why probabilistic45

choice exists in the first place. Existing literature suggests that variability in46

behaviour can have adaptive benefits. One comes from the organism’s delib-47

erate decision to deviate from a previous course of action even when faced48

with a similar situation. Such behavioural volatility could be optimal when the49

organism needs to learn about a novel environment; it can also be advanta-50

geous against competitors. A second type of benefit comes from stochasticity51

in information processing (which is usually not under the deliberate control of52
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the organism). This stochasticity allows the organism to adapt to an uncer-53

tain environment under cognitive constraints. We next discuss both types of54

benefits in more detail.55

Strategic use of probabilistic choice56

Under some circumstances, it can be beneficial for an organism confronted57

with the same situation to make a different choice. While some organisms58

may simply have a preference for variety [1] or randomization [2], varying59

choices across occasions is an important strategy for organisms learning about60

their surroundings for the first time. The simplest approach is to start by61

making random choices and see what feedback the environment provides. This62

strategy has been shown to be the basis for learning songs in some bird species63

[3], motor control in humans [4], and consumers getting into new markets in64

online environments [5]. An organism engaging in exploration might employ65

other strategies: they can choose an alternative deliberately (i.e., “directed66

exploration” in contrast to “random exploration”) or use a mix of the random67

and directed approaches [for review, see 6].68

Probabilistic choice can also be beneficial in a competitive world. In fact,69

economic game theory is rooted in this idea [7]. To outsmart opponents in70

zero-sum games with a mixed-strategy equilibrium, the decision maker has to71

act unpredictably [8]. In the animal world, prey often adopts unpredictable or72

“Protean” behaviour to avoid being preyed on [9, 10]. If many competitors in73

the population imitate each other, it can be adaptive for agents to distribute74

their choices across alternatives when competing for resources [11].75

Stochasticity in information processing76

Recent work in neuroscience has highlighted another benefit of probabilistic77

choice: It allows an organism to adapt optimally to a changing environment78
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while dealing with cognitive constraints. Consider a foraging animal. Foraging79

for food is associated with a high level of uncertainty: the number of patches80

can change, the amount of food in the patches can change, and something81

completely unforeseen might happen, such as a new predator arriving in the82

area. Ideally, the animal should make choices based on a rich representation83

of its environment that considers different types of uncertainty and the proba-84

bility of unexpected events. However, because the animal’s cognitive resources85

are constrained, precise estimations are unfeasible. What kind of behaviour86

would be adaptive under such circumstances? A purely exploitative strategy87

(i.e., picking what is currently the best food patch) is appropriate only when88

the probabilities or values of alternatives are stable. In volatile environments,89

switching between alternatives allows the organism to balance the maximiza-90

tion of rewards against the prevailing cognitive constraints [12]. By switching91

between patches, the animal can adjust optimally to a surprising outcome (i.e.,92

a predator) without dedicating resources to monitoring for such an event [13].93

Switching also allows the animal to adapt to the possibility of the availability94

of food changing without having to explicitly incorporate this possibility into95

the inference process [14].96

Note that in the research discussed above, it is implied that the stochastic-97

ity in behaviour is governed by processes that are not under deliberate control.98

Specifically, the cognitive flexibility that allows the organism to quickly adapt99

to its environment [15, 16] is thought to result from variability in brain activity100

(i.e., the variance in different types of neural recordings). As Kloosterman and101

colleagues put it: the “neural system avoids locking into a stereotypical, rhyth-102

mic pattern of activity, while instead continuously exploring its full dynamic103

range to better prepare for unpredictably occurring events” [16, p. 2].104
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Behavioural variability as a diagnostic marker105

in cognitive modelling106

In cognitive modelling, probabilistic choice (and the associated stochasticity in107

cognitive processes) has commonly been treated as something that dilutes and108

obscures the actual behavioural process under investigation [17]. Yet recent109

developments suggest that this approach may throw the baby out with the110

bathwater, and that acknowledging stochasticity as a substantive element of111

cognition can have genuine value for understanding cognition [18]. In what112

follows, we showcase how a more principled approach to behavioural variability113

can be used to compare and evaluate models, and can help explain behavioural114

biases.115

Using probabilistic choice for model comparison and116

development117

Probabilistic choice can be used to compare theoretical predictions about spe-118

cific choice patterns with the observed empirical behaviour. In the context119

of violations of transparent dominance in repeated choices, for example,120

it has been pointed out that the predictions of some models of preferential121

choice do not correspond to the observed rates: Some models overestimate the122

rates; others underestimate them [19], indicating that the models’ assump-123

tions accommodating stochasticity may be inadequate. Similarly, Birnbaum124

used true and error theory [20] to estimate the rate of violations of stochastic125

dominance in people’s choices. He found that the empirical rates of viola-126

tions were inconsistent with the predictions of several of the existing models127

of risky choice [21, 22].128

Moreover, specific patterns of probabilistic choice can point to descriptive129

limitations of a model. For example, Loomes and Sugden noted that several130
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prominent models, such as the random preference model, cannot account for131

asymmetric preference reversals [23]—the empirical observation that people132

are more likely to switch from a risky alternative to a safe one than the other133

way around. A similar dependency between consecutive decisions was found134

by Kubovy and Healy [24] in the context of categorization, where subsequent135

categorization responses were conditional on whether the current response was136

correct or not.137

Using response stochasticity to distinguish between138

judgement strategies139

In 1955, Egon Brunswik proposed a distinction between intuitive and analyti-140

cal cognitive processes in judgement [25]. Intuitive processes are characterized141

by noisy encoding and processing of perceptual information; analytical pro-142

cesses are based on a deterministic algorithm that implements an explicit143

rule—for example, a mathematical equation. In an experiment where partic-144

ipants were asked to estimate the size of objects, the two types of process145

resulted in markedly different distributions of errors: Intuitive processing led146

to few precisely correct answers but to small errors on average, whereas ana-147

lytical processing led to precisely correct answers but also to large errors.148

Recently, this approach was revived by Sundh and colleagues, who developed149

it into a computational model [26]. Not only were they able to validate their150

model within Brunswik’s original setting, but they also used it to distinguish151

between the two types of process in a different set of tasks. Thus, observed152

response stochasticity can be highly valuable for identifying cognitive processes153

and imply that a common approach of modelling using normally distributed154
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errors may misspecify the process underlying the response distribution. Ignor-155

ing these important differences can lead to incorrect conclusions about the156

underlying processes.157

Stochasticity in information sampling can explain158

apparent behavioural biases159

Recent research has demonstrated that a more principled approach to stochas-160

tic components of cognitive models can provide a simpler and more unifying161

explanation for human judgement and choice in a variety of psychological162

tasks. For instance, it has been shown that stochasticity in internal informa-163

tion sampling can explain patterns of intertemporal choice [12]. To illustrate,164

temporal discounting may be the result of a person engaging in a “noisy”165

simulation of future rewards (i.e., sampling of possible outcomes). To esti-166

mate the value of the future rewards, the person combines the results of the167

simulations with their prior beliefs about the rewards. Because the future is168

associated with uncertainty, the resulting valuation will rely more heavily on169

the prior information, resulting in discounting of the reward value. Adopt-170

ing this perspective, Gershman and Bhui showed that the magnitude effect171

in intertemporal choice—the phenomenon that people are more patient when172

faced with options involving higher rewards—might be due to people investing173

higher mental effort when faced with higher rewards, which increases precision174

(i.e., reduces noise) during sampling, which in turn leads to less discounting.175

Sampling and the stochasticity associated with it have also been proposed176

as an explanation of biases in probability judgement. An approach called Prob-177

ability Theory plus Noise (PT+N) assumes that probability judgements largely178

follow the basic laws of probability theory but are distorted due to noisy infor-179

mation retrieval during sampling [27]. PT+N) provides a unifying account of180
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a variety of biases in probability judgements. For example, conservatism in181

probability judgements—the phenomenon that people are reluctant to produce182

probabilities of 0 and 1—may be the result of the erroneous retrieval of the183

event complementary to the event in focus: When estimating the probability184

of an event A, the person retrieves instances of ¬A, which leads to the esti-185

mated probability of A not being 0 (or 1). Building on this approach, Zhu and186

colleagues [28] showed that the predictions of PT+N can be improved for con-187

ditional probability judgements when, instead of sampling instances of A∪B188

(i.e., when both A and B are true) and B (i.e., when B is true), instances of189

A|B are sampled (i.e., whether A is true or not conditional on B being true).1190

Other work has focused on how stochasticity in behaviour might be linked191

to the stimulus input and how this link might help explain biases in human192

judgement of averages [30] and magnitude sensitivity in value-based decisions193

[31]. Prat-Carrabin and Woodford [30] proposed that people calculating aver-194

ages weigh numbers differentially and in a non-linear manner due to the noisy195

encoding of the stimuli. They argued that the amount of stochasticity during196

the encoding of a stimulus might be linked with the probability of the stimulus197

occurring during the experiment, and that less likely stimuli will be encoded198

with more stochasticity. If so, the distribution of participants’ estimates should199

depend on the prior distribution of stimuli. The authors found empirical200

support for this dependence. In a similar vein, Pirrone and colleagues [31]201

have suggested a simpler explanation for the magnitude sensitivity observed202

in value-based choices (i.e., that response times are lower when rewards are203

higher). Previous research has suggested that relaxing assumptions of linear204

1Furthermore, Zhu and colleagues showed that the predictions of the PT+N approach are largely
equivalent to an implementation of a Bayesian model where the posterior is approximated using
the collected samples and the sampled information is adjusted for the (usually) small sample size
by using a prior that reflects the inherent uncertainty of sampling and “a conception of probability
estimates in a more general [...] sense” [29, p. 2844]. This approach provides a unifying account
of a variety of biases in probability judgements.
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utility or linear cost of time can account for this magnitude sensitivity. Accord-205

ing to Pirrone and colleagues, the simpler explanation is that the stochasticity206

associated with information accumulation is linked with the magnitude of the207

rewards, and that higher rewards are associated with higher stochasticity.208

Three origins of probabilistic choice209

Despite the increasing interest in probabilistic choice (and behavioural vari-210

ability in general), the respective research is scattered across several fields211

and tends not to take a comprehensive approach to probabilistic choice, that212

acknowledges its multiple possible origins. In pursuit of a more encompassing213

perspective, we propose an organizing framework that distinguishes and syn-214

thesizes three possible sources of probabilistic choice that have been discussed215

in the literature: stochasticity in internal processing, reaction to uncertainty216

in the environment, and implementation stochasticity.217

We sketch the framework around a general description of the cognitive218

process (see Figure 1). First, the organism perceives information relevant to the219

current task. Second, they process this information, using memory and making220

any other necessary computations. Third, they make a choice based on the221

processed information and finally implement it behaviourally by committing222

to some action. In what follows, we describe these three sources of probabilistic223

choice and how they affect each stage of the cognitive process.224

Stochasticity in internal processing225

Research in psychology and neuroscience usually distinguishes two types of226

stochasticity that arise from internal processing within the cognitive system227

(this is similar to what is sometimes referred to as “Thurstonian” uncertainty;228

[32]): perceptual stochasticity and computational stochasticity [33]. The right229
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Fig. 1 Three origins of probabilistic choice.

side of Figure 1 shows how these two types relate to different stages of the230

cognitive process.231

The first type of stochasticity originates in the perceptual system and is the232

result of physical phenomena (e.g., the activity of photons) or early perceptual233

systems. It thus affects the information before it is processed. Several cognitive234

models incorporate this type of stochasticity by assuming that probabilistic235

choice is a result of attention processes. Specifically, the idea is that people236

shift their attention stochastically between the alternatives [34] or between the237

features of the alternatives [35, 36]. Other models identify the noisy percep-238

tion of information as the source of probabilistic choice. For example, it has239

been suggested that probabilistic choice in the domain of risky choice can be240

explained by stochasticity in the encoding of numerical magnitudes [37, 38].241

The second type of stochasticity from internal processing originates in com-242

putational processes—that is, in how sensory input is mapped onto an internal243
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representation after it has been encoded. Recent research in the domain of risky244

choice has connected variability in the stochasticity of neural activity (e.g.,245

variability in blood oxygenation level-dependent activity) to the amount of246

behavioural variability exhibited by participants [39, 40]. Kurtz-David and col-247

leagues have argued that stochasticity in neural processes results in distortions248

in people’s estimations of the value of alternatives. Memory processes, which249

are known to be variable, may also contribute to this computational stochas-250

ticity [41]. Some models suggest that alternatives are evaluated based on251

samples drawn from memory representations of the alternatives [42]. Because252

the random nature of memory sampling leads to different samples of retrieved253

memories across occasions, the estimated value is likewise variable.254

Reaction to uncertainty in the environment255

A second origin of probabilistic choice is the structure of the environment. The256

information available about the value of the alternatives is usually uncertain257

to some extent (this is sometimes referred to as “Brunswikian” uncertainty;258

[32]). Higher uncertainty is associated with more behavioural variability [43]259

and with lower maximization of reward [44]. The connection between envi-260

ronmental uncertainty and cognitive processing is shown on the left side of261

Figure 1.262

Models that implement Bayesian computations using sampling illustrate263

how environmental uncertainty might feed into probabilistic choice. Consider264

again a foraging animal deciding which food patch to choose based on previous265

experience. According to Bayes’ rule, the choice should be based on posterior266

beliefs that combine prior beliefs about the patches with the animal’s experi-267

ence. Estimating such posterior beliefs becomes intractable when the number268

of patches increases. It has therefore been argued that rather than attempting269
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to compute the posterior precisely, an animal approximates it by using random270

sampling of relevant information from memory or the hypothesis space [28].271

Such sampling could lead to probabilistic choice. This suggestion is supported272

by recent findings showing that uncertainty about visual stimuli is encoded273

by the width of the probability distribution over the possible outcomes [45],274

represented by either individual neuron spike behaviour across trials [46] or275

a combined distribution of neuron pulls [47]. Furthermore, Prat-Carrabin and276

colleagues [48] compared human inferences in a learning task with that of an277

optimal Bayesian model. They found that although participants did not make278

inferences according to the Bayesian model, their responses were qualitatively279

consistent with it and that the behavioural variance was similar to that pre-280

dicted by the Bayesian model. Moreover, they showed that human inferences281

are best explained by a model where the posterior is approximated by some282

form of sampling (e.g., particle filters).283

As another example, it has been proposed that probabilistic choice during284

learning is the result of imprecise inference processes that help organisms adapt285

to a changing and thus uncertain environment [13, 14, 49]. Consider again the286

foraging example. An animal that approaches a patch and finds food there will287

incorporate this information in their current representation of the patch. The288

proposal is that the new information is incorporated only imprecisely (e.g.,289

the learning rate varies; [50]). As a consequence, there is some imprecision in290

the estimated value of the alternative, leading to the possibility of a different291

(possibly suboptimal) alternative being selected when the choice is repeated. It292

has been argued that this imprecision helps to balance cognitive resources and293

accuracy in the face of uncertainty. Specifically, the random element stemming294

from the imprecision allows the animal to react to changes in the environment295
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without having to invest cognitive resources in the monitoring of such possible296

changes.297

Stochasticity in behavioural implementation298

The final origin of probabilistic choice involves variability that occurs when a299

mental representation is mapped onto a choice (see bottom left of Figure 1).300

This type of stochasticity is sometimes referred to as response noise [33]. Two301

mechanisms have been discussed in the literature. First, probabilistic choice302

can be the result of comparative processes between the alternatives [51], with303

the degree of stochasticity being a function of how similar the computed values304

for the alternatives [e.g., Luce Choice Rule; 52].305

Second, choice can be probabilistic because the organism makes an imple-306

mentation error. In other words, the choice following from the computed values307

is not implemented correctly. A common approach implements this by intro-308

ducing a parameter that expresses the probability that the implementation fails309

[i.e., trembling hand error; 53]. Several factors that might lead to stochas-310

ticity in behavioural implementation (e.g., pressing the wrong button) have311

been discussed in the literature, including cognitive load [54], time pressure312

[53], and boredom [55].313

Concluding remarks and future perspectives314

Choice is one of the basic processes in cognition, and organisms provided with315

the same information about the available alternatives will not always make316

the same choice. Although the phenomenon of probabilistic choice is generally317

recognized as an important element of any model of cognition, it has com-318

monly been treated as a peripheral, unsystematic factor that interferes with319

and distracts from the process proper. Yet it appears that this view is slowly320
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changing. In this article, we have reviewed recent developments across multiple321

fields in the cognitive and behavioural sciences that acknowledge probabilistic322

choice and the associated stochasticity of cognitive processes to be a multi-323

faceted and theoretically interesting element that can play a substantive role in324

models of cognition. We have discussed both the possible functionality of prob-325

abilistic choice for decision-making and how it can be harnessed to test and326

refine models of cognition. Moreover, we have sketched a conceptual framework327

distinguishing three main origins of probabilistic choice: stochasticity within328

internal processing, reaction to uncertainty in the environment, and imple-329

mentation stochasticity. Our review offers several new avenues for researchers330

interested in probabilistic choice as well as general suggestions for cognitive331

modellers.332

The framework presented in the previous section illuminates the multi-333

ple sources that can contribute to probabilistic choice. More effort should be334

directed at understanding the multi-faceted nature of behavioural variability—335

and especially the nature of the processes that lead to probabilistic choice as336

well as their potential adaptive value. For example, although much work has337

elaborated how environmental uncertainty might be reflected in cognitive and338

neural processes, thus giving rise to probabilistic choice, it remains an open339

question to what extent different types of uncertainty might result in different340

patterns of probabilistic choice, trigger different cognitive processes, or require341

different types of adaptation (see Box 2). See the Outstanding Questions for342

more suggestions.343

On a more general level, we argue that measuring and analyzing patterns344

of probabilistic choice (and associated stochasticity) should become a core part345

of behavioural research. First, on an empirical level, researchers should take346



16 Probabilistic Choice

into account the complexity of probabilistic choice and its various possible ori-347

gins when designing experiments, and make sure that the aspects important348

for the model(s) in question can be controlled. Second, on a theoretical level,349

researchers should analyze the response distributions, as they can help to dis-350

tinguish between different cognitive mechanisms. Finally, on a methodological351

level, researchers should take into account observed patterns of probabilistic352

choice and contrast them with the model’s predictions. It’s high time to take353

probabilistic choice seriously.354
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Glossary544

Probabilistic choice: The empirical phenomenon that people given the545

same evidence do not always make the same choice. Also known as an546

‘inconsistent’ or ‘stochastic’ choice.547

Stochasticity: A property of an element (or collection of elements) in a548

model contributing unsystematic variability to the model’s predictions. It is549

usually implemented by assuming a random draw from a specified probability550

distribution.551

Transparent dominance: When the worst outcome of alternative A is552

better than the best outcome of alternative B, then alternative A transparently553

dominates B. In other words, A is clearly the better alternative.554

Stochastic dominance: When every possible outcome of alternative A555

is at least as likely under alternative B and one outcome is more likely under556

alternative A, then alternative A stochastically dominates alternative B.557

Trembling hand error: Trembling hand error assumes that—irrespective558

of the difference in subjective valuation between the alternatives in a choice559
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set—the alternative with the higher subjective valuation is selected with con-560

stant probability 1 − ϵ, where ϵ is the probability of making an error or that561

“the hand trembled.”562

Luce Choice Rule: This rule derives from the work of Duncan Luce and563

assumes that the probability of choosing alternative A is a function of the564

difference between the subjective valuation of alternative A and the sum of565

the subjective valuations of all alternatives in the choice set (including A).566

Box 1: Probabilistic choice in cognitive models567

Many formal cognitive models that accommodate the probabilistic nature of568

choice share a similar general structure, consisting of two components: a core569

component that specifies how the subjective value for each alternative is deter-570

mined, and a choice rule that derives a probability that each alternative is571

chosen.572

While both the core component and the choice rule have been used to573

incorporate stochasticity, most models use just one of the components—only574

a few assume stochasticity in both components. Proposals for how stochas-575

ticity can be incorporated in the core component vary considerably, from a576

straightforward Gaussian error term to a random process representing infor-577

mation accumulation. Most models incorporating stochasticity in the choice578

rule use one of four rules: Luce Choice Rule, softmax, probit, or the trembling579

hand error. In the first three, the predicted choice probability is a function of580

the relative evidence for each alternative. In the fourth, it is constant across581

different sets of compared alternatives.582

Both the different stochastic components and the many possible imple-583

mentations of stochasticity can, in principle, be combined in any way. This584

has resulted in a great heterogeneity of approaches to probabilistic choice in585
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cognitive models. Often, there is no principled approach as to which implemen-586

tation of probabilistic choice is employed in a given model. At the same time,587

this heterogeneity is not uniformly distributed across disciplines and fields:588

Assumptions and approaches seem to be clustered, further suggesting that589

they are guided by the specific conventions in a subfield rather than by general590

principles of cognition. This fragmentation suggests that probabilistic choice is591

often treated as an auxiliary aspect of the actual substantive theory of cogni-592

tion. In many cases, models are equipped with a stochastic component simply593

to “accommodate human choice stochasticity” [44, p. 41], without providing594

a functional and process-specific rationale, or based on a model comparison of595

various probabilistic components.596

Box 2: Types of uncertainty597

Three types of uncertainty can be distinguished: aleatory uncertainty, epis-598

temic uncertainty and ambiguity. Whereas aleatory uncertainty arises from599

objective physical features of the environment (e.g., the design of a die makes600

it inherently uncertain), both epistemic uncertainty and ambiguity arise from601

the agent’s limited information about the environment.602

Suppose a foraging animal knows that the current patch produces 10 berries603

and that there is a probability of 80% that they will be eaten by another604

animal. In other words, the animal knows the possible outcomes and their605

probabilities. Here, aleatory uncertainty would correspond to the animal being606

uncertain about whether there will be any food at the patch because there is607

an 80% chance that another animal has already eaten it.608

Now, suppose the animal knows that 10 berries can be produced but does609

not know the probability that they will be eaten by another animal. In other610

words, the animal knows the possible outcomes but not their probabilities.611



Probabilistic Choice 27

Here, epistemic uncertainty would correspond to the animal being uncertain612

about whether the food will be there because there is some possibility it has613

already been eaten.614

Finally, suppose the animal has limited information about the amount of615

food and the probability it will be eaten by another animal, such that the616

animal knows neither all possible outcomes nor how likely they are. Here,617

ambiguity corresponds to the animal being uncertain about both the amount618

of food that might be there and the probability that any food will be there. A619

related concept to ambiguity is uncertainty about known/unknown unknowns.620

The animal might have a set of hypotheses about what could interfere with621

the food supply, with each hypothesis being more or less likely. For example,622

the animal might think it is likely that another animal will eat the food, but623

that it is less likely that insects will interfere with the food source, and very624

unlikely that the weather will affect the supply. This is uncertainty about625

known unknowns. It is also possible that hypotheses are extremely unlikely626

and/or have not even been considered. This is uncertainty about unknown627

unknowns.628

Highlights629

Probabilistic choice has long been treated as peripheral to the core processes630

of decision-making. Recent developments challenge that view and instead631

highlight the possible importance of probabilistic choice for understanding632

cognition.633

First, probabilistic choice has been shown to have adaptive benefits for the634

organism.635
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Second, probabilistic choice (and the associated stochasticity) has been636

shown to serve as a diagnostic tool for testing, comparing, and refining637

cognitive models.638

Toward a more structured perspective on probabilistic choice, we propose a639

framework that distinguishes three origins of probabilistic choice: stochasticity640

in the internal processing, in reaction to uncertainty in the environment, and641

during implementation of internal computations into a behaviour.642

Outstanding questions643

• Do patterns of probabilistic choice differ depending on the origin of proba-644

bilistic choice? In addition to intuitive and analytic strategies of judgement,645

what other cognitive strategies can be distinguished based on their predicted646

response distributions?647

• Is the stochasticity that is due to internal processing the same that emerges648

in response to uncertainty in the environment? And how does the amount of649

uncertainty in the environment affect the amount of stochasticity in inter-650

nal processing? For example, how does the variability in memory retrieval651

change under uncertainty? Does memory retrieval become more stochastic,652

resulting in more probabilistic choice?653

• In light of the evidence that higher variability in neuronal firing is some-654

times associated with higher task performance [e.g., 56], what exactly is the655

mechanistic relationship between neural variability and probabilistic choice?656

• To what extent do different types of uncertainty result in different patterns of657

probabilistic choice, trigger different cognitive processes, or require different658

types of adaptivity?659

• What are the empirical rates of implementation stochasticity across different660

tasks?661
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