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What was once broadly viewed as an impossibility—learning from experimental data in economics—has
now become commonplace. Governmental bodies, think tanks, and corporations around the world employ
teams of experimental researchers to answer their most pressing questions. For their part, in the past two
decades academics have begun to more actively partner with organizations to generate data via field
experimentation. Although this revolution in evidence-based approaches has served to deepen the eco-
nomic science, recently a credibility crisis has caused even the most ardent experimental proponents to
pause. This study takes a step back from the burgeoning experimental literature and introduces 12 actions
that might help to alleviate this credibility crisis and raise experimental economics to an even higher level.
In this way, we view our “12 action wish list” as discussion points to enrich the field.

JEL Classification: A11, C91, C93

There is a property common to almost all the moral sciences, and by which they are distinguished
from many of the physical… that it is seldom in our power to make experiments in them. Mill
(1836, p. 124)

Unfortunately, we can seldom test particular predictions in the social sciences by experiments explic-
itly designed to eliminate what are judged to be the most important disturbing influences. Generally,
we must rely on evidence cast up by the “experiments” that happen to occur. Friedman (1953, p. 10)

Economists cannot make use of controlled experiments to settle their differences: they have to
appeal to historical evidence. Robinson (1977, p. 1319)

The economic world is extremely complicated. There are millions of people and firms, thousands of
prices and industries. One possible way of figuring out economic laws in such a setting is by con-
trolled experiments… like those done by chemists, physicists, and biologists… Economists have no
such luxury when testing economic laws. They cannot perform the controlled experiments of chemists
or biologists because they cannot easily control other important factors. Like astronomers or meteorol-
ogists, they generally must be content largely to observe. Samuelson and Nordhaus (1985, p. 8)

1. Introduction

The give and take between theory and data in the natural sciences is so ingrained in modern

thought that an integral part of the scientific method—that theories must be tested against
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experimental evidence—is now second nature. This fact, of course, was not lost on the icons of eco-

nomics, many of whom felt compelled to express their anguish by comparing empirical approaches

across the social and natural sciences. The common thread in the epigraph musings is that if econo-

mists desire to do experimentation they should choose another practice, and if they want to engage

in empirical economics, they should start looking for available naturally occurring data. This is pre-

sumably because the writers believed that it was impossible to collect/learn from experimental data

in economics. These general feelings were shared ubiquitously throughout the 19th and 20th centu-

ries, as extracting knowledge from historical data and personal introspection represented the pri-

mary source, and indeed in most cases the sole source, of new empirical knowledge in economics.

The economic landscape is changing. In the past several decades constructing new approaches

to generate data have opened up several avenues for a fresh approach to understanding the eco-

nomic relationship of theory and data. Whether by lab or by field, the popularity of experiments in

economics has steadily increased, in large part due to the advantages they offer in identification,

control, statistical inference, and interpretability. Properly constructed experiments take the analyst

beyond measurement, into the “whys” of the causal relationship. It is often within these “whys”

where the deep theoretical understandings or the key policy takeaways reside (see, for example, List

2004b on using field experiments to understand the nature of discrimination observed in markets).

While many would consider using randomization in the lab and the field as an unequivocal

success in moving economics to a new scientific level, recently critics in the broader social sciences

have called for the movement to proceed more cautiously. As Maniadis, Tufano, and List (2017)

point out, an active debate has surfaced that claims there is a “credibility crisis” in several scientific

disciplines, including psychology (Nosek, Spies, and Motyl 2012), management (Bettis 2012), and

several branches of the biological and human sciences (e.g., Jennions and Møller 2003; Ioannidis

2005). Although the crises take many forms, one common widespread concern revolves around

reproducibility, with the rate of “false positives” representing a particular concern.

This literature motivated us to step back from the evidence-based movement and ask a simple

question: If we could gather social scientists in a room and had the goal of enhancing knowledge

discovery, what advice would we give to experimental researchers? This thought experiment yields

a wish list of 12 things that we hope experimental economists will do more of in the future. We

group our list of 12 recommendations into three bins. We begin with the decision concerning what

data to acquire to ensure the generalizability of our results. We proceed to discuss best practices to

generate informative and credible evidence via experimentation. We conclude with ways to inter-

pret, build on, and scale the initial experimental evidence to make it useful and relevant for practi-

tioners. We represent these bins by three broad questions below.

i. What data should we acquire? We begin by calling researchers to carefully consider the general-

izability of their findings not only after the analysis stage, but already when making the data

acquisition choice. To facilitate this approach, we highlight systematic threats to generalizability

in experiments. These considerations prompt us to advocate for running more field experiments,

especially natural field experiments (NFEs). We do so not only because NFEs are relatively new

compared to many other empirical approaches, and therefore much ground is untrodden, but also

because they provide a unique mix of desirable features—randomization and realism—that other

approaches have difficulty combining by their very nature. This bin concludes with a call for

using lab and field experiments (as well as naturally occurring data) as complements in the evi-

dence generation process. This is important because they each provide different parameters of

interest (see Al-Ubaydli and List 2015) and address the aforementioned threats differently.
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ii. How should we generate data and interpret information from experiments? This second bin col-

lects considerations for the design and analysis of experiments to make our results more infor-

mative and credible. We first highlight the dangers of over-reliance on p-values for inference,

and discuss alternatives. Complementing that interpretational question is a discussion of proper

replication. Replication was a leg of the Fisher (1935) experimental tripod and represents a sig-

nature issue within the credibility revolution that we simply echo here, alongside recommenda-

tions for incentivizing replications. Our second bin also includes four design elements that

critically determine what, and how much, we can learn from the data generating process: ade-

quately considering statistical power in the design phase; adjusting for multiple hypothesis test-

ing (MHT; a common reason for false positives) not only in our data analysis but also in our

designs; using blocked randomization to increase power and ensure balance; and understanding

heterogeneity through within-subject variation when necessary and appropriate.

iii. How can we produce evidence that is relevant for policy making? Our last bin revolves

around how experimentalists can most usefully assist policy makers. Perhaps surprisingly,

this discussion begins with advocating for a deeper use of theory to motivate designs by

going beyond typical A/B tests. This approach importantly allows the analyst to determine

the “whys” behind a result, leading to more effective policies. In addition, it helps to main-

tain fidelity of the program when policymakers scale the intervention. Scaling needs science

in and of itself, and that science should be considered early in the experimental design

phase. Complementing this discussion is a plea for experimentalists to go beyond measure-

ment of short-run substitution effects to focus also on long run effects—these are behavioral

effects that policymakers find of great import but are often not provided in the literature.

In order to help the reader to better navigate the article, we include here a summarized list of

our 12 suggestions.

i. Appropriately consider generalizability, across the lab and the field. We provide a frame-

work for assessing the generalizability of experimental results, that is, whether the result

continues to hold when some variable in the experiment is changed. We identify threats to

generalizability in the following areas: the characteristics of the experiment itself, subjects’

participation and compliance decisions, and the representativeness of the sample.

ii. Do more field experiments, especially NFEs, because they are uniquely suited to deal with

many of the threats to generalizability outlined in section 3.1, and because they provide

unique control over the participation decision.

iii. Use lab and field experiments as complementary approaches in the production of scientific

knowledge. We recommend that researchers choose the type of experiment that is the best fit

for the scientific question at hand, taking into account the level of control on the task, the gener-

alizability, and the costs, and also combine different types of experiments for the best results.

iv. For proper inference, go beyond p-values. This includes recognizing the importance of statis-

tical power to avoid false negatives and effect inflation. We suggest adopting a Bayesian

framework of inference that explicitly considers the priors (of researchers and/or the research

community) about the studied phenomena.

v. Replicate early and often. Replication should be an integral part of the experimental process,

but in reality it remains rare. We show the value of replication in a Bayesian framework, and

discuss possible ways to incentivize researchers to conduct replication studies.

The Dozen Things Experimental Economists Should Do 373
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vi. Consider statistical power in the design phase. Rather than ex post power calculations, we

advocate for taking power seriously ex ante. To assist this process, we provide an overview

of practical issues related to sample size calculations.

vii. Adjust for MHT, in power tests and in data analysis. The practice of simultaneously con-

ducting multiple comparisons is widespread in the experimental literature, and can lead to

high false positive rates. We discuss different methods to deal with this challenge, and focus

in detail on controlling the family-wise error rate.

viii. Use blocked randomization to increase power and credibility. When baseline characteristics

of the participants are observable, researchers should utilize this information when they

assign subjects to treatment through blocked randomization. This practice can increase the

power of the study—and allow the researchers to signal which dimensions of heterogeneity

they find ex ante important. We also discuss methods other than randomization for treatment

assignment.

ix. Use within-subject designs when appropriate. In cases when potential biases from learning

or sensitization do not pose a serious threat, researchers should consider using a within-

subject design (in which the same subject is exposed to multiple treatments sequentially), as

it often yields greater statistical power than between-subject designs, and may help reveal

heterogeneous treatment effects.

x. Go beyond A/B testing by using theoretically guided designs. Incorporating economic theory

into the design of experiments allows researchers to explore the underlying mechanisms that

cause an effect, to estimate structural parameters, to conduct welfare analysis, and to better

capture general equilibrium (GE) and spillover effects.

xi. Focus on the long run, not just on the short run. Measuring the long-run effect of treatments

is crucial for return on investment (ROI) calculations, and for adequately estimating welfare

and GE effects.

xii. Understand the science of scaling ex ante and ex post. We argue that scaling should be

treated as a scientific problem in its own right. We provide a framework that incorporates

the ideas expressed throughout this article, allowing researchers to “backward induct” and

address potential threats to scalability already in the design of experiments.

We contend that many of the questions discussed in this article are not restricted to experi-

ments; the issues of generalizability, causal inference, replication, power, correcting for MHT, the

use of theory, measuring long-term effects, and so forth are relevant for applied economics

research more generally. Moreover, despite our usage of the term “experimentalists,” we do not

view the experimental method as confined to a subset of the profession. Rather, we believe exper-

iments may serve as a helpful tool for economists who are active in any field, given the right cir-

cumstances. Therefore, we hope that our article can be informative not only for those scholars

who are already engaged in conducting experiments, but for any economist who has ever consid-

ered running one.

The remainder of our study proceeds as follows. The next section presents preliminaries and sets

the stage for the development of our three bins. We then describe our views on what data to acquire,

how to generate data and create useful information via experimentation, and how to interpret, build

on, and scale the initial experimental evidence. This discussion yields our dozen ideas that we hope

experimental economists will do more of in the future. Throughout the article, we point our readers to

inspiring examples of experiments that engage in the practices we advocate for. We conclude with

summary thoughts.
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2. Preliminaries: Experiments, Estimation, and Randomization

This section offers an overview of the most relevant concepts to be applied throughout the arti-

cle (readers familiar with the inferential basics of economic experiments may wish to skip this over-

view, and start directly at section 3.1). We begin by defining our subject of interest. In principle, we

consider an experiment broadly: A study that generates primary, or original, data in a controlled

environment. This inclusive definition permits the original studies of early experimentalists to be

classified as experiments as well as important studies that exploit controlled environments but use

nonexperimental variation as the primary means of identification.1 Although we view experiments

broadly, for the purposes of this study, we take a narrower definition of experiment by considering

only those studies where researchers generate primary data by using randomization to identify a

causal relationship.2 Accordingly, there is a clear difference between these type of data and data

obtained from so-called natural experiments, where subjects are randomly allocated to different

treatment groups by a process outside of the researcher’s control (such as the draft lottery in Angrist

1990); or from quasi-experiments, in which subjects are not randomly assigned to treatments

(Greenstone and Gayer 2009). The interested reader can find more on the different types of experi-

ments in Shadish, Cook, and Campbell (2002).

In the following, we present a framework intended to guide our discussion of experiments, for-

malizing the most important concepts used in the article. Individual i has covariates xi. The experi-

ment has characteristics ω, where ω includes the subject population (university students, CEOs,

etc.), context (artificial vs. natural), time horizon (long vs. short), and other characteristics. The

experiment consists of the following stages:

• Let pi be an indicator variable for the participation decision such that pi = 1 if subject

i chooses to participate in the experiment, and pi = 0 otherwise.

• Let zi denote assignment to treatment. For example, zi = 1 if student i is assigned to a small

class size (zi will be random in the experiments we discuss).

• Let di be the treatment status, which is the treatment individual i actually receives

(e.g., di = 1 if student i actually attends a small class). Note that it is possible that zi and di
are different.3

• Let yi1 be the outcome of interest (e.g., the child’s test scores) when treatment status is di = 1,

and yi0 when treatment status is di = 0.4

1 Examples include studies that, instead of comparing outcomes between a treated and a control group, make comparisons
along pre-existing traits of their subjects, such as their gender, age, religion, occupation, and so forth. Consider, for instance,
Koudstaal, Sloof, and Van Praag (2015) who study differences in risk attitudes among entrepreneurs, managers, and
employees.

2 Our definition is in the spirit of Shadish, Cook, and Campbell (2002), who define an experiment as “a study in which an
intervention is deliberately introduced to observe its effects,” and a randomized experiment, in addition, must be such that
“units are assigned to receive the treatment or an alternative condition by a random process.”

3 There are two possible cases: (i) The subject is assigned to a treatment z, such as a voucher to enroll in training, that is of a
different nature than the treatment status, which is whether the subject actually enrolled in treatment. In that case, Z 6¼ D.
(ii) Alternatively, the subject is assigned to a treatment z, which is already one of the potential treatment statuses. For exam-
ple, the subject is assigned to a training course z = 1 or not z = 0. Subjects can still opt in (d = 1) or out (d = 0) of the train-
ing course, and in this case Z = D.

4 Our framework follows the tradition of Rubin (1974), which can traced back to the work of Jerzy Neyman; see also Freed-
man (2006).
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We follow the potential outcomes framework, in which an individual i has outcome yi1 in the

treated group and yi0 in the control group. Ideally, when conducting an experiment, researchers

would like to measure individual treatment effects for each individual i, yi1 − yi0, which is the dif-

ference in outcomes for individual i being in the treated versus the control group. In practice, of

course, they cannot observe both of these outcomes; instead they can only observe individual out-

comes in one of the treated states, and the counterfactual outcome in the other state remains

unobserved. Instead of individual treatment effects, researchers therefore usually consider the Aver-

age Treatment Effect (ATE), given by τ* =E yi1−yi0½ �. The ATE measures the average difference in

the outcomes for the population. The ATE τ* is not directly observable either; instead researchers

estimate τ, defined as:

τ =E yi1jdi = 1½ �−E yi0jdi = 0½ �:

Estimate τ measures the difference between the average effect of the treatment on those who

were treated and the baseline average outcome of those who were not treated. As it will become

clear below, when: (i) d is randomly assigned, (ii) subjects do not opt in or out of their assigned

treatments, and (iii) potential outcomes of an individual are unrelated to the treatment status of any

other individual, then τ = τ*.5 Note that the ATE does not allow researchers to estimate the percen-

tiles of the distribution of treatment effects, or other moments such as the variance (we discuss esti-

mating heterogeneous treatment effects in section 3.9) and, unlike measures based on percentiles

such as the median, the ATE is sensitive to outliers, observations whose value greatly differs from

the rest (Deaton and Cartwright 2018). Note also that the “experiment population” is not necessarily

a random sample of the entire population and may be selected according to observables; in that

case, we only learn the effect of the treatment on the particular subpopulation from which the sam-

ple is drawn (Duflo, Glennerster, and Kremer 2007), an issue we discuss in detail in section 3.1.

In the absence of randomization, researchers estimate

τ =E yi1jdi = 1½ �−E yi0jdi = 0½ � =E yi1−yi0jdi = 1½ �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ATE on the treated

+E yi0jdi = 1½ �−E yi0jdi = 0½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
selection bias

:

A nonzero selection bias term in the previous equation indicates that those who select into

treatment are different in the untreated state from those who do not sort into treatment. This hap-

pens, for example, if smokers who are more motivated to quit are more likely to enroll in a smoking

cessation treatment than those who are unmotivated: in such a case, we end up with program partic-

ipants who are inherently different (more motivated) than those who did not take up the program,

leading to a biased (in our case, overoptimistic) estimate of the program’s effect on quitting. In

order to rule out selection bias, it is necessary to make certain assumptions, such as the Conditional

Independence Assumption (Rosenbaum and Rubin 1983):

yi0,yi1f g?? di j xi,

which claims that the outcome in each state and the assignment to treatment for a given individual are

independent conditional on the observable covariates. Intuitively, the Conditional Independence

5 The third assumption is the “Stable Unit Treatment Value Assumption” (Angrist, Imbens, and Rubin 1996; Duflo,
Glennerster, and Kremer 2007), which assumes away any spillover effects.
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Assumption means that conditional on the observables xi, the assignment to treatment is as good as ran-

dom, and it implies that E[yi1| xi,di = 1]−E[yi0| xi,di = 0] = E[yi1− yi0| xi], and therefore that τ = τ*.
Crucially, random assignment to treatment automatically implies the Conditional Independence

Assumption and hence solves the issue of selection bias (Duflo, Glennerster, and Kremer 2007). As

such, the most important reason why researchers (not just economists) use randomization is because

it allows causal inference under potentially weaker assumptions than alternative methods.6 Random-

ization serves as a novel instrumental variable (IV), balancing unobservables across control and

treatment groups (Al-Ubaydli and List 2013).7

Studies based on random assignment also have the advantage of being easily replicable, in

contrast to methods that rely on baseline covariates to assign treatments without randomization.8

Random assignment can also deal with three challenges related to practical implementation and fea-

sibility: First, it prevents the experimenter from allocating subjects to treatment and control in ways

that would bias the results (e.g., politicians assigning their constituents to a “schooling” treatment,

or physicians assigning patients with higher perceived need to treatment). Second, it provides a

credible way to measure treatment effects because it allows for a straightforward calculation of

mean differences between the treatment groups where researchers have little leeway. Third, random-

ization is crucial in instances when fairness and transparency are a concern, because it insures

against favor/discrimination towards particular groups.9

Though applied economists typically use conventional, sampling-based tests to analyze data

from experiments, random assignment to treatment also allows for the construction of exact tests

that do not rely on assumptions about the sample size or the error structure (Young 2019). In

essence, randomization-based inference treats subjects’ potential outcomes as fixed, and considers

their assignment to treatment as random—an approach better fit for analyzing experimental data

than sampling-based inference that assumes that treatment assignment is fixed, outcomes are ran-

dom, and subjects are drawn from a much larger population (Athey and Imbens 2017a). A draw-

back of randomization-based inference is that it provides an exact test of a sharp null: one that

specifies a precise treatment effect for each participant (Young 2019). Rather than testing whether

the ATE was zero, this approach only allows us to test the null hypothesis that the treatment had no

effect on any participant at all—a null that Young (2019) considers stringent but not unreasonable.

To conclude, while randomization does not solve all (theoretical or practical) problems related

to causal inference, when proposing alternatives to randomization in experiments, researchers

should be very precise about the exact details of the alternative they propose, or else they run the

risk of underestimating the value of experimentation (Senn 2013).

Throughout our article, we follow the taxonomy for experiments developed by Harrison and

List (2004), who identify four general categories, as summarized in Table 1.10 Laboratory experi-

ments study university students as subjects in an artificial environment that is, the lab. For example,

6 A recent study suggests that in the presence of non-i.i.d. errors, IV estimates can have lower power than usually assumed,
and a reassessment of published work suggests that statistically significant IV results depend heavily on a few observations,
and provide little statistical evidence of a bias in ordinary least squared estimates (Young 2017). These issues typically do
not arise in a well-designed randomized experiment.

7 For a discussion of some popular nonexperimental methods, and their comparison to experiments, see Duflo, Glennerster,
and Kremer (2007). For a comprehensive discussion of the problems of randomization, see Deaton and Cartwright (2018).

8 We return to the topics of replicability in section 3.5 and optimization-based methods (e.g., Kasy 2016) in section 3.8.
9 Note that methods other than randomized experiments can achieve this goal too, see Deaton and Cartwright (2018); Kasy
(2016); Banerjee, Chassang, and Snowberg (2017b). We discuss scaling up further in section 3.12.

10 See also Karahanna et al. (2018) for a related discussion on the online variants of experiment types.
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Goeree and Holt (2001) have university students play a series of games, showing how the predictive

power of the Nash equilibrium is not robust to (supposedly innocuous) changes in payoffs in those

games. Artefactual Field Experiments (AFEs), also known as lab-in-the-field, share most of the

characteristics of lab experiments (such as having an artificial environment), but use the relevant

population of interest as subjects. For example, Levitt et al. (2009) observed chess players at two

international open tournaments to gather data on strategic behavior on some well-known games.

Framed Field Experiments (FFEs), like AFE, use the relevant population as subjects, but take place

in a natural environment, such as the market, school, hospital, and so forth. For example, Gosnell

et al. (2017) incentivized airline captains to improve efficiency and save fuel (via performance infor-

mation, personal targets, and prosocial incentives), and the pilots were aware that an experiment

was taking place. Note that all three types of experiments described above are overt: subjects are

aware of being part of an experiment.

In contrast, NFEs are covert: They study the relevant population in a natural setting and, cru-

cially, subjects are not aware of being part of an experiment, setting NFE apart from the other types

of experiments, as we discuss further below. For example, Hallsworth et al. (2015) randomized the

letters sent to individuals who had debt obligations with the government in United Kingdom (the

treatment group had an extra sentence that informed them that refusal to pay would be considered

as an active choice). In this case, subjects belonged to the relevant population and were in a natural

context; moreover they were not aware of being part of an experiment.11

In sum, we can define the relevant estimates from lab, AFE, FFE, and NFE as:

τlab =E τ j i2U ,e =A, t =O,p= 1½ �,
τAFE =E τ j i2 S,e =A, t =O,p= 1½ �,
τFFE =E τ j i2 S,e=N , t =O,p= 1½ �,

τNFE =E τ j i2 S,e=N , t =C½ �,

where U and S refer to students versus a special population, the environment e can be artificial (A)

or natural (N), the type t of experiment can be overt (O) or covert (C), and p indicates the presence

or absence of an active decision to participate in the experiment.

With these preliminaries mind, we turn to the dozen things we hope experimentalists do more

of. Although there is no inherent ordering by importance of our 12 ideas, we attempted to group

the topics loosely by what data to generate, how to efficiently generate and interpret the data, and

how to give the most informative advice to evidence-based policymakers.

Table 1. Summary of the Characteristics of Each Type of Experiment

Lab AFE FFE NFE

Population we study U S S S
Environment A A N N
Type of awareness O O O C
Who do we observe? pi = 1 pi = 1 pi = 1 All

Notes: Population can be university students or the special population of interest. The environment can be artificial or natural.
The experiment can either be overt or covert.

11 Randomized controlled trials (RCT) would fall under either the FFE or the NFE classification, depending mainly on
whether subjects are aware of being part of an experiment or not.
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3. Dozen Things

3.1 Appropriately Consider Generalizability, across the Lab and the Field

When designing an experiment, researchers need to balance two key aspects that determine

the value of their contribution to science and policy. One aspect is correct statistical inference,

including internal validity (the property of being able to identify the parameters of interest in a

given design) and informativeness (how much a result can change the prior of the scientific commu-

nity). The second is generalizability (also known as external validity): whether a causal relationship

continues to hold when subjects, context, location, or treatment details are modified (Shadish, Cook,

and Campbell 2002). In what follows, we use the term generalizability instead of external validity,

following Harrison and List (2004). This section outlines a framework for discussing threats to gen-

eralizability, building on the basic ingredients introduced in the Preliminaries. In the two sections

that follow, we then use this framework to evaluate the different types of experiments (laboratory,

artefactual field, framed field and NFEs) as defined in the Preliminaries.

The question of generalizability has long been studied in the social sciences, but has been

often obfuscated, especially in nonexperimental research, by the more pressing problem of internal

validity (Al-Ubaydli and List 2013; Deaton and Cartwright 2018). Although internal validity is nec-

essary for generalizability, it is not sufficient (Duflo, Glennerster, and Kremer 2007). In economics,

the “Lucas critique” (Lucas 1976) famously tackled the issue of generalizability, by arguing against

econometric policy evaluations that failed to recognize that agents’ behavior varies systematically

with changes in policy.12 More recently, a new literature on “generalizability theory” has grown

within psychology and economics (Briggs and Wilson 2007; Higgins and Thompson 2002; Al-

Ubaydli and List 2013).13 However, the topic of generalizability still requires more attention in our

field: In a survey of RCTs conducted in developing countries and published in leading economics

journals, Peters, Langbein, and Roberts (2018) found that most of the articles did not discuss poten-

tial threats to generalizability, and argued for the peer review process to explicitly consider design

features that would be relevant for generalization.

In order to improve generalizability of research findings, it is useful to classify the potential

threats to generalizability according to their causes. We have identified four potential threats to gen-

eralizability: interaction between treatment and other characteristics of the experiment, selective

noncompliance, nonrandom selection into the experiment, and differences in populations.

Threat I: Characteristics of the Experiment

Characteristics inherent to the experiment can inadvertently affect outcomes and thus compli-

cate the interpretation of results. In all experiments, y will be affected by the elements of ω, such as

scrutiny, stakes, the time horizon of the intervention, and the environment (artificial or natural;

12 In particular, the Lucas critique censured using estimates from past data to forecast the effects of a new policy, because the
behavior of the agents will change in response to the implementation of the new policy, invalidating those estimates
(Ljungqvist 2008). The interested reader will also find Goodhart’s Law and Campbell’s Law as two social science
contemporaries.

13 See Briesch et al. (2014) for an introductory article to generalizability theory. Vivalt (2017) used techniques from generaliz-
ability theory to perform a meta-analysis of 20 types of intervention in economic development, collected from 635 papers,
and found that results are more heterogeneous than in other fields such as medicine. Within generalizability theory, there is
also an intriguing approach that attempts to generalize by establishing networks of causality (Bareinboim and Pearl 2013).
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Deaton and Cartwright 2018). As such, it may not be possible to generalize our estimates to settings

where those parameters are different.14 Overt experiments, in which subjects are aware of being part

of an experiment (such as lab experiments, AFEs, and FFEs) are particularly prone to this threat to

generalizability. The high level of scrutiny present in overt experiments may induce “experimenter

demand effects,” such that subjects attempt to behave in the way they believe the experimenter

wants them to (Quidt, Haushofer, and Roth 2018). Additional threats include Hawthorne and John

Henry effects.15 Several experiments studying for example, pro-social behavior have demonstrated

that scrutiny can indeed affect participant behavior (Bandiera, Barankay, and Rasul 2005; List

2006b; Benz and Meier 2008; Alpizar, Carlsson, and Johansson-Stenman 2008).16

Threat II: Selective Noncompliance

We define as noncompliance instances when subjects end up, either by omission or by com-

mission, receiving a different treatment than what they were initially assigned to. Noncompliance is

especially problematic when subjects actively change their treatment, for example, because they

derive higher utility from a different treatment than the one they were assigned to, causing what is

known as a selection problem (Heckman 2010, see also footnote 3).17 Let Z be the set of assign-

ments to treatment in the experiment, and D the set of treatment statuses in the experiment, so that

zi 2 Z and di 2 D. In the most general framework, subject i is assigned to treatment zi, and there is

a selection function that determines which treatment status di the subject ends up with. For example,

subject i has di = argmax d̂i2Du xi,ω, d̂i
� �

−C xi,zi, d̂i
� �

, where u(xi,ω,di) is the subject’s utility of

being in treatment status di, and C(xi,zi,di) is her cost of choosing di conditional on being assigned

to zi. In these cases, the researcher assigns zi, and then the subject chooses di to maximize her utility

net of switching costs.18 As a result, we may observe zi 6¼ di for some individuals. In the case of

imperfect compliance, we have that τ* =E yi1−yi0½ � 6¼E yi1jdi = 1½ �−E yi0jdi = 0½ �= τ.
When researchers cannot obtain the ATE due to noncompliance, they can instead estimate the

“Policy Relevant Treatment Effect” (which, in the case when zi is uncorrelated with yi, coincides

with the “Intention to Treat Effect” (ITT), Heckman 2010). The ITT might be the relevant estimate

in some situations, because it provides researchers with a measure of how much the intervention

“converts” into outcomes, as it considers the difference in outcomes between those who were

14 Notice that the definition of the ATE for the different types of experiments (τlab, τATE, τFFE, and τNFE, presented in the pre-
liminaries) all depend on ω, the characteristics of the experiment.

15 The Hawthorne effect is defined by the Oxford English Dictionary as “an improvement in the performance of workers
resulting from a change in their working conditions, and caused either by their response to innovation or by the feeling that
they are being accorded some attention”; for a review and a re-analysis of the data from the original Hawthorne experiment,
see Levitt and List (2011). The John Henry effect refers to subjects exerting greater effort because they treat the experiment
like a competitive contest (Horton, Rand, and Zeckhauser 2011).

16 Camerer (2015) argues that scrutiny is not likely to affect subject’s behaviors, based on the fact that subjects cannot usually
guess the purpose of the study (Lambdin and Shaffer 2009), or that people are also usually observed when making real-life
economic decisions (Falk and Heckman 2009). However, we believe that the scrutiny in overt experiments is of a much
higher degree than what subjects normally experience, and that it likely affects behavior directly, even if subjects cannot cor-
rectly guess the purpose of the study.

17 We highly recommend the recent paper by Kowalski (2018), who argues that rather than considering it a nuisance,
researchers could treat this type of selection as a useful source of information that (combined with certain assumptions) can
speak to the external validity of their experiment.

18 Note that whether subjects solve this maximization problem ex-ante (so that they sort into treatment groups) or ex-post
(they switch treatment groups) can have consequences for estimation (Heckman 2010).
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initially assigned to treatment and the control group, irrespective of whether they complied with

their treatment assignment. Researchers can also estimate the “Local Average Treatment Effect”

(LATE; Angrist and Imbens 1994):

LATEp= 1 =E yi1−yi0jωFFE ,di zi = 1ð Þ = 1di zi = 0ð Þ = 0,pi = 1
� �

, ð1Þ

where pi refers to the decision of participating in the experiment (see Preliminaries). The LATE

measures the ATE for individuals induced into treatment di = 1 by a change in zi (Heckman 2010).

Note, however, that the ATE measured by the LATE is only valid for that particular subpopulation

(the compliers), and might differ from the ATE for the whole population, limiting its

generalizability.19

An extreme case of noncompliance would be attrition, in which subjects leave the experiment

(and their outcomes are therefore no longer observable to the experimenter). Although random attri-

tion only reduces power, attrition that is not random can bias the results (Duflo, Glennerster, and

Kremer 2007), for example when those individuals who are the most motivated leave the experi-

ment if they are not assigned to a certain treatment. The best approach to solving inference prob-

lems related to attrition is to design the experiment in a way that allows researchers to track

subjects even if they leave the experiment (for more details, see Duflo, Glennerster, and Kremer

2007), or to conduct a NFE.

Threat III: Nonrandom Selection into the Experiment

As we have seen in the Preliminaries, treatment effect estimates from lab experiments, AFE

and FFE are only valid for those individuals who select into the experiment (those with pi = 1). The

ability of these experiments to identify parameters of interest thus depends on assumptions about

individuals’ decision to select into the experiment. When participation in the experiment is not ran-

dom but instead is the result of a cost/benefit analysis by the subjects, participation bias may arise

(Al-Ubaydli and List 2013; Slonim et al. 2013).

Recall that the parameter of interest is the ATE for the whole population: τ* =E y1i−y0i½ �.
Overt experiments, however, provide the following estimate: E[y1i− y0i|pi = 1]. The ATE τ* is given

by: τ* =P pi = 1½ ��E y1i−y0ijpi = 1½ � +P pi = 0½ ��E y1i−y0ijpi = 0½ �: Because P[pi = 0] = 1−P[pi = 1], we

can compute the participation bias:

E y1i−y0ijpi = 1½ �−E y1i−y0i½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
participation bias

= P pi = 0½ �× E y1i−y0ijpi = 1½ �−E y1i−y0ijpi = 0½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
treatment specific selection bias

0
B@

1
CA: ð2Þ

In other words, participation bias is the product of the probability of not being in the experi-

ment P[pi = 0] and the Treatment Specific Selection Bias (which is analogous to the classical selec-

tion bias, except that the selection is with respect to participation in the experiment, Al-Ubaydli and

List 2013).20

19 For a more detailed account of LATE, and the conditions for its use, see Angrist and Imbens (1994) and Heckman (2010).
20 When researchers’ goal is to obtain the Intent-to-Treat (ITT) or the ATE on the Treated (ATT) estimates, participation bias

presents less of a problem, in the sense that researchers are interested in estimating effects for those who choose to partici-
pate in the experiment anyway.
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Because in general P[pi = 0] is very large (usually close to 1), the bias in the estimate will be

determined mainly by the Treatment Specific Selection Bias, a fact anticipated by Slonim et al.

(2013). Participation bias does not present a problem in overt experiments when E y1i−y0ijpi = 1½ �≈
E y1i−y0ijpi = 0½ �. This happens when pi is independent of yi, either because selection does not

depend on xi, or because selection depends on some subset of xi which is in turn independent of yi.

The following condition for overt experiments guarantees that the Treatment Specific Selection Bias

will be zero21:

yi0,yi1f g?? pi j xi Generalizability Independence Condition GIC½ �ð Þ:

Note that participation bias can arise even if one is conducting a standard lab experiment and

the effect we are looking for can reliably be found in university students, in an artificial environ-

ment, with low stakes and with scrutiny (so the first threat to generalizability is not a concern), and

even if zi = di for all individuals (so the second threat to generalizability is not a concern either).

Slonim et al. (2013) found that, from a population of roughly 900 university students, those who

selected into lab experiments had less income, more leisure time, more interest in economics and

were more pro-social in the dimension of volunteering, all of which are consistent with participation

being the result of a cost/benefit decision. Moreover, risk averse individuals might be less likely to

enroll in an experiment (Al-Ubaydli and List 2013; Heckman 2010). Participation bias may also

arise in the field, because organizations who agree to collaborate with researchers in an experiment

are usually exceptional (Banerjee et al. 2017a). Consider the example of Behaghel, Crépon, and

Barbanchon (2015), where French firms could opt into an experiment that randomly anonymized

the resumes they received from job applicants. The experiment yielded the counterintuitive result

that anonymizing resumes hurt minority applicants at the selection stage. The authors point to self-

selection into the experiment as an explanation: Their program likely attracted firms that already

tend to treat candidates who belong to minorities better, and anonymization prevented these selected

firms from treating minority candidates more favorably during the experiment.

When the independence condition does not hold (as in Behaghel, Crépon, and Barbanchon

2015), researchers must explicitly consider selection into the experiment, in order to derive general

conclusions. Alternatively, researchers could conduct NFEs that bypass the selection problem by

design and thus allow to recover E[y1i− y0i] without further assumptions (Al-Ubaydli and List

2013). In this sense, contrary to conventional wisdom, field experiments have the potential for more

control, and not less, than lab experiments. We return to this point in section 3.2.

Note that even when researchers manage to recruit a sample that satisfies the Generalizability

Independence Condition above (i.e., pi is not correlated with outcomes), they can still only general-

ize to pi = 0 for the subpopulation they draw subjects from, but not necessarily to other populations

(Deaton and Cartwright 2018). For example, if researchers managed to collaborate with an NGO

that has access to a large and representative sample of the population in California (so that the Gen-

eralizability Independence Condition [GIC] holds), they might able to generalize to those with pi = 0

in California, but not necessarily to the population of Massachusetts or France. This leads us to for-

mulate our fourth threat to generalizability: differences in the populations.

21 This condition is similar in spirit to the conditional independence assumption (Rosenbaum and Rubin 1983).
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Threat IV: Different Populations

Besides characteristics of the experiment (Threat I), we also need to consider how characteris-

tics of the population from which our participants are drawn may affect the generalizability of our

results. Even behavior in a stylized and simple game such as the Ultimatum Game exhibits substan-

tial heterogeneity across populations, as seen in a series of AFE conducted in small-scale societies

across the world (Henrich et al. 2001). Researchers thus need to discuss how a population different

from their experimental sample would react to the same treatment (Athey and Imbens 2017a).22

First, note that if the subject population was a random sample of the “population of interest,”

then the estimates of the ATE obtained in the experiment generalize to the entire population.23

Instead researchers often rely on “convenience samples” that are easily accessible to the research

team, but the estimates they provide do not necessarily generalize to the entire population (Duflo,

Glennerster, and Kremer 2007; Deaton and Cartwright 2018). This problem has been traditionally

exacerbated in lab experiments, where subjects are typically from so-called W.E.I.R.D. populations

(Western, Educated, Industrialized, Rich, and Democratic, Henrich et al. 2010a; Henrich and Heine

2010). The problem of nonrepresentative populations is pervasive in science and not confined to

economics: Subjects in randomized clinical trials for new drugs are not necessarily a random sam-

ple of the population of interest, but are often healthier individuals than the population who is

intended to use the drug.24

One especially important dimension of generalizability across populations is gender: either

across men and women, or from one gender to the entire population. Recent years have established

a rich and robust literature documenting gender differences in response to a variety of incentive

schemes, most notably along the dimensions of competition and risk (Croson and Gneezy 2009),

supporting the claim that conclusions drawn from the behavior of members of one gender are

unlikely to generalize to the other.25 The issue of gender becomes even more complex as we take

into account its interaction with other covariates. For example, there is evidence that women’s pref-

erences over competition change with age such that the gender gap in competition, while large

among young adults, disappears in older populations (Flory et al. 2018).

In sum, we urge researchers to carefully consider the limits to the generalizability of their

results, and to design their experiments in ways that tackle these four threats to the greatest extent

possible. Nevertheless, while generalizability is important to understand and model, we caution

against a needless self-destructive overreaction to the generalizability problem that may hinder sci-

entific pursuits. Taken to the extreme, no empirical exercise is perfectly generalizable, so the perfect

22 A related dimension to consider is heterogeneity in response to treatment across subjects in the study or in the population
from which the sample was drawn. We discuss ways to address heterogeneous treatment effect in later sections, through
blocking (section 3.8) and within-subject design (section 3.9).

23 We loosely define the population of interest as the population for whom we want to obtain the treatment effect estimate; for
example, the population targeted by a specific policy.

24 Travers et al. (2007) found that less than 10% of asthma patients surveyed qualified for a clinical trial of an asthma medica-
tion). For an interesting discussion of heterogeneity in clinical trials, we recommend listening to (or reading the transcript
of) the episode “Bad Medicine, Part 2” of the Freakonomics podcast.

25 Another very stark example concerns the case of clinical trials in the United States. In the late 1950s and early 1960s, a
drug called thalidomide caused birth defects in hundreds of newborns in a number of countries (Lenz 1988). Although tha-
lidomide was mostly avoided in the United States thanks to Frances Oldham Kelsey at the Food and Drug Administration
(Bren 2001), more stringent regulations were passed that summarily excluded women from participation in clinical trials
(Food and Drug Administration 1997, 2017). Partly as a consequence of those regulations, eight out of ten drugs pulled
from the market by the FDA in the years 1997–2000 had worse adverse effects for women (Heinrich 2001).
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should not be the enemy of the good.26 Keeping this balance in mind, in the next section we apply

our framework to NFEs, and show how they can mitigate or eliminate many potential threats to

generalizability.

3.2 Do More Field Experiments, Especially NFEs

This section builds on the framework developed in section 3.1 to discuss the advantages and

disadvantages of field experiments from the point of view of the generalizability of their results. We

first argue that NFEs, and to a lesser extent FFEs, are often less subject to the threats to generaliz-

ability than other types of experiments. We then discuss two typically raised objections to con-

ducting field experiments: lack of control and higher cost, and argue that many times such

arguments are confused.

The first threat to generalizability we identified in section 3.1 is the change in subjects’ behav-

ior by virtue of being in an experiment and feeling scrutinized: Hawthorne, John Henry, and experi-

menter demand effects are all commonly used terms describing such potential impacts. In case of

overt experiments such as lab, artefactual field (AFE) and FFEs, it is often impossible to rule out

these potential biases.27 On the other hand, the covertness of NFEs ensures by design that the envi-

ronment is natural and there is no sense of scrutiny beyond what is natural in the market of interest,

ruling out confounds resulting from a sense of being observed (Al-Ubaydli and List 2013). As a

result, there are fewer threats to generalization from direct correlation between yi and ω in NFEs. In

this sense, NFEs are well suited to studying potentially sensitive subjects, such as labor market dis-

crimination (Al-Ubaydli and List 2019).

Researchers conducting FFEs can potentially attenuate the threats to generalizability that result

from scrutiny by collecting data over a longer time period, a possibility we discuss in section 3.11.

Moreover, certain RCTs, including FFE, can potentially be carried out as single-blind studies where

subjects might be aware of being part of an experiment but not of the particular treatments: This is

the case when subjects in the control group are given a placebo treatment which they cannot distin-

guish from the actual treatment (Senn 2013). However, the fact that most economic experiments are

not double-blinded may introduce biases through the behavior of the researchers who perform the

data collection and statistical analysis: even when the participants themselves are not aware of being

treated, members of the research team are typically informed of subjects’ treatment assignment

(Deaton and Cartwright 2018).

The second threat to generalizability is selective noncompliance, that is, when the probability

of changing to another treatment group is different for those who were initially assigned to control

versus those who were initially assigned to treatment (e.g., in an experiment in which the treatment

group is assigned to exercise at the gym, members of the control group might decide to also exer-

cise at the gym). This challenge does not usually apply to lab experiments and AFEs, where

noncompliance with one’s treatment assignment is typically only possible through leaving the exper-

iment entirely (DellaVigna, List, and Malmendier 2012). Similarly, in NFE subjects are unaware of

being assigned to a certain treatment and are thus unlikely to actively try to change their

26 Journals constantly rejecting excellent empirical work on the basis of external validity concerns soon devolves to a reductio
ad absurdum.

27 It may be, however, possible to measure them: see Quidt, Haushofer, and Roth (2018) for a methodological approach to
bounding the experimenter demand effects.
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assignment. Switching to a different condition or opting out is often impossible by design (think of

Lyft consumers who are randomized into a high or low price for a ride—they receive that price and

decide whether to purchase, which is the outcome variable of interest). By their very nature, selec-

tive noncompliance is most likely to present problems in certain FFEs.28

The third threat to generalizability, that of nonrandom selection into the experiment, is an

aspect where NFEs gain significant attractiveness. By virtue of bypassing the experimental partici-

pation decision of subjects altogether, there is no selection by individuals into NFEs by design

(Al-Ubaydli and List 2013).29 In lab experiments, it might still be possible to avoid nonrandom

selection into the experiment. For example, Borghans et al. (2009) initially sought volunteers

(i.e., those with pi = 1) for their experiment among high-school students, although the experiment

was actually compulsory (and included the volunteers). This process avoids nonrandom selection

and also allows for measurement of participation bias, since the researchers know whether pi is 0 or

1 for all subjects in the population. However, in practice it is often inconvenient or impossible to

make participation in a lab experiments compulsory.

In sum, NFEs are less prone to biases stemming from nonrandom selection into the experi-

ment, including randomization bias (when subjects are averse to the act of randomization itself), as

well as systematic differences in the outcomes or compliance of those who select into the experi-

ment. However, there is an important caveat: even when subjects are unaware of the experiment,

there can be participation bias if the participation decision is made on their behalf. For example, if

firms selecting to participate in an experiment are such that their employees share a certain charac-

teristic that correlates with the outcome of interest (as in Behaghel, Crépon, and Barbanchon 2015),

the results from the experiment will only apply to employees of other similar firms. This is because

the GIC derived in section 3.1 is violated. In cases where the participation decision is made on

behalf of the subjects by another agent, the researchers need to carefully consider whether the GIC

holds. If it does not, then statistical interpretation should be adjusted accordingly. This may be the

case when the researchers need to collaborate with a number of small self-selected firms, but it can

be potentially alleviated when partnering with administrations or large firms who have access to a

representative pool of subjects.

The last threat to generalizability applies when we try to extrapolate the findings of one study

to a different population. Note that, in this regard, all field experiments (AFE, FFE, and NFE) offer

an advantage over traditional lab experiments, because they select the population S of interest by

design, which is usually different from traditional “W.E.I.R.D. university students” (Henrich et al.

2010b, see also the discussion of Threat IV in section 3.1), such as farmers, traders, entrepreneurs,

CEOs, physicians, and so forth. Absent participant selection, within field experiments, NFEs do not

have an inherent advantage over AFEs and FFEs, in the sense that the population selected S for an

NFE can still be very different from the population of interest S0, as would happen in AFEs and

28 For a mechanism design approach to solving this issue in FFE, see Chassang, Miquel, and Snowberg (2012).
29 See List (2008) on the ethical considerations behind informed consent. The discussion revolves around benefits and costs,

recognizing that for certain sensitive research questions, the subjects’ awareness of being part of an experiment may under-
mine the validity of the research (e.g., measuring the nature and extent of gender or race based discrimination). As List
(2008) writes: “This does not suggest that moral principles should be altogether abandoned in the pursuit of science. Quite
the opposite: The researcher must weigh whether the research will inflict harm, gauge the extent to which the research bene-
fits others, and determine whether experimental subjects chose the experimental environment of their own volition and are
treated justly in the experiment. Local Research Ethics Committees and Institutional Review Boards in the United States
serve an important role in monitoring such activities.” We would like to emphasize that research can (and should) make par-
ticipants better off and benefit society, while preserving anonymity and not posing a risk to subject’s well-being.
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FFEs. However, NFEs offer a potential advantage because, by collaborating with large entities,

researchers can reach a large and often representative sample of the population or the direct popula-

tion of interest. As an example, consider Hallsworth et al. (2017), who collaborated with a public

administration to conduct their tax debtor experiment. Because the population of interest S0 over
which results should generalize is often the entire population (say, of a given country or region),

running NFEs through these types of collaborations allows researchers access to a representative

sample. As a result, generalization is either unnecessary (because S = S0), or it is feasible either

because the subset of interest is part of the experimental population (S0 � S) or because the treat-

ment effect for S0 can be extrapolated from a subset of S.

Al-Ubaydli and List (2013) propose a simple framework for generalizability, building on the

“all causes model” of Heckman (2000), of which we include the mathematical details in the Appen-

dix, and describe here the main intuition.30 There are three potential cases of generalizability: zero,

local, and global generalizability. Under zero generalizability, results cannot be generalized to any

setting different from the one in which they were obtained, which is the most conservative

approach. Under local generalizability, results can only be generalized to situations that are very

similar to the ones studied in the experiment. Al-Ubaydli and List (2013) argue that under the con-

servative conditions of zero or local generalizability, field experiments (especially NFEs) can actu-

ally offer greater generalizability than lab experiments (and AFEs), because their results can be

applied in some natural setting (the one in which the experiment was originally performed), for

populations and in contexts which would be similar to those of the original experiment. This is

especially true if the experiment is implementing a program, and the researchers are evaluating the

effects of the program in a particular population. Under global generalizability, on the other hand,

results can be extrapolated to contexts that are not necessarily similar to those in which the experi-

ment took place. In this case, neither lab experiments nor field experiments are superior to each

other in that they each measure the parameter in the exact situation studied.

One of the most often cited argument against field experiments is the claim that the lab pro-

vides more control than the field.31 We agree that lab experiments can have better control over the

task subjects agree to participate in, and allow researchers to use induced values (which NFEs by

definition have more difficultly doing). However, this alleged disadvantage must be qualified,

depending on how we define “field” and “control.”

We follow Harrison and List (2004), who view the concept “field” as a continuum, where FFE

and NFE are clearly inside the set of field experiments, lab experiments are clearly outside the set,

and AFE are somewhere in between. By control, we mean the ability of the researcher to exclude

alternative explanations for the outcome, other than the cause of interest. With this definition, the

different types of experiments allow for different types of control.32

NFE could offer more control than lab experiments, not less, along certain important dimen-

sions, the main one being selection into the experiment (Al-Ubaydli and List 2015). As discussed

30 In our model in the Appendix, we use different definitions than Al-Ubaydli and List (2013), but maintain the spirit of the
original framework.

31 For example, according to Falk and Heckman (2009) “the laboratory allows tight control of decision environments,” while
Camerer (2015) claims that “there is little doubt that the quality of control is potentially very high in lab experiments.” In a
similar vein, Deaton and Cartwright (2018) write: “Exactly what randomization does is frequently lost in the practical litera-
ture, and there is often a confusion between perfect control, on the one hand—as in a laboratory experiment or perfect
matching with no unobservable causes—and control in expectation—which is what RCTs do.”

32 We elaborate on this point further in section 3.3, where we discuss the pros and cons of each type of experiment and the
complementarities between them.
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in section 3.1, lab experiments, AFE and FFE estimate treatment effects only for those who decide

to participate in the experiment (pi = 1), and not for the individuals who do not participate (pi = 0),

potentially generating an important bias. Therefore, while the lab provides researchers with more

control in the environment which participants opt into, it provides the researcher with less control

than NFE over the participation decision (Al-Ubaydli and List 2015). Moreover, while lab experi-

ments are well suited to produce qualitative treatment effects or comparative statics (Levitt and List

2007), under participation bias even qualitative treatment effects are not robust (Slonim et al.

2013).33 Therefore, when considering the entire experimental situation—from start to finish—NFE

could potentially offer more control than lab experiments, because by bypassing the participation

decision, they are not subject to participation bias (Al-Ubaydli and List 2013, 2015, see also

section 3.1).

Despite the several benefits of running FFE and NFE discussed in the paragraphs above, there

remains a large obstacle to running more field experiments related to cost considerations. As com-

pared to lab experiments, field experiments can be more expensive both in monetary terms and with

respect to the planning they require and the time they take to yield results and, ultimately, publica-

tions. However, partnering with administrations, NGOs, or firms can substantially reduce the costs

of field experiments, and thus result in a win–win collaboration (Levitt and List 2009). Indeed, there

are cases when NFE are very low cost, and entail simply the researcher’s time when the

implementing organization is searching for partners to help generate ideas, design and conduct the

experiment.34 In the limit, it is possible for NFE to incur a negative cost: Organizations can realize

that the opportunity cost of not knowing the necessary information is too great, and they can actu-

ally employ researchers to conduct field experiments that can turn into science (indeed, there is a

recent trend at tech companies of hiring PhD economists Athey and Luca 2019).

In summary, field experiments, and especially NFE, offer several advantages over other types

of experiments: Being covert, they are free of potential bias stemming from experimenter demand

effects; they allow for a more complex and natural environment in which the researcher does not

need to know a priori all the variables that affect the outcome; subjects belong to the population of

interest instead of being W.E.I.R.D. (Henrich et al. 2010a) and, in case of NFE, there is no partici-

pation bias because subjects do not self-select into the experiment. All of these features enhance the

generalizability of field experiments.

When a researcher decides which type of experiment to conduct (lab, AFE, FFE, NFE), there

is a trade-off between the benefits obtained from conducting the experiment (the private benefits

to the experimenter, in terms of publication and advancement of her career, and the societal bene-

fit from advancing knowledge) and the cost of running the experiment. In the following section,

we discuss this trade-off in more detail in the context of choosing which type of experiment

to run.

3.3 Use Lab and Field Experiments as Complementary Approaches

After reviewing potential threats to the generalizability of experimental results in section 3.1,

and discussing what we view as the advantages of field experiments in section 3.2, we now tackle

the broader question of choosing the right type of experiment (lab experiments, AFE, FFE, or NFE;

33 In the sense that the direction of the estimated effect might be opposite to the direction of the true treatment effect.
34 For a practical take on running field experiments, see (List 2011).
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see the Preliminaries for definitions) for a given research question. Ultimately, we believe that lab

and field experiments serve different purposes, and as such they offer complementarities in the pro-

duction of knowledge (Harrison and List 2004; Falk and Heckman 2009). We identify five main

issues researchers should consider when choosing between different types of experiments.

First, researchers need to consider the properties of the different types of experiments from the

point of view of proper statistical inference (more on this in section 3.4). Lab experiments, AFEs,

and FFEs can offer more control on the task that subjects perform, once they agree to be in the

experiment, than NFEs (Al-Ubaydli and List 2013, 2015). This control comes in two forms: (i) a

more precise environment to establish causation (as an example, consider studies using induced

values to test whether prices and quantities converge to neoclassical expectations, as in Smith’s

(1962) double oral auction lab experiments or List’s (2004a) multilateral bargaining FFEs and

(ii) more precise estimates (i.e., lower variance), because one can collect a more homogeneous sam-

ple and there are fewer unobservables affecting behavior in the lab, so it is easier to run well-

powered studies (see section 3.4).

It is also crucial that researchers consider the properties of replicability. For example, it has

been argued that an advantage of lab experiments is their better replicability (Camerer 2015). Lab

experiments can offer a more portable protocol than field experiments, and experimental conditions

might be kept constant with more precision. We direct the reader to section 3.5 for an extended dis-

cussion on the properties of replication.

Combining different types of experiments allows researchers to tackle the issue of generaliz-

ability by exploring how different factors such as context, scrutiny, stakes, and population affect the

outcome.35 As a rule of thumb, the lab is a good place for experiments where the identity of the

population does not matter. Gächter (2010) argues that lab experiments using students are excellent

as a first step to test economic theories, precisely because most theories assume generality.

Neuroeconomic experiments studying brain areas that can be extrapolated to the entire population

fit in this category, as well as experiments for which the outcome of interest has been shown to gen-

eralize (Stoop, Noussair, and Van Soest 2012; Cleave, Nikiforakis, and Slonim 2013). AFE, FFE,

and NFE offer the possibility of using a population of interest instead of a W.E.I.R.D. population

(Henrich et al. 2010a,b, also section 3.1). FFE and NFE offer the additional benefit of having a nat-

ural context, where not only the population but also the environment resembles the object of inter-

est. As discussed in the previous section, NFE offer the additional advantage that they bypass

subjects’ decision of participating in the experiment, therefore avoiding participation bias. This

aspect can be especially important if researchers want to scale up their proposed program

(section 3.12).

Researchers also need to consider the costs of running each type of experiment, including all

the monetary and logistical costs (recruiting participants and paying them fees, providing treatments

and incentives, collecting data, etc.) as well as the opportunity cost of doing other types of research.

As we discussed in section 3.2, lab experiments are typically (but not always) cheaper than field

experiments. Consequently, researchers can often begin by exploring questions using lower-cost lab

experiments, and later move into the field to replicate their initial results in a more diverse environ-

ment and population. However, this rule of thumb has exceptions. As discussed in section 3.2, FFE

and NFE can be cheaper (sometimes virtually costless in monetary terms for the researchers) when

35 Falk and Heckman (2009), discussing the generalizability of experiments, argue that the issue is not necessarily lab versus
field, but “the prevailing conditions such as the details of agent interactions” (see also section 3.1).
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researchers partner up with governmental agencies, firms and NGOs, creating win–win partnerships

(Levitt and List 2009). Moreover, the unit cost per subject can be reduced in field experiments due

to economies of scale, and this is compounded with the cost reduction of running experiments in

countries with lower costs.

Finally, there are many questions that researchers might simply not be able to tackle in the

field, due to ethical or cost constraints. To illustrate this point, consider the case of discrimination

(Al-Ubaydli and List 2013), where the two main theories in economics are preference-based dis-

crimination (Becker 2010) and statistical discrimination (Arrow 1973; Phelps 1972). NFEs are

clearly effective at differentiating between the two potential sources of discrimination, as they target

the population and context of interest, and avoid participation bias and experimenter demand effects

(for a survey, see List (2006a)). However, the lab can offer a complementary approach to exploring

this question: for example, Niederle and Vesterlund (2007) used lab experiments to investigate

whether affirmative action policies affect selection into a tournament, an intervention that would

have been difficult to carry out in a natural setting.

In conclusion, different types of experiments offer complementarities in the level of control,

replicability and generalizability they allow given their cost, and these trade-offs ultimately deter-

mine, for any particular research question, the type of experiment that offers the most value.

3.4 For Proper Inference, Go beyond p-Values

Throughout the previous sections, we focused on the generalizability of experimental results,

discussing the extent to which we can extrapolate findings from a given study to other contexts. We

now take a step back, and examine how priors should change in light of empirical findings. What

conclusions can we draw upon observing a statistically significant result? More generally, what

should we consider to be standards of evidence, and what is the framework of proper inference

given our research data? We suggest a framework where the benefits from running experiments can

be measured by their informativeness, that is, how much they change the priors of the scientific

community.36

In biomedical and social sciences, including experimental economics, researchers typically

obtain their conclusions regarding the existence of an effect or association in their data by conducting

(null hypothesis) significance testing (Fisher 1925). In particular, they formulate a statistical model

complete with a set of assumptions, among them their null hypothesis (H0, often postulating the

absence of the effect/association in question), calculate a test statistic summarizing their data, then

compare this statistic to the distribution expected under the model they specified (i.e., assuming that

all the model’s assumptions, including the null hypothesis, are true). The outcome of this comparison

is summarized in the p-value: The probability that under the specified model the test statistic would

be equal to or more extreme than its observed value (Wasserstein and Lazar 2016). A result is then

pronounced statistically significant if the p-value falls below a prespecified cut-off (often 0.05, but see

the plea from Benjamin et al. (2017) for 0.005). This interpretation, however, is a departure from

Fisher’s original framework. In his view, significance testing essentially measures the strength of evi-

dence against a null hypothesis, and he leaves the interpretation of the p-value to the researcher.

Instead of a strict decision rule, he advocates for examining whether or not the observed p-value is

“open to suspicion”—and if so, to run another experiment (Lehmann 1993).

36 This aspect should be considered even when members of the scientific community have multiple priors (see the discussion
on priors in this section, and also in section 3.8).
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A conceptually different approach to statistical inference is hypothesis testing, developed by

Neyman and Pearson (1933) with the aim to reduce the subjectivity inherent to Fisher’s method. This

framework simultaneously addresses the probabilities of two different types of errors of inference:

incorrect rejection of a true null (Type I error) and incorrect acceptance of a false null (Type II error).

The method requires researchers to formulate a precise alternative hypothesis against which the null

hypothesis is tested (in practice, this often means prespecifying a particular effect size), and to fix in

advance the rates of Type I and Type II errors (typically denoted by α and β, respectively). Central to

this approach is the concept of statistical power: the prestudy probability that the test will correctly

reject a false null as a function of the alternative hypothesis (calculated as 1 − β, that is, 1 minus the

Type II error rate). Given the a priori specified decision rule (α, β, and the alternative hypothesis Ha),

the analysis results in the acceptance or rejection of the null hypothesis. The framework allows for ex

ante sample size calculations, whereby the researchers assess the number of observations required to

detect an effect of the size as stated in the alternative hypothesis, with the prespecified Type I and II

error rates. It is important to point out that hypothesis testing is a frequentist approach: it limits the

number of mistakes made over several different experiments, but it does not attach an interpretation to

a p-value resulting from a single study (Sterne and Smith 2001).

In practice, researchers all too often focus exclusively on the statistical significance of the results

when interpreting their findings. Such narrow focus on p-values is dangerous, as it gives rise to sev-

eral misconceptions. It is crucial to understand that the p-value indicates the incompatibility of the

data generated in the experiment with the proposed model, but it does not measure the probability that

the null hypothesis is true: recall, the p-value is calculated under the assumption that the model is true

(Greenland et al. 2016). Thus a p-value of 0.05 from a single study does not ensure that the finding

has a mere 5% chance of being a “false positive” (more on false discovery rates later). Furthermore,

low p-values should be interpreted as providing evidence against the proposed model as a whole, not

necessarily against the null hypothesis in particular. Data and model could be incompatible if any of

the underlying assumptions are violated, including those related to the quality of measurement, the

conduct of the analysis, the reporting of results, and so forth. Thus, a p-value of a comparison cannot

be interpreted in isolation, without considering researcher degrees of freedom and the resulting poten-

tial bias (Wasserstein and Lazar 2016). Finally, p-values do not convey any information about the size

or importance of the effect in question: Tiny effects can produce low p-values if the sample size is

large or the precision of the estimate is high enough, and vice versa (Greenland et al. 2016).

Despite repeated calls for moving beyond p-values and examining the statistical power func-

tion (McCloskey 1985), most published studies continue to ignore the issue entirely. Ziliak and

McCloskey (2004) report that among empirical articles published in the American Economic

Review in the 1990s, only 8% considered the power of the tests used. More recently, Zhang and

Ortmann (2013) failed to find a single study discussing optimal sample size in relation to statistical

power among all the articles published in Experimental Economics between 2010 and 2012. Given

this lack of attention, it is unsurprising that most published studies have very low statistical power.

Despite the convention of defining adequate power as 80%, studies in most fields fall dramatically

short of this level.37 In a survey of more than 6700 studies in empirical economics, Ioannidis,

37 To put it differently, the Type II error rate should be no more than four times the usually prescribed Type I error rate—a
convention that is arguably arbitrary and yet routinely followed across different fields of science (Ioannidis et al. 2017). An
alternative approach is to simultaneously determine the optimal pair of Type I and II errors according to the circumstances
and aim of the specific study, as originally suggested by Neyman and Pearson (1933) and recently reiterated by Ioannidis
et al. (2013).
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Stanley, and Doucouliagos (2017) find that the median statistical power of the reviewed research

areas is a mere 18%, and nearly 90% of results are under-powered in half of the areas assessed.

Coville and Vivalt (2017), focusing on studies in the field of development economics, estimate a

median power to detect an average predicted effect of 59%. Only a third of the studies included in

their analysis have power greater than 80%. Analyzing time trends, Smaldino and McElreath (2016)

find little reason for optimism: According to their survey of review articles published between 1960

and 2011, mean statistical power was 24% in social and behavioral sciences, and showed no

increase over time.38

Inference from low-powered studies is problematic for at least three reasons. First, by defini-

tion, adequate power is required to ensure that studies have a high likelihood of detecting a genuine

effect. Low power implies high rates of false negatives whereby the null hypothesis of “no effect” is

not rejected, despite being false. This aspect is highlighted by De Long and Lang (1992), who

review articles published in the 1980s in major economic journals (American Economic Review,

Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and Review of Eco-

nomics and Statistics) that failed to reject the null hypothesis at the 0.1 level. The authors estimate

that in their sample “failures to reject nulls are […] almost always due to lack of power in the test,

and not to the truth of the null hypothesis tested” (De Long and Lang 1992, p. 1261). More

recently, Coville and Vivalt (2017) estimate an average false negative reporting probability in devel-

opment economics of approximately 0.53, calculated as the share of incorrectly accepted null

hypotheses over all accepted null hypotheses. Fiedler, Kutzner, and Krueger (2012) argues that

researchers’ relatively high tolerance for false negatives has potentially irreversible effects on the

development of scientific knowledge: Since false negative results are less likely to be followed up

than false positives, self-correction is less likely to occur in these cases.

A second channel through which low power threatens the credibility of research findings is

effect inflation: the phenomenon of obtaining “an exaggerated estimate of the magnitude of the

effect when a true effect is discovered” (Button et al. 2013, p. 366). This problem is also known as

the winner’s curse, the Type M error (Gelman and Carlin 2014) or the statistical significance filter

(Loken and Gelman 2017). Intuitively, effect inflation occurs because in settings where standard

errors are large, only those findings that by chance overestimate the magnitude of the effect will

appear statistically significant and thus pass the threshold for discovery. Effect inflation is therefore

more severe in underpowered studies that are based on small samples in the presence of high mea-

surement error: studies with power below 50% are likely to yield exaggerated estimates of magni-

tudes (Gelman and Carlin 2014). In line with this prediction, Ioannidis, Stanley, and Doucouliagos

(2017) estimate that over one-third of the average results of economics research are exaggerated by

a factor of more than four, and the majority of reported research is at least twice too large.

The third, less appreciated aspect of statistical power is its relation to false discoveries. The

connection becomes clear once we abandon the practice of treating a single finding that has

achieved formal statistical significance as conclusive evidence, and instead consider a Bayesian

framework of statistical inference whereby any individual study contributes to scientific knowledge

insofar as it moves our priors regarding the existence of the effect/association in question. In this

framework, studies may be assessed on the basis of their positive predictive value (PPV): The

poststudy probability (PSP) that a research finding that has achieved formal statistical significance

38 The problem of insufficient power is by no means specific to economics: Button et al. (2013) estimate that the median sta-
tistical power in neuroscience is 21%.
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is indeed true (Wacholder et al. 2004; Ioannidis 2005).39 The basic ingredients of this metric are

the Type I and II error rates (α and β, respectively), together with π, the fraction of true associations

among all associations tested in a given field. We treat this fraction as our prior: The prestudy odds

that the association in question is true (we discuss different ways to obtain priors later in this sec-

tion). The PSP is then defined as the share of true associations which are declared true ([1 − β]π)

divided by the share of all associations which are declared true ([1 − β]π + α[1 − π]). As shown in

Equation 3 below (reproduced from Maniadis, Tufano, and List (2014)), the PSP depends on the

power of a study (1 − β) in the following way:

PSP =
1−βð Þπ

1−βð Þπ + α 1−πð Þ : ð3Þ

In particular, since the derivative of Equation 3 with respect to (1 − β) is positive, the PPV of

a study is increasing in its power. As an example, consider a field where π is 0.1 (i.e., 1 out of

10 examined associations is true) and α is fixed at 0.05. Using Equation 3, we find that the PSP that

a statistically significant finding is genuinely true is 64% in case the level of power is 80%, but falls

to a mere 31% for a study with 20% power. Statistically significant results from low-powered stud-

ies thus contribute little to scientific knowledge as they lead to a low PSP of the findings being gen-

uinely true. Ignoring the above-described framework of inference and treating statistically

significant results from underpowered studies as conclusive evidence for the existence of an effect

increases the rate of false discoveries, leading to low reproducibility of published results and under-

mining the credibility of the research field (Munafò et al. 2017; Button et al. 2013). A Bayesian

framework also shows that nonsignificant results, especially when they are obtained in large data

sets, can be more informative than significant ones. In particular, rejection of a point null hypothesis

is often less likely to substantially change priors over a large range of values than is a failure to

reject the null (Abadie 2018).

As a side note, we would like to draw attention to the other crucial, yet often overlooked,

ingredient of Equation 3: π, the prior probability (or prestudy odds) that the effect being tested

exists. The PSP that a statistically significant finding is actually true is an increasing function of this

prior. Continuing our example above, if the prior we consider changes from 0.1 to 0.01, the PSP

falls from 64% to 14% even if the error rates remain fixed at levels conventionally deemed adequate

(α = 0.05 and β = 0.2). Consequently, a single “surprise discovery,” that is, the first study to find a

statistically significant association in a question where the prior probability was quite low, should

only have a limited impact on our poststudy belief that the effect actually exists. Given their impor-

tance, it is crucial to improve our understanding of priors, and to consider the range of prestudy

odds for the question in consideration before running an experiment (Ioannidis 2005). As a general

rule, priors are higher in disciplines where empirical research has sound theoretical foundations than

in fields where exploratory research is the norm (Maniadis, Tufano, and List 2017).40 Abadie

(2018) provides a numerical example for constructing a prior distribution for experimental econom-

ics studies, using estimates from a replication project we discuss in section 3.5 (Camerer et al.

2016; Andrews and Kasy 2017). Obtaining prior probabilities for any particular research question

39 The positive predictive value can be understood as the complementary probability of the false positive reporting probability,
defined by Wacholder et al. (2004) as the probability of no true association given a statistically significant finding.

40 Card, DellaVigna, and Malmendier (2011) estimate that 68% of economic field experiments are purely descriptive in the
sense that they do not contain even a single line of formal mathematical modeling.

392 Czibor, Jimenez-Gomez, and List

 23258012, 2019, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/soej.12392 by E

esc H
ec Paris, W

iley O
nline L

ibrary on [11/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



is less than straightforward. One solution is to calculate the PSP using a range of possible values

for priors, as demonstrated in for example, Maniadis, Tufano, and List (2014). Alternatively, esti-

mates for the prestudy odds may be obtained by consulting experts. As examples, consider Groh

et al. (2016) who undertake an “audience expectation elicitation exercise” by collecting treatment

effect estimates from members of their audience prior to presenting their results, Coville and Vivalt

(2017) who survey a panel of researchers to collect anticipated effects in various development eco-

nomics studies, or DellaVigna and Pope (2018) who compare expert and nonexpert forecasts.

Finally, Dreber et al. (2015) use prediction markets to obtain estimates for prior probabilities of spe-

cific hypotheses being true.

In the above discussion of the mechanics of statistical inference we have ignored any

“researcher degrees of freedom” in the design, analysis and reporting that may lead to identifying

effects even in the absence of a true association. Recent studies indicate that both specification

searching (the practice of trying out several specifications and selectively reporting outcomes that

support the researcher’s intended conclusion, see for example, Simmons, Nelson, and Simonsohn

(2011); Brodeur et al. (2016)) and publication bias (the greater tendency of researchers to submit

and editors to publish studies with significant rather than nonsignificant findings, also known as the

“file drawer problem,” see for example, Doucouliagos and Stanley (2013); Christensen and Miguel

(2018); Andrews and Kasy (2017)) are prevalent in empirical economics. As Ioannidis (2005)

points out, such bias also reduces the PSP of a positive finding actually being true.41 Repeated inde-

pendent testing by different teams of investigators further lowers the PSP: Intuitively, the PPV in

this case reflects the fact that only one out of n independent studies found a positive association

(in section 3.5 we discuss how the PSP changes when r out of n independent studies find evidence

for the existence of an effect).

In sum, an exclusive reliance on formal statistical significance and inadequate attention to the

other ingredients determining a study’s PPV (priors, bias, competition, and, crucially, statistical

power) compromise researchers’ ability to draw correct inferences from data. Moreover, while

reporting the PPV helps emphasize the informativeness of a study, it revolves around the “exis-

tence” of an effect rather than around effect sizes. Many statisticians call for a departure from

methods that focus on testing towards those that emphasize estimation, such as confidence, credibil-

ity or prediction intervals (Wasserstein and Lazar 2016; Munafò et al. 2017) or even “hacking inter-

vals” (Coker, Rudin, and King 2018).42

On the other hand, consumers of research might still find the practice of using a p-value

threshold as an established standard for evaluating research findings helpful. Given that the scien-

tific community continues to rely on a universally accepted p-value cut-off, a group of scientists

now proposes to make this standard more stringent: Benjamin et al. (2017) argue that novel findings

should be labeled as “statistically significant” only if they pass a p-value threshold of 0.005 and rec-

ommend treating evidence with p-values between 0.005 and 0.05 merely as “suggestive.” Their pro-

posal promises to reduce false positive rates to acceptable levels in most professions. The proposal

sparked an intense debate, with critiques calling for removing (Amrhein and Greenland 2018) or

41 In the presence of such practices, the positive predictive value may be calculated as follows, where u indicates the extent of

bias: PSP = 1−βð Þπ + βπu
1−βð Þπ + βπu + α+ 1−αð Þu½ � 1−πð Þ. Maniadis, Tufano, and List (2017) discuss the determinants of u for a given

discipline.
42 Sterck (2018) suggests assessing the economic importance of a regressor by measuring the percentage contribution of the

given explanatory variable to the variation in the dependent variable, and offers two alternatives for handling the variation
induced by explanatory variables that are correlated.
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abandoning (McShane et al. 2019), rather than redefining, statistical significance, and suggesting a

new approach to reporting results whereby researchers transparently present and justify their design

choices, including their chosen significance level (Lakens et al. 2018).

This lively debate signals a growing interest among experimental scientists in the issue of

proper inference, a welcome development that we hope will translate into actual changes in prac-

tices and norms in the scientific community. In the following sections we review several practical

recommendations that have the potential to substantially improve the reliability of scientific results.

In section 3.5, we begin with what we see as the most pressing issue currently: We discuss the

importance of replications, and present incentive-compatible methods to encourage them.

3.5 Replicate Early and Often

We believe that the best approach to increasing the reliability of results from experimental

economics lies in replication. Recent controversies surrounding topics such as ego depletion in the

psychology literature (Hagger and Chatzisarantis 2016; Hagger et al. 2010; Carter and

McCullough 2014) or the impact of de-worming programs in development economics (Croke

et al. 2016) all highlight the importance of replications. In the following we define what we con-

sider replication, and demonstrate using a Bayesian framework of inference why it is crucial for

the credibility of science. We then discuss what the “natural rate of replication” and the rate of

reproducibility in economics are today. Additionally, we review several proposals to incentivize

replication.43

As Clemens (2015) points out, there is currently no universally accepted standard in eco-

nomics as to what exactly constitutes a replication. Levitt and List (2009) propose definitions

that are well-suited to experimental studies. In the most narrow interpretation, a replication

means taking the original data generated by an experiment and re-analyzing it to confirm the

original findings. In the terminology of Hamermesh (2007), this would constitute a pure replica-

tion: examining the same question and model using the underlying original data set. This

approach may help to address issues with the internal validity of a study, for instance through

uncovering coding errors or mistakes in calculations.44 A broader interpretation of replication in

experiments involves running a new experiment closely following the original protocol to test

whether similar results can be generated using a new subject pool. Such a study would be classi-

fied as statistical replication: based on a different sample, but using an identical model and

underlying population (Hamermesh 2007). This method has the potential to fix sampling errors

or insufficient power. Finally, the third and broadest category entails testing the hypotheses of

the original study using a new research design. This characterization is a scientific replication

according to Hamermesh (2007), as it involves a different sample, a different population, a dif-

ferent situation, and a perhaps similar but not identical model. These replications help assess the

43 Other valuable methods aimed to serve the goal of “research synthesis” are literature surveys and meta-analyses; for reviews
on these methods, refer to for example, Anderson and Kichkha (2017); Maniadis, Tufano, and List (2017); Maniadis and
Tufano (2017).

44 Even without an explicit mistake on the researchers’ side, empirical results are not necessarily robust; as an example, con-
sider McCullough and Vinod (2003) who report that nonlinear maximization methods from different software packages
often produce wildly different estimates.
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robustness of the original finding, and may inform discussions on the generalizability of the

original result (see section 3.1).45

To illustrate why statistical replications are crucial, let us return to the Bayesian framework

of inference introduced in section 3.4. Equation 3 presented the PSP of a finding actually being

true, conditional on a single study providing statistical evidence in favor of its existence. Follow-

ing Moonesinghe et al. (2007), we can adapt this formula to calculate the PSP when at least r out

of n independent studies find a significant result for the association in question. As before, we

obtain the PSP as the fraction of true associations declared true over all associations

declared true:

PSP =

π
Pn

i= r

n

i

� �
1−βð Þiβ n− ið Þ

π
Pn

i= r

n

i

� �
1−βð Þiβ n− ið Þ + 1−πð ÞPn

i= r

n

i

� �
αi 1−αð Þ n− ið Þ

: ð4Þ

Using Formula 4, Moonesinghe et al. (2007) and Maniadis, Tufano, and List (2014) demon-

strate how a few successful replications can increase the PPV of a finding. This increase is particu-

larly dramatic in cases when prior probabilities are low.46 Within the same framework, Coffman

and Niederle (2015) argue that even the most inaccurate beliefs can be corrected within three to five

replications.47

Despite a general consensus among economists regarding the importance of replication, it

remains largely “an ideal to be professed but not practiced” (Mueller-Langer et al. 2019). Incentives

for individual researchers to replicate a project or to have their own work replicated are low or miss-

ing entirely. Replications typically bring little recognition for their authors despite the substantial

work they entail. The process is particularly tedious because data and code for published articles

are often unavailable—even though most leading economics journals have introduced data sharing

requirements and mandatory data archives, such policies are not necessarily enforced (Höffler

2017). As Duvendack, Palmer-Jones, and Reed (2017) observe, replications are usually regarded as

unoriginal or “derivative.” Worse, they may ignite animosity among researchers if authors of the

original work treat replication attempts as threats. Moreover, journals may be reluctant to publish

replication studies for fear of not receiving enough citations (Duvendack, Palmer-Jones, and Reed

2017). Indeed, according to a survey by Mueller-Langer et al. (2019), from 1974 to 2014 less than

0.1% of publications in the top-50 economics journals were replications. Given the difficulties of

publishing a “mere replication,” conducting an extension study where the control treatment repli-

cates a previous finding is often a more attractive alternative. This, however, makes replications

45 Clemens (2015) suggests an alternative classification, differentiating between replication tests (including verification and
reproduction tests) and robustness tests (including reanalysis and extension tests). See also the discussion in Duvendack
et al. (2017).

46 Consider the following example, based on Maniadis et al. (2014): n = 15 researchers independently run the same study with
80% power to detect an association that has a 10% prior probability of being true. When a single study out of the
15 attempts finds a statistically significant association (i.e., r = 1), then the poststudy probability that this positive finding is
actually true is a mere 17% (remember that the corresponding PSP was well above 50% in the absence of researcher compe-
tition (i.e., n = 1), see section 3.4). However, the poststudy probability that the association in question really exists increases
to over 90% in case of just two successful replications.

47 For a more nuanced approach that takes into account various forms of researcher bias among the replicators, see Maniadis,
Tufano, and List (2017).
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hard to identify: as Coffman, Niederle, and Wilson (2017) point out, such “implicit replications”

are often reported as part of a article with a much larger scope, without being labeled as replica-

tions. Other times, successful replications are simply not considered interesting enough to be publi-

shed. As a result, it is less than straightforward to assess how often replications actually occur.

A few recent papers attempt to address this issue and estimate the “natural rate of replica-

tion” in economics. First, Berry et al. (2017) focus on all the empirical papers published in the

centenary volume (2010) of the American Economic Review, and manually code all their publi-

shed citations as either replications, robustness tests, extensions, or none of the above. They find

that less than a third of the 70 papers have been replicated at least once, where a replication is

defined as a project “speaking directly to the veracity of the original paper.” Validating the asser-

tion that the visibility of replications is low, Berry et al. (2017) find considerable uncertainty

among the authors of the original papers over the number of extant replications of their studies.

Second, Sukhtankar (2017) analyzes 1056 empirical papers in development economics published

in the top 10 general interest journals between 2000 and 2015, perform a reverse citation search,

then search within the ensuing list for “replication” or alternative cognates. His results suggest

that only 5.4% of the studies in their sample were replicated in a published paper or a working

paper, the rate being higher (12.5%) for studies based on randomized controlled trials. Third,

Hamermesh (2017) collects 10 leading papers from labor economics with at least 20 years of cita-

tion history, and classifies their citing papers as either (i) related to, (ii) inspired by, (iii) very sim-

ilar to but using different data, or (iv) a direct replication at least partly using the same data. He

finds that of the more than 3000 citing studies, only 0.6% fall into the last category. On the other

hand, seven out of the ten original studies he surveyed were replicated at least five times, and all

of them at least once. Finally, Maniadis, Tufano, and List (2017) survey experimental papers pub-

lished between 1975 and 2014 in the top 150 journals in economics, and estimate that the fraction

of replication studies among all experimental papers in their sample is 4.2% (taking into account

“implicit replications” as well). Overall, these studies suggest that the natural rate of replication

in empirical economics is low, although heavily cited and influential papers do tend to get

replicated.

The above results concern the rate at which replications are attempted, leaving aside the ques-

tion of what share of these replications is positive, that is, confirm the findings of the original study.

Measuring rates of reproducibility in economics dates back to the quest of Dewald, Thursby, and

Anderson (1986) to replicate findings from articles published in the Journal of Money, Credit and

Banking. The authors famously concluded that inadvertent errors were a “commonplace rather than

a rare occurrence.” Another key insight of the Dewald, Thursby, and Anderson (1986) study was

the alarmingly high share of authors who were unwilling or unable to supply their data and code to

the replicators. According to Chang and Li (2017), this problem is still pervasive: in their attempt

to replicate macroeconomic papers published in 13 well-regarded journals, the greatest obstacle they

faced was authors’ failure to provide their data and code files. As a result, they were only able to

qualitatively reproduce the key results of 29 out of the 59 papers they sampled.

Focusing on experimental economics specifically, Deck, Fatas, and Rosenblat (2015) review

several replication attempts, mostly in the context of public goods provision, with varying out-

comes. The first systematic evidence of replicability of laboratory experiments in economics is pro-

vided by Camerer et al. (2016) who replicate 18 studies published in the American Economic

Review and the Quarterly Journal of Economics between 2011 and 2014, according to pre-analysis

plans posted prior to conducting the replication studies. They find a significant effect in the same

direction as in the original study in 11 out of the 18 studies, corresponding to a reproducibility rate

396 Czibor, Jimenez-Gomez, and List

 23258012, 2019, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/soej.12392 by E

esc H
ec Paris, W

iley O
nline L

ibrary on [11/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



of 61%.48 They also discuss alternative replication indicators, for example, whether the 95% confi-

dence interval of the replication effect size includes the original effect size, or whether the repli-

cated effect lies in a 95% prediction interval. These measures suggest higher rates of replicability

(66.7% and 83.3%, respectively). The authors also compare the replicated effect sizes with the orig-

inal, and find a mean relative effect size of 65.9%. The finding that the replicated effect sizes tend

to be smaller than the original ones reflects the effect size inflation phenomenon discussed in

section 3.4. Overall, Camerer et al. (2016) interpret their findings as suggesting “relatively good

replicability of results.”

Another noteworthy replication initiative is the Social Sciences Replication Project, whose col-

laborators aimed to replicate 21 experimental studies in the social sciences published in the presti-

gious journals Nature and Science between 2010 and 2015. They find a significant effect in the

same direction as the original study for 13 (62%) studies, and the effect size of the replications is

on average about 50% of the original effect size (Camerer et al. 2018). Finally, while both of the

above-mentioned projects focus on results published in top journals, Maniadis, Tufano, and List

(2017) analyze replication attempts from 150 economic journals, and find a “success rate” of 42.3%

among the 85 experimental replication studies in their sample.

The recent surge of interest in reproducibility also ignited an intense discussion about the most

effective ways to incentivize replications. We conclude this section by reviewing a few suggestions

that we find particularly promising. The first set of ideas addresses the current difficulty of publish-

ing replication studies, suggesting the creation of a specific outlet in the form of a new journal dedi-

cated to replications (Coffman and Niederle 2015), or including one-page “replication reports” in

top journals (Coffman, Niederle, and Wilson 2017). The recent launch of the Journal of the Eco-

nomic Science Association, with a special section devoted to replications, is a promising step in this

direction. These suggestions could be especially effective coupled with a new norm that requires

citing replication work alongside the original, increasing the returns both to the publishing journals

and to the authors of the replications. In addition, departments should consider systematically incor-

porating into their hiring and tenure decisions an assessment of whether a researcher has promoted

transparency in their career through replication and data sharing.

Second, Maniadis, Tufano, and List (2015) emphasize the need to change authors’ incentives

to collaborate with replicators.49 In their view, journals should always allow original authors to give

their commentaries after a replication attempt; they also suggest considering the number of replica-

tion attempts as a metric for one’s research quality. Third, Butera and List (2017) design a new,

incentive-compatible mechanism whereby the original investigators of a study commit to only pub-

lishing their results as a working paper, and offer coauthorship of a second paper (submitted to a

peer-reviewed journal) to other researchers who are willing to independently replicate their experi-

mental protocol in their own research facilities. This mechanism allows the original authors to sig-

nal the ownership of the research idea, while ensuring the credibility of their results (in case they

indeed replicate). At the same time, scholars on the team of replicators, in return for bearing the

48 Although lower than desirable, this share is considerably higher than the replicability rates uncovered in the Reproducibility
Project: Psychology (Open Science Collaboration 2015), a project that involved replicating 100 studies published in three
psychology journals. Their results paint a rather grim picture of the reliability of psychological research: while 97% of the
original studies found significant results, only 36% of the replications were able to reproduce these significant findings. In
the Many Labs 2 project, 15 of the 28 attempted replications provided evidence in the same direction as the original finding
and statistically significant at the 5% level (Klein et al. 2018).

49 See also Maniadis, Tufano, and List (2017) for a systematic review on the problem of information revelation in science.
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cost of replications, would benefit from coauthoring a novel study. Finally, Dreber et al. (2015) sug-

gest using prediction markets with experts as quick and low cost ways to obtain information about

reproducibility.50

Combined, these approaches have the potential to make replication more prevalent by increas-

ing its attractiveness to researchers. Such a shift in attitudes could also have positive consequences

on how research is conducted in the first place: as Duvendack, Palmer-Jones, and Reed (2017) point

out, replication may have a deterrent effect on questionable or fraudulent research practices by

increasing the likelihood that such practices will be discovered. The profession as a whole could

benefit from a culture that recognizes the intrinsic value of replications.

In sum, replication serves to prevent, expose and correct wrong inferences, and is thus

inevitable for producing empirical results that can reliably form the basis of both economic the-

ory and policy. However, replication does not eliminate the need for well-powered studies: Rep-

lication projects with low statistical power contribute little to the evidence in favor of or against

a hypothesis. In the next section, we follow this line of reasoning by urging researchers to per-

form ex ante power calculations and to design their experiments in ways that maximize statisti-

cal power.

3.6 Consider Statistical Power in the Design Phase

As discussed in section 3.4, insufficient statistical power in experiments poses a major chal-

lenge to proper inference. The most straightforward remedy, of course, is to avoid conducting low-

powered studies in the first place. In case of experiments, this requires taking the question of statis-

tical power seriously in the design phase. In the following, we describe the basic principles of opti-

mal sample size calculations, and then review sample arrangement practices that maximize power

given the available budget. The section is intended as a overview of the most important consider-

ations; the interested reader can find more details in List, Sadoff, and Wagner (2011), Duflo,

Glennerster, and Kremer (2007) and Cox and Reid (2000).

Power calculations (i.e., the assessment of the precision of inferences expected to be achieved

with a given sample size), or optimal sample size calculations (i.e., the estimation of the sample size

required to attain a certain precision), are crucial steps prior to conducting an experiment (Gelman

and Hill 2007).51 Power calculations are most often advocated as tools for preventing high rates of

false negatives. They also increase efficiency by ensuring that scarce resources are not wasted on

studies that are larger than necessary. Moreover, pre-determining sample sizes can curb bias by

reducing experimenters’ temptation to collect more data when initial results are insignificant but

“go in the right direction”—a practice that could lead to high rates of false positives (Zhang and

Ortmann 2013). Despite these arguments, in practice researchers often forgo ex ante sample size

50 Dreber et al. (2015) set up prediction markets in conjunction with the Reproducibility Project: Psychology (described in
footnote 48) where participants could bet on the success of the attempted replications. Prediction markets were found to pre-
dict the outcomes of the replications well, performing better than a survey of participants’ individual forecasts. Although
Camerer et al. (2016) confirm the result that beliefs elicited though a prediction markets are positively correlated with a suc-
cessful replications, they do not find that this method works better than belief elicitation through a survey.

51 Gelman and Carlin (2014) go a step further and suggest performing what they call a “design analysis,” complementing
power calculations with an assessment of the sign error rates (the probability that the replicated estimate has the incorrect
sign, if it is statistically significantly different from zero) and the exaggeration ratio (the expectation of the absolute value of
the estimate divided by the effect size, if statistically significantly different from zero).

398 Czibor, Jimenez-Gomez, and List

 23258012, 2019, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/soej.12392 by E

esc H
ec Paris, W

iley O
nline L

ibrary on [11/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



calculations and rely on shortcuts with little theoretical justification when designing their

experiments.52

As discussed in section 3.4, sample size calculations are rooted in the framework of hypothesis

testing. As such, they require researchers to specify (i) a null hypothesis and an alternative hypothe-

sis, (ii) the desired significance level and power of the test, and (iii) the statistical test to be used in

the subsequent analysis (List, Sadoff, and Wagner 2011). These considerations allow the researcher

to simultaneously control the likelihood of committing either a Type I or a Type II error. In particu-

lar, by considering the hypothetical distributions of the test statistic under the null and the alterna-

tive hypothesis, the researcher obtains critical values for the test statistic corresponding to the

prespecified error rates. The null hypothesis for a test is typically specified as no effect/association,

while the alternative hypothesis typically postulates that the effect size is at least as large as a spe-

cific value. Alternatively, for a given budget and thus fixed sample size, one can calculate the mini-

mum detectable effect size given the prespecified acceptable error rates.

Although the researcher has discretion over these three building blocks of power calculations

(hypotheses; acceptable error rates; the test used for comparison), translating critical values to opti-

mal sample size requires knowledge of the variance of the outcome—a parameter unknown prior to

conducting the experiment. This feature makes ex ante power calculations inherently hypothetical,

as they are based on the researcher’s expectations about the underlying data generating process

(Gelman and Carlin 2014). However, one should not use the hypothetical nature of power calcula-

tions as an excuse for skipping this step in the design phase. Researchers can use data from previ-

ous experiments or pilot studies to form beliefs about the variance of outcomes. It is also

instructive to calculate the statistical power for a range of different hypothesized values of the vari-

ance. When deciding what effect size to target, researchers should consider what difference is actu-

ally practically or economically relevant—an aspect that is still largely overlooked both at the

design and the inference stage.53 A useful practice is to express minimum detectable effect sizes in

terms of standard deviation changes to facilitate comparison with existing studies in the field

(e.g., the researcher may desire to have her experiment detect a 0.1 standard deviation treatment

effect).

We demonstrate the framework of power calculations through a simple example adapted from

section 3.1 of List, Sadoff, and Wagner (2011). Suppose we are interested in estimating the ATE

from an experiment where participants are randomly assigned to either the treatment or the control

group. For now, assume that we only test a single hypothesis in our study (more on multiple com-

parisons later). For simplicity, we assume that our data is generated by the following model:

Y i = β + τDi + ϵi,

where Y i is a continuous outcome variable, Di is a binary treatment indicator, the estimated treat-

ment effect is homogeneous, and ϵi is an idiosyncratic error term with variance σ2ϵ . Throughout this

example, we assume that the unobserved components of outcomes are independently distributed

among our subjects, and relegate the discussion of inference with grouped errors to later in the

52 List, Sadoff, and Wagner (2011) mention the practice of assigning 30 subjects to each treatment arm as an example for a
widely used yet theoretically unfounded rule-of-thumb.

53 Ziliak and McCloskey (2004) review papers published in the American Economic Review and find that the share of papers
discussing effect sizes rather than merely the significance (and maybe the sign of the estimated coefficients) is still low.
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section. Errors may be heteroscedastic: we allow the variances of the error term in the control (σ2C)

and the treatment conditions (σ2T ) to vary. Assuming normality, we use a two-sided t-test for com-

paring the means of the outcome variable between the groups. These assumptions allow us to derive

simple and intuitive closed-form solutions for the optimal sample size or the minimum detectable

effect size.

There are nC and nT subjects in the control and the treatment groups. Due to random assign-

ment, the estimated ATE is obtained simply as the difference in means between the treatment and

the control group: τ̂ = �YT − �YC , with variance: V̂ =Var �YTð Þ +Var �YCð Þ −2Cov Var �YTð Þ,Var �YCð Þð Þ =
σ2T=nT + σ

2
C=nC .

54 Our goal in this exercise is to determine the smallest true effect size we can detect

given our sample size and required statistical significance and power.

To begin, let us assume that the null hypothesis is true: the true ATE is zero. The hypothetical

distribution of the estimated treatment effects is then centered around zero, as shown in the top

panel of Figure 1. As aforementioned, in order to control the Type I error at a rate of α, we reject

the null hypothesis only if we observe a t-statistic that is equal to or more extreme than our critical

value. Equation 5 summarizes this condition: The left hand side of the equation is the t statistic esti-

mated from a test comparing the means of the outcome variable in the control and the treatment

group assuming that the true ATE is zero, while tα/2 is the critical value corresponding to a false

positive rate of α in a two-sided test.

�YT − �YCffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2C
nC

+
σ2T
nT

q ≥ tα=2: ð5Þ

Now consider the distribution of the treatment effect under the alternative hypothesis, assum-

ing a true effect size of δ. The hypothetical distribution of the estimated treatment effects under this

alternative hypothesis is shown in the bottom panel of Figure 1. The power of our test to identify a

true effect size of δ can be thought of as the fraction of the area under this distribution that falls to

the right of the critical value tα/2: this is the region where we correctly reject the null hypothesis.

Limiting the Type II error rate to β (resulting in a statistical power of 1−β for our test), we can cal-

culate the minimum detectable effect size of our experiment: the smallest value for which we can

(correctly) reject the null hypothesis of no treatment effect with probability 1−β at a significance

level of α. This minimum detectable effect size δmin can be expressed as a function of the sample

sizes and variances in the control and treatment groups as:

δmin = tα=2 + tβ

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2C
nC

+
σ2T
nT

s
= tα=2 + tβ

 � ffiffiffiffî

V
p

: ð6Þ

Equation 6 shows that the lower the variance of the treatment effect estimator, the smaller the

effect size we can detect. This estimated variance, in turn, depends on the sample sizes and the

54 Note that the true variances in the treatment and control groups are typically unknown a priori and are themselves estimated
from the data, often by means of the Neyman variance estimator, a conservative randomization-based approach (Samii and
Aronow 2012).
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variances of the error terms in the two groups.55 Equation 6 can be re-arranged to determine the

sample sizes in the treatment and the control group that are required to detect a treatment effect of

the size of δ given the variance of the estimator and the prespecified Type I and II error rates.

Analytical power calculations such as the example presented above are useful for simple

comparisons. For nonparametric tests and more complex or more specific design choices,

simulation-based power calculations provide more flexibility. These approaches require the

researcher to specify the underlying model complete with the experimental design and sample sizes,

the values of the covariates, the parameter values expressing the distribution of the outcome variable

under the alternative hypothesis, and the variances (Feiveson 2002). Based on this model, the

researchers generate their synthetic data and run their estimation on these data a large number of

times, obtaining a p-value in each round of the simulations. Power is then calculated as the propor-

tion of p-values that are lower than the prespecified cutoff value α. Several recent papers provide

more details along with software packages that implement simulation-based power calculations

(Feiveson 2002; Luedicke 2013; Bellemare, Bissonnette, and Kröger 2016; Burlig, Preonas, and

Woerman 2017).

Although often not flexible enough for practical purposes, Equation 6 can still provide valu-

able insights for the derivation of basic heuristics intended to maximize the precision of a study

through design. A straightforward way to increase power is to increase the number of

observations—this, however, is often impossible due to budget constraints or other practical

Figure 1. Hypothetical Distributions of the Estimated Treatment Effect Under H0 and Ha. [Color figure can be
viewed at wileyonlinelibrary.com]

55 As a numerical example, consider an experiment where a total of 2000 participants are equally divided between a treatment
and a control group (nC = nT = 1000), and we assume equal variances in the two groups (σC = σT = σ). Assuming α = 0.05
and β = 0.2, using a two-sided t-test we can then detect a minimum effect size of 0.125 standard devia-

tion: δmin = t0:025 + t0:2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

1000 +
σ2

1000

q
= 1:96 + 0:84ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1=500
p

σ≈0:125σ.
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considerations. We thus focus on sample arrangement techniques for a given experimental budget

that aim to reduce the variance of the estimate through other channels.

The first such rule concerns the assignment of subject to treatment or control groups. Although

it is common to assign equal number of subjects to all conditions, studying Equation 6 we find that

this practice is only optimal in case we expect the variances to be the same across groups. Other-

wise, the ideal ratio of the sample sizes assigned to treatment and control is equal to the ratio of the

standard deviation of outcomes in the two groups. For the special case of a binary outcome variable,

the same logic implies that sample sizes in the treatment and control groups should only be equal in

case the null hypothesis predicts equal means—and thus equal variances – between the two groups.

The optimal design also takes potential heterogeneity in data collection costs into account to

maximize power for a given experimental budget. The unit cost of obtaining an extra subject might

differ between treatment and control groups. Intuitively, providing a treatment is often a lot more

costly than simply surveying someone or relying on administrative data in the control condition

(Duflo, Glennerster, and Kremer 2007). It can be shown that the optimal share of subjects assigned

to treatment versus control is inversely proportional to the square root of the respective sampling

unit costs (List, Sadoff, and Wagner 2011).

So far we have focused on experiments with a binary treatment indicator. In studies where the

experimenter can choose different levels of treatment intensity, precision may be increased through

design that maximizes the variance of the treatment variable. In particular, the number of subjects

allocated to the different levels of treatment should reflect our priors of the functional form of the

treatment effect. Identification requires the number of treatment cells used to be equal to the highest

polynomial order plus one (List, Sadoff, and Wagner 2011). For instance, assuming a quadratic

treatment effect, we should allocate subjects to three treatment cells at the two extremes and at the

midpoint of the feasible range, assigning one-fourth of subjects to each extreme and half to the mid-

point for maximum variation in the treatment variable.

Power calculations also need to account for the randomization technique used to assign sub-

jects to specific treatments. Cluster-randomized designs, where the unit of randomization does not

coincide with the unit of analysis, are commonly used in field experiments. For instance, even if

student-level data is available, institutional constraints or fear of spillovers might induce researchers

to randomize at the classroom or school level. In such cases, our assumption of i.i.d. error terms is

often not justified. Clustered designs therefore necessitate power analysis that accounts for group-

level shocks (see Duflo, Glennerster, and Kremer (2007) who derive the expression for the variance

of the estimated treatment effect in cluster-randomized designs, Abadie et al. (2017) on when to

adjust standard errors for clustering, and Young (2016) for a degree-of-freedom correction for

robust and clustered covariance matrix estimates). Optimal design in such experiments balances two

opposing forces: for a given number of experimental subjects, increasing the number of clusters we

sample from leads to greater gains in power than sampling additional individuals from already

included clusters. However, adding a participant from a new cluster tends to be more expensive than

another participant from an existing cluster. Additionally, Chandar et al. (2018) argue that in case

of heterogeneous treatment effects at the cluster level, the researcher may want to include more

treated clusters than control clusters.56 We return to the question of treatment assignment in

56 The intuition is that if the researcher’s intervention leads to different effects across different clusters, having more treated
clusters can help average over those differences and recover the mean effect (Chandar et al. 2018).

402 Czibor, Jimenez-Gomez, and List

 23258012, 2019, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/soej.12392 by E

esc H
ec Paris, W

iley O
nline L

ibrary on [11/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



sections 3.8 and 3.9 where we discuss in detail the practice of blocked randomization and within

subject (WS) designs.

Finally, we would like to draw attention to an implicit assumption we made throughout this

section: we assumed that participants comply with their treatment assignment. However, as we have

discussed in section 3.1, compliance is often imperfect. In overt field experiments that randomize

access to a particular program or service (common in development economics), take-up of the

offered treatment is often low, jeopardizing researchers’ ability to detect the impact of the program.

McKenzie (2011) points out that the sample size required to detect a given change resulting from a

treatment is inversely proportional to the difference in the proportion of the treatment group that

takes up a given intervention relative to the control group.

We end this section by reiterating an important qualification to the above-described frame-

work: it discusses power calculations in cases of a single comparison, whereas most studies test

multiple hypotheses. In the following section, we discuss different manifestations of the multiple

comparisons problem, and show how the experimental design and the statistical analysis should be

modified to account for MHT.

3.7 Adjust for MHT, in Power Tests and in Data Analysis

In the previous section we derived our results based on the assumption that researchers evalu-

ate a single hypothesis. In practice, however, most research in applied economics entails more than

one comparison performed within the same study. MHT, or the multiple comparisons problem,

refers to the practice of simultaneously considering multiple statistical inferences (Miller 1981).

Failure to account and correct for MHT increases the likelihood of false positives and contributes to

the replicability crisis of the social sciences (List, Shaikh, and Xu 2019b). As an example, consider

a study wherein a researcher jointly tests N mutually independent hypotheses, all of which are true

and therefore should be accepted. Fixing the Type I error rate for a single comparison at a level α,

the probability of at least one false rejection among all comparisons in this case is 1 − (1 − α)N.

Setting α = 0.05, the probability of observing at least one false positive is over 14% in case of just

three hypotheses, and it exceeds 50% when testing 14 or more hypotheses. In the following, we

provide an overview of the prevalence of the problem in the literature, and discuss possible

solutions.

The practice of ignoring MHT corrections is pervasive in experimental social sciences. List,

Shaikh, and Xu (2019b) differentiate between three main cases of MHT. The most common

occurrence involves analyzing the impact of an intervention on multiple outcomes. According to

an overview by Anderson (2008), 81% of surveyed papers published from 2004 to 2006 report

results on at least five outcomes, and a striking 61% consider 10 or more outcomes (the number

of unreported comparisons is likely to be even higher). Yet only 7% of these papers account for

MHT in their inference. The second widespread form of MHT entails comparisons across multi-

ple subgroups of the study population. Analyzing heterogeneous response to treatment by gender,

ethnicity, age, and so forth. falls into this category. Finally, analyzing experiments with multiple

treatments (either estimating the effect of each treatment condition versus a control, or performing

all possible pairwise comparisons across multiple treatments and a control) also constitutes a case

of MHT.

There are three main approaches to managing the MHT problem: (i) reduce the number of

comparisons carried out, (ii) use machine learning (ML) techniques to deal with several different
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outcomes or dimensions of heterogeneity in a flexible and principled way, and/or (iii) adjust the sta-

tistical inference to take into account the family of hypotheses considered in the analysis. The first

approach involves restricting the analysis to a specific set of outcomes based on a priori notions of

importance, and/or using summary index tests that pool multiple outcomes into a single measure

(Anderson 2008). The second approach makes use of ML techniques by reframing the problem as a

prediction rather than an estimation task. Instead of testing whether the treatment affected different

outcome measures, ML techniques instead ask whether treatment assignment can be predicted from

a set of observable outcomes (Mullainathan and Spiess 2017). Similarly, rather than testing multiple

potential dimensions of heterogeneity specified by the researcher, ML techniques seek to identify

subgroups such that treatment effects are similar within and different across groups, allowing the

researcher to discover more flexible forms of heterogeneity (Athey and Imbens 2017b).57

The third method (the focus of this section) accounts for the multitude of tests carried out by

adjusting the inference from the analysis. Multiple testing procedures often control the family-wise

error rate: the probability of rejecting at least one true null hypothesis among a set of hypotheses

we jointly test (Heckman et al. 2010).58 Alternatively, when the number of hypotheses tested is very

large, researchers often choose instead to control the m-familywise error rate (the probability of

m or more false rejections), the tail probability of the false discovery proportion (the fraction of

false rejections), or the false discovery rate (the expectation of the proportion of rejected true null

hypotheses among the rejected hypotheses; Benjamini and Hochberg 1995; Benjamini, Krieger, and

Yekutieli 2006; List, Shaikh, and Xu 2019b).

Different techniques have been developed to adjust the standards of inference to take into

account MHT. Single-step procedures simultaneously compare all the individual test statistics

from the different comparisons to their critical values. Often (though not always) the same critical

value is used for all comparisons. As an example, consider the most well known multiple testing

procedure developed by Bonferroni (1935), applied to the calculation of confidence intervals by

Dunn (1961). This technique consists of computing an individual p-value for each hypothesis

tested, and rejecting a hypothesis only if its p-value does not exceed α/S, where S is the total

number of comparisons performed. Under the assumption that the null distribution of each

p-value is uniform, this method asymptotically controls the family-wise error rate at level α

(Romano and Wolf 2005).

Stepwise methods of multiple testing procedures also start with a single-step method. However,

instead of stopping after the first set of comparisons, these methods allow the researchers to reject

further hypotheses in subsequent steps by decreasing the critical values for the remaining hypothe-

ses, taking into account the hypotheses already rejected in previous steps. The methods continue

until no further hypotheses are rejected (Romano and Wolf 2010). Stepwise procedures can be fur-

ther classified into stepdown and step-up methods. Stepdown methods begin by considering the

most significant hypotheses, and then continue to evaluate hypotheses with smaller test statistics.

Romano and Wolf (2010) show that the classical method of Holm (1979) can be formulated as a

57 For correct inference, Athey and Imbens (2016) propose an “honest” approach, whereby one sample is used to divide par-
ticipants into subgroups and another to estimate treatment effects for each subgroup. We further discuss the use of ML tech-
niques for studying heterogeneous treatment effects in section 3.9.

58 What constitutes a “family” of comparisons is not always straightforward to determine. In general, the decision should be
guided by the conceptual/theoretical similarity of the tests. For a helpful discussion, we recommend the related blog post by
Daniel Lakens: “Why you do not need to adjust your alpha level for all tests you’ll do in your lifetime.”
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stepdown procedure where the criterion for rejection for the most significant hypothesis is the same

as in the Bonferroni-method, but the criteria get less strict for larger p-values.59

The appeal of the traditional methods of Bonferroni (1935) and Holm (1979) lie in their

simplicity—however, they are often overly conservative. Procedures with more power to reject false

null hypotheses have been designed by taking into account the joint dependence structure of the

individual p-values (e.g., Romano and Wolf 2005; Heckman et al. 2010).60 Based on Romano and

Wolf (2010), List, Shaikh, and Xu (2019b) developed a bootstrap MHT procedure that asymptoti-

cally controls the family-wise error rate under fairly weak assumptions. Their procedure was

designed to simultaneously handle all three scenarios of MHT in experimental economics discussed

above. The method is asymptotically balanced in that the marginal probability of rejecting any true

null hypothesis is approximately equal in large samples, and provides an improvement over classical

methods in terms of power through incorporating information on the dependence structure (and can

lead to further gains by exploiting logical restrictions across null hypotheses in case of multiple

treatment arms).61

Accounting for MHT often leads to different conclusions than inference that ignores the multi-

tude of tests carried out at once. For instance, Lee and Shaikh (2014) demonstrate how the signifi-

cance of PROGRESAs estimated effects on school enrollment across subpopulations change once

we account for multiple inferences. Although demonstrating their approach to correcting for MHT,

List, Shaikh, and Xu (2019b) also show a large reduction in the number of null hypotheses rejected

in Karlan and List (2007) once multiple testing is taken into account. These examples serve to

encourage researchers to identify and properly correct for all the different comparisons within a

study to avoid the false positives that mechanically result from multiple testing.

Besides ex post corrections, researchers should preemptively take into account the problem of

MHT in the design phase. Intuitively, to control the false positive rate across all comparisons, stri-

cter significance level requirements should be applied for each individual test ex ante. In practice,

this means specifying lower levels of α in the power calculation for each comparison (see

section 3.6 for details on power calculations for single comparisons). Acknowledging this impera-

tive already in the design phase reveals a “hidden cost” of adding another outcome, treatment arm,

or subsample analysis to an experiment: every additional comparison the researcher plans to per-

form increases in all existing comparisons the number of participants (or the precision of measure-

ment) that is required to maintain control over the study-level false positive rate. As a simple

example, consider a researcher trying to determine the optimal sample size for an experiment that

compares a treatment and a control group along two different outcomes. In order to ensure a study-

level false positive rate of 5%, the researcher can use the above-described method by Bonferroni

(1935) and set the significance level cut-off to 0.05/2 = 0.025 for each individual comparison, and

calculate the optimal sample sizes accordingly.62

Ensuring sufficient statistical power in a study while accounting for multiple comparisons may

substantially increase the number of participants required and thus the cost of an experiment. As

discussed in section 3.6, appropriate design choices can be helpful in increasing statistical power

59 For an example for a step-up procedure, refer to for example, Benjamini and Hochberg (1995).
60 For a discussion on the meaning of power in a multiple hypothesis testing context, refer to Romano and Wolf (2005).
61 List, Shaikh, and Xu (2019b) made their MATLAB and Stata code available to other researchers for easy implementation

of the procedure at https://github.com/seidelj/mht; see Seidel and Xu (2016) for documentation.
62 Of course, this heuristic represents an overly conservative approach compared to our preferred MHT correction method by

List, Shaikh, and Xu (2019b) that has more power than traditional approaches to correct for MHT.
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without expanding the experimental budget. In the following two sections, we review in detail two

such techniques that have the potential to reduce the variance of the estimated treatment effect:

blocked randomization and WS experimental designs.

3.8 Use Blocked Randomization to Increase Power and Credibility

In section 3.6, we have shown that the statistical power of a study is decreasing in the variance

of the estimated treatment effect. We also highlighted approaches to reduce this variance by opti-

mally choosing the ratio of subjects assigned to the treatment versus the control group. This

section considers more broadly the process of assigning treatment status to any given participant. In

the following, we review the merits of blocked randomization compared to complete randomization

in terms of statistical power. We then approach the topic from a different angle and show that

blocking may reduce bias by serving as a commitment device against specification searching.

Finally, we discuss the choice between randomization and optimization.

In the section on Preliminaries, we outlined the logic for randomly assigning subjects to treat-

ments: randomization balances the treatment and control groups both in terms of observables and

unobservables, allowing an unbiased identification of the treatment effect. However, in a completely

randomized design, the variance of outcomes is potentially very large, and the sample sizes of treat-

ment and control are randomly generated (List, Sadoff, and Wagner 2011; Deaton and Cartwright

2018). As Duflo, Glennerster, and Kremer (2007) point out, pure randomization only achieves bal-

ance in expectation: In practice, especially in the case of smaller samples, randomization may yield

experimental groups that differ from each other along important observable dimensions. A popular

way to address this issue is to include covariates in the estimation ex post. However, when data on

subjects’ relevant observable characteristics are available prior to conducting the experiment, it is

preferable to use this information in the design phase and improve the overall precision of the study

through blocked randomization.63

Blocking (also knows as stratification) refers to the practice of dividing experimental sub-

jects into blocks (strata) by observable characteristics, such that randomization is performed

within, but not between, these blocks (List, Sadoff, and Wagner 2011). More formally, blocking

involves partitioning the covariate space into a finite set and carrying out a completely random-

ized experiment within each of these subsets (Athey and Imbens 2017a). Using Neyman’s

repeated sampling approach, we can estimate the ATE within each block as the difference

between the average outcomes for treated and control subjects, then estimate the overall aver-

age effect of the treatment by averaging the within-block estimates weighted by the share of

subjects assigned to the block. In case the share of treated subjects is the same in each block,

this simplifies to the difference in means between treated and control subjects—the same esti-

mator we use for completely randomized designs (Athey and Imbens 2017a). Blocked randomi-

zation is beneficial because it increases precision: The estimated variance of the treatment

63 An alternative approach to dealing with covariate imbalance is re-randomization (Morgan and Rubin 2012; Bruhn and
McKenzie 2009; Banerjee, Chassang, and Snowberg 2017b). Two commonly used forms of re-randomization are the “big
stick” method that requires a new random draw if the imbalance between treatment and control groups in the resulting allo-
cation exceeds a prespecified threshold, and the “minimum maximum t-stat” method that suggests performing multiple
(1000 or 10,000) draws, checking for balance each time, then choosing the draw with the minimum maximum t-stat. Bruhn
and McKenzie (2009) show that for very persistent outcome variables, and in smaller samples, blocked randomization per-
forms better than re-randomization.
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effect is smaller once we take into account the gains from stratification. Compared to ex post

regression adjustment, blocking in the design phase is preferred because it can ensure that the

share of treated subjects is the same in each stratum, minimizing the variance of the estimate

overall.64

Despite popular beliefs to the contrary, blocking does not lower precision ex ante even when

the correlation between the outcome variable and the covariates on which we block is weak.65 Note

that the same is not true for ex post adjustments: Adding covariates that do not explain the outcome

variable in a regression increases standard errors by reducing the degrees of freedom (Duflo,

Glennerster, and Kremer 2007). Consequently, one should stratify on a rich set of covariates when-

ever possible, including continuous variables (Moore 2012).66 The limit of stratified randomization

is a paired design where each block contains only two observations: a treated and a control subject.

Although this approach has advantages in terms of precision, it complicates the subsequent estima-

tion of variance (Athey and Imbens 2017a). Such a perfect matched pairs design also comes at high

attrition costs for the matched units, and should thus be applied with caution.

Stratification is also desirable when the researcher expects heterogeneity in response to the

treatment and wants to analyze subsamples separately. In this case, ex ante blocking maximizes

power for estimating the treatment effect for each subsample. Equally importantly, stratifying on

variables that the researcher ex ante deems as relevant increases the credibility of the study: it dem-

onstrates to the reader that the subsample analysis presented in the research paper was actually

planned in advance and is not merely the result of “data mining” or a “fishing expedition.” In this

sense, blocking on variables to be used in subsequent heterogeneity analysis helps address the prob-

lem of researcher bias discussed in section 3.4, by limiting analytical flexibility (Munafò et al.

2017). If a researcher uses blocking primarily for credibility reasons rather than to increase preci-

sion, she should limit herself to blocking only on a few key variables. Although hypothesis regis-

tries and preanalysis plans (Christensen and Miguel 2018; Coffman and Niederle 2015) may

provide stronger remedies against specification searching, blocking has the advantage of also

increasing the power of the resulting subsample analyses. Note, however, that blocking alone does

not address all the issues that arise from subgroup analysis: even if the experimenter “ties herself to

the mast” by stratifying on the relevant dimensions, standard errors still need to be adjusted ex post

for MHT (see section 3.7 for more details).

Utilizing baseline information to an even greater degree than in the stratification case, some

researchers have recently suggested relying on optimization instead of randomization for assigning

treatment status to subjects. Bertsimas, Johnson, and Kallus (2015) propose a method based on dis-

crete linear optimization, such that assignment is chosen to minimize the discrepancy between

64 Following Athey and Imbens (2017a), we obtain the estimated variance of the treatment effect with blocked randomization
as follows (where g indexes blocks):

V̂
blocked

=
XG
g = 1

V̂ τ̂g

 � Ng

N

� �2

where τ̂g = �YT,g-�YC,g and V̂ τ̂g

 �

=
σ2C,g
nC,g

+
σ2T,g
nT,g

: ð1Þ

Comparing the expression 7 with the variance estimate for completely randomized experiments presented in section 3.6,

σ2T=nT + σ
2
C=nC , in general we find that the latter is more conservative.

65 See Athey and Imbens (2017a) for an explanation and two important qualifications to this result.
66 A fascinating recent article explores blocking on the predicted treatment effects and on subjects’ willingness-to-pay for the

treatments in order to design an “ethical experiment” that takes subjects’ predicted welfare into consideration (Narita 2018).
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treatment groups in terms of means and variances of covariates. Kasy (2016) considers the experi-

ment as a statistical decision problem where the goal is to find the unique treatment assignment that

minimizes a Bayesian or minimax risk function (based on the mean squared error of a point estima-

tor). Although these approaches have the potential to increase power, gains in precision are substan-

tial only when baseline variables strongly predict future outcomes (see Bruhn and McKenzie (2009)

for an illustration of this point), and come at the cost of more complicated inference (a bootstrap

method is required to obtain the p-values of the estimates).67 Banerjee, Chassang, and Snowberg

(2017b) model the experimenter’s problem in a Bayesian decision theoretical framework. They

argue that for a given prior over treatment effects, there exists a deterministic treatment assignment

that maximizes the experimenter’s expected utility, leading to the proposition “Bayesians do not

Randomize.” Once multiple decision makers (or a single decision maker with different priors) are

considered, however, they identify randomization as the only method to yield results whose inter-

pretation cannot be challenged.

Overall, we are of the opinion that optimization on the basis of baseline covariates may be a

useful method for assigning subjects to treatments in pilot studies. Sample sizes in pilots are typi-

cally small, so an increase in power is crucial. Furthermore, it is easily justifiable to design pilots so

that they are most informative for a specific prior (that of the experimenter) rather than for a wider

audience with arbitrary priors. For most experiments, randomization with “improvements” such as

stratification or re-randomization remains more suitable.68

3.9 Use WS Designs when Appropriate

In our overview so far, we have focused on experiments consisting of a single period where

each subject is assigned to either the control or the treatment condition. These cases fall into the

category of between subject (BS) designs, because the estimated treatment effect is obtained through

a comparison of means between the two groups. This represents the current state of art when econo-

mists generate data. Of course, researchers have the choice to collect data in multiple periods, all-

owing for the use of a WS design, such that the same individual experiences different treatment

conditions in subsequent periods. In the following, we discuss the benefits and threats associated

with using WS designs along the dimensions of statistical power, confoundedness, and heterogene-

ity in response to treatments.

WS designs have been advocated for their potential to yield more powerful tests for the same

cost than BS experiments (Charness, Gneezy, and Kuhn 2012). In particular, they allow for estima-

tions controlling for individual-specific effects, reducing the variance of the treatment effect estima-

tor to the extent that within-subject correlations explain the outcome (Frison and Pocock 1992;

McKenzie 2012). Bellemare, Bissonnette, and Kröger (2016) suggest an approach based on Monte

Carlo simulations to compare the power achieved in BS versus WS designs. They provide a

numeric example in the context of field experiments on gift exchange, and find that a BS design

requires four to eight times more subjects than a WS design to reach an acceptable level of statisti-

cal power (as discussed in section 3.4, the conventionally required level of power is 80%). They

67 For more details, see David McKenzie’s excellent blog post on the topic: https://blogs.worldbank.org/impactevaluations/
optimization-just-re-randomization-redux-thoughts-recent-don-t-randomize-optimize-papers.

68 See footnote 63 for details on re-randomization. As another possible design improvement, consider Wilhelm, Lee, and Car-
neiro (2017)’s procedure based on an orthogonal greedy algorithm that uses pre-experimental data to inform, rather than
treatment assignment, the choice of both the sample size and the covariates to be collected.
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also emphasize that adding more experimental periods can substantially increase the statistical

power of a WS design, but has very little effect in the BS design.69

Note that in the above comparison we ignored cost considerations, assuming that collecting

data from n subjects twice (WS design) is as costly as collecting data from 2n subjects (BS design).

In practice, however, this is often not the case; in laboratory experiments, adding additional periods

to an experiment often comes at no additional monetary cost for the researchers (think of the typical

practice of determining subjects’ earnings based on their behavior in one period randomly selected

at the end of the experiment). Field experiments, on the other hand, often have large per-period

fixed costs (e.g., hiring and training surveyors) that make additional rounds of data collection more

expensive on the margin.

Despite the fact that WS designs have the potential to achieve better precision, in practice

researchers do not seem to take the choice of design into account when setting the number of exper-

imental subjects: surveying two recent volumes of the journal Experimental Economics, Bellemare,

Bissonnette, and Kröger (2014) find that the median number of participants per treatment was rela-

tively similar (43.5 and 50, respectively) for studies using BS and WS designs. They also find that

the majority of studies in their survey (41 out of 58) are based on BS experimental designs. The rel-

ative unpopularity of WS designs may be due to the strong assumption they require for inference.

When the same subject is exposed to different treatment conditions, within-subject comparisons

only provide a causal estimate if there is independence of these multiple exposures (Charness,

Gneezy, and Kuhn 2012). There are different reasons why this assumption may not hold, such as

learning, history and demand effects, and sensitization to perceived dependencies between treat-

ments (List, Sadoff, and Wagner 2011; Keren and Lewis 1993).

As a result, findings from WS designs may be confounded and hard to interpret. Crossover

designs (where subjects are exposed to treatments in random order) may ameliorate, but not elimi-

nate, these fears. The extent to which confoundedness is a threat depends very much on the particu-

lar research question. In some cases, one design is clearly better suited to test a particular theory

(consider, for instance, predictions about individual preference reversals). When treatments are

suspected of having persistent psychological effects or when experimenter demand effect is a con-

cern, researchers should be cautious when using WS designs.70 On the other hand, skill-based

experiments, such as the study of Smith, Kassin, and Ellsworth (1989) on eyewitness accuracy and

confidence, are less likely to yield a biased result under a WS design (Charness, Gneezy, and Kuhn

2012). WS designs may also work better in cases when the first treatment corresponds to the “status

quo” (i.e., it conforms to the set of beliefs or expectations participants have already held coming in

to the experiment) such that it does not induce learning nor cause sensitization to some aspect of

the treatment.71

69 Although a within-subject design typically leads to lower variances for the estimated treatment effect, this is not necessarily
the case. See Keren and Lewis (1993) for more details on precision in WS versus BS designs in the presence of treatment
effects that are correlated with the individual-specific error term. For panel data with a non-i.i.d. error structures, we recom-
mend Burlig, Preonas, and Woerman (2017)’s power calculation method that accounts for serial correlation in errors.

70 See Bohnet, Van Green, and Bazerman (2016) for a discussion on preference reversals between separate and joint evalua-
tions and Hsee (1996) for an overview of the literature on evaluability.

71 An example where within and BS designs yielded very similar conclusions comes from two laboratory experiments study-
ing the impact of affirmative action policies on participants’ willingness to compete. In a BS design, Balafoutas and Sutter
(2012) find the same result as obtained by Niederle, Segal, and Vesterlund (2013) in a WS design that gender quotas induce
high-performing women to enter tournaments without discouraging men from competing.
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This trade-off between power and bias has been a central theme of the within versus BS

debate. We would like to conclude this section by emphasizing another aspect of the design choice

that often receives less attention: between and WS designs differ in the extent to which they are

informative of individual differences in response to treatment. As we mentioned in the Preliminar-

ies, a BS comparison with random assignment to treatment only produces an unbiased estimate of

the ATE, but does not identify other moments of the distribution. Although the ATE conveys

important information regarding the existence of an association or effect, it may mask crucial differ-

ences between participants in their reaction to treatment. For instance, assessing the share of the

population that was helped or harmed by the treatment requires knowledge of the distribution of the

difference between the outcomes of each individual in the presence and absence of the program.

In experiments using between-subject treatment assignment, each participant is only observed

in one of the states, thus welfare analysis requires additional, often strong, assumptions.72 Within

person designs facilitate welfare calculations by measuring baseline outcomes together with changes

in response to the treatments for the different baseline values, providing the entire joint distribution

rather than marginals. Allcott and Taubinsky (2015) use a within-subject design in their information

nudge experiment to estimate the average change in valuation induced by their nudge for each level

of initial valuation. This strategy allows them to calculate the market demand curve and the average

marginal bias, statistics they show are sufficient for computing the welfare effects of a policy.

Further, WS designs can help distinguish between behavioral theories by showing heterogene-

ity in preferences within individuals. Gibson, Tanner, and Wagner (2013), for instance, refute the

type-based model of lying aversion by documenting differences within individuals (across situa-

tions) in the estimated cost of lying.

WS designs can also help researchers uncover heterogeneous treatment effects. Data from WS

experiments can be used to plot a histogram of the realized “individual linear differences,” calcu-

lated for each subject as the difference between their outcome in the treated versus the control state.

Such histograms may hint at important dimensions of heterogeneity, and could suggest subgroups

that benefit most/least from the treatment.73 As an example, consider the study of Hoel (2015) on

the role of asymmetric information in dictator games. Although she finds that subjects on average

give more in games when the choice is public than when it is secret, a WS comparison reveals that

almost half of the participants give the same amount in both conditions. Her design allows her to

classify participants into types based on their individual response to the treatment, such that types

identified in the laboratory also behave differently in the field.

An alternative approach to studying heterogeneous treatment effects that does not require mul-

tiple observations per participants makes use of ML techniques such as causal trees (Athey and

Imbens 2016) and causal forests (Wager and Athey 2018). As discussed in section 3.7, this

approach discovers heterogeneity by seeking to partition the data into subgroups with different treat-

ment effects (Athey and Imbens 2017b). Although applications of ML techniques have considerable

promise for predicting treatment response differences based on observable covariates, there are two

issues we need to keep in mind. First, ensuring the consistency of estimates requires an “honest”

72 Quantile regressions, for example, are only informative of the distribution of individual changes in outcomes if a rank
invariance condition is satisfied. Bedoya Arguelles et al. (2018) provide an excellent summary of different methods aimed
at identifying the distribution of individual specific treatment effects in RCTs.

73 It is important to emphasize that WS designs on their own still do not allow identification of the distribution of treatment
effects. Readers interested in identifying the probability distribution of individual effects in panel data should consult for
example, Arellano and Bonhomme (2012).
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approach to estimation, whereby the sample is split to ensure that the data used for partitioning the

covariate space are different from data used for estimation of the treatment effects. Testing the out-

of-sample accuracy of predictions also requires a hold-out sample that is not used at all for training

or estimation. As such, these methods tend to work best with larger data sets (Davis and Heller

2017). Second, in case some of the covariates are correlated with each other, consistency in model

selection is not ensured: the importance of specific covariates for prediction may vary across sample

partitions (Mullainathan and Spiess 2017). As such, these techniques do not allow the researcher to

conclude that certain observables are not associated with treatment effect heterogeneity just because

they were not used by the algorithm to create the prediction.

In sum, we encourage researchers to carefully weigh the pros and cons of between and WS

designs along the dimensions discussed above (power, cost, bias, learning about heterogeneity) and

pick the one better suited to answering their particular research question. Just as in the case of the

choice between lab or field experiments discussed in section 3.3, there is no universally preferred

method: the choice to vary treatment conditions within or BSs should depend on the characteristics

of the experiment and the nature of what information is sought and the trade-offs the researcher is

willing to make. In a nutshell, it depends on the theory to be tested—a topic we discuss in the next

section.

3.10 Go beyond A/B Testing by Using Theoretically Guided Designs

In section 3.6 and the discussion of optimal experimental design that followed, we mainly

focused on experiments whose main goal was to measure whether one treatment condition yields a

different mean outcome than another treatment and/or the control condition. A simple example for

this approach is “A/B testing,” a method common both in research and in business, that entails

showing subjects one of two versions of the same product or service at random, and comparing

responses. Yet, the experimental method will never reach its true potential unless we go beyond

simply documenting the existence/size of an effect. Rather, we should exploits experiments’ ability

to generate data that allows us to explore the underlying mechanisms at work, to understand the

whys behind the data patterns observed. We therefore need to design experiments tightly linked to

economic theory in order to reap the true benefits of the experimental method.

Despite its advantages, using theory is still not a commonplace occurrence: out of all the

experiments published in the top five journals in Economics (American Economic Review, Eco-

nometrica, Journal of Political Economy, the Quarterly Journal of Economics, Review of Eco-

nomic Studies) between 1975 and 2010, 68% were “descriptive,” meaning that they lacked an

economic model; of the remaining articles, only 14% allowed for more than a single model,

either by directly comparing competing models or by estimating one or more structural parame-

ters (Card, DellaVigna, and Malmendier 2011). The theory-free nature of RCTs is a serious dis-

advantage in attempting to generalize (Deaton and Cartwright 2018). By combining experiments

with theory we can reap the best of both worlds: preserving causal inference (due to the exoge-

nous variation created by the experiment) and improving the generalizability of predictions

through theory and structural estimation (for a recent example see DellaVigna, List, and Mal-

mendier 2012).

To address this gap, we advocate for experimental economists to use economic theory to

inform their experimental design whenever possible (Banerjee 2005; Heckman 2010; List 2011),

and to incorporate results from experiments into existing economic theory (Deaton and Cartwright
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2018), thereby creating a feedback process that guides the development of theory and the design of

future experiments (Duflo, Glennerster, and Kremer 2007). Combining economic theory with exper-

iments allows researchers to estimate a wider array of parameters (Attanasio and Meghir 2012), to

perform counterfactual analysis, to test theories directly (Browning and Chiappori 1998), and to

account for GE and welfare effects. In the following, we review in detail the benefits from designing

experiments in connection with economic theory.

First, we can use theory to explicitly model selection into the experiment. When running lab

experiments, AFE, and FFE, researchers should make explicit their assumptions about selection by

using theory and, in doing so, address some of the concerns about generalizability discussed in

section 3.1. For instance, researchers could specify a variant of the Roy model to describe selection

into the experiment (Heckman 2010).

Using economic theory jointly with an experiment allows the researcher to perform structural

estimation to estimate the parameters of a theoretical model from data collected in an experiment.

This enables researchers to perform ex-ante counterfactual policy analysis: To predict the effects of

policies or programs that have not yet been implemented and over which no data are available

(Heckman 2010).74 Therefore, economic theory allows researchers to extrapolate the results of exis-

ting experiments to other populations and settings (Banerjee 2005; Falk and Heckman 2009, see

section 3.12 for a discussion on scalability).

Coupling experiments with structural estimation allows researchers to understand the mecha-

nisms underlying the observed behavior in the experiment. As an example, consider the RCT by

Dupas (2014) that employed a two-stage randomization of the pricing of a novel product to differ-

entiate between two possible mechanisms of policy adoption; or the field experiment by Chandrase-

khar, Golub, and Yang (2018) designed to separate two mechanisms (reputation versus shame) in a

model of stigma. Moreover, researchers can design their experiment with the structural model in

mind, in such a way that makes the identification of the relevant parameters possible. For example,

as part of their experiment, Hedblom, Hickman, and List (2016) set up a “firm” to hire workers,

and by varying the wages they paid as well as the level of corporate social responsibility perceived

by their workers, were able to identify and estimate a structural model of unobserved worker hetero-

geneity. The identification of the relevant parameters also allows for measuring welfare effects. In a

door-to-door donation experiment by DellaVigna, List, and Malmendier (2012), some households

were warned of the solicitors’ upcoming visit such that they could sort in or out of the intervention,

and this sorting behavior (together with the donation choices of those who opened the door) allowed

the identification of altruism and social pressure parameters, and of welfare estimates.

When researchers want to estimate a structural model, they can think about the “ideal data”

for the identification of those parameters, and then design an experiment that generates exactly that

type of data. But even when the experiment is already underway, researchers can still identify a rele-

vant structural model using precisely the unique features of the experimental data. Low and Meghir

(2017) discuss an interesting comparison between different approaches for using structural models

to exploit experimental data in the context of PROGRESA, a conditional cash transfer program in

Mexico aimed at increasing school participation in poor rural areas. Todd and Wolpin (2006) esti-

mate a structural model of school participation, taking into account the opportunity cost for chil-

dren; their focus is on the validation of their model (identified from control data only), that can

then be used to make predictions. In contrast, Attanasio and Meghir (2012) estimate a model in

74 For a discussion of structural estimation and reduced-form estimation, see Nevo and Whinston (2010).
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which the grant can have a different marginal utility than other sources of income (such as child

wages), what allows for identification of the effect of the grant even in the presence of GE effects.

As these examples demonstrate, the different advantages of combining structural estimation with

experiments we have surveyed are not mutually exclusive, and researchers can find creative ways to

exploit these synergies.

Economic theory is also useful when considering spillover effects, whereby subjects impose

externalities on others (e.g., those in treatment can inform their friends in the control), and GE

effects, that occur when agents react to the intervention in a way that changes the environment itself

(Duflo, Glennerster, and Kremer 2007; Maniadis, Tufano, and List 2015).75 GE effects are of great

importance in diverse contexts ranging from economic development (Banerjee 2005; Acemoglu

2010), to health care utilization (Finkelstein 2007) and the microcredit literature (Burke, Bergquist,

and Miguel 2014). However, most experiments are conducted assuming partial equilibrium, that is,

assuming away spillover and GE effects. Disregarding the GE effects of experiments might be justi-

fied for small interventions that only affect a few participants or that have a small impact, such as

in lab experiments and AFEs. However, field experiments (FFE and NFE) can induce changes in

the local economy that could translate into GE effects. Neglecting these GE effects biases the

results and leads to misleading conclusions about the true effect of the intervention. This is espe-

cially true for large-scale interventions claiming to have a large impact. Such experiments should

attempt to include measuring the GE effects as part of their experimental design whenever possible.

The measurement of GE effects typically requires an experimental design that explicitly

accounts for them. For example, Crépon et al. (2013) included two levels of randomization in their

experiment, one of them being the proportion of individuals assigned to treatment, allowing them

to capture the GE effects of their intervention. Another example is the study by Cunha, Giorgi, and

Jayachandran (2017), who estimate the GE effects of cash versus in-kind transfers in Mexican vil-

lages: both types of transfers had similar value (allowing a partial equilibrium comparison), but the

in-kind transfers also generated more supply of certain goods in the market, affecting the calculation

of the intervention’s GE effect.

The importance of measuring a program’s welfare effects has been widely acknowledged

(Heckman 2010). Recently, welfare analysis has made its way into behavioral economics, yielding a

fruitful collaboration between economic theory and experiments: in addition to measuring the tradi-

tional outcomes of the experiment, researchers can use theory to infer the change in subjects’ well-

being as a consequence of treatment. DellaVigna, List, and Malmendier (2012) provide an early

example of measuring welfare effects in a NFE via structural estimation: they find that a door-to-

door campaign of charity donation decreased the welfare of the average household due to the social

pressure associated with not donating.76

75 Note that spillover effects violate the “Stable Unit Treatment Value Assumption” (Angrist, Imbens, and Rubin 1996; Duflo,
Glennerster, and Kremer 2007) discussed in the Preliminaries. For the rest of the section, we will use the term “GE effects”
to also include spillovers.

76 Related studies test specific aspects of behavioral theory and their welfare consequences through field experiments: (Zhe
Jin, Kato, and List et al. 2010; Bernheim, Fradkein, and Popov 2011; Allcott and Taubinsky 2015; Allcott and Kessler
2019; DellaVigna, List, and Malmendier 2016, 2017), and develop theories that explicitly consider how behavioral econom-
ics affects welfare measurement: (Spiegler 2014; Gabaix and Farhi 2017; Jimenez-Gomez 2017). Finkelstein and
Notowidigdo (2018) use a randomized natural field experiment to test two competing explanations—based on neoclassical
and behavioral theory, respectively—for the low take-up of SNAP benefits, and estimate the welfare impact of different
interventions aimed at increasing take-up.
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However, welfare calculations may be sensitive to certain details. First, the particular theory

researchers base their calculations on has important consequences for the conclusions on welfare

(Jimenez-Gomez 2018). This aspect is even more salient in areas where individuals are known to

be subject to behavioral biases.77 Second, GE effects should be included in welfare calculations.

As an illustration, consider Handel (2013)‘s study of health insurance markets where substantial

inertia had been observed. He structurally estimates a choice model in order to compute the wel-

fare effects of a counterfactual “nudge reminder,” and concludes that although the nudge would

increase the rate at which people select into plans that better match their needs (reducing inertia),

the GE effects would exacerbate adverse selection, leading to a price increase and a loss in aver-

age welfare. Finally, researchers should pay attention to potential heterogeneity in treatment

response (see sections 3.1 and 3.12). Heterogeneity is crucial when computing welfare effects,

because different individuals may benefit (or suffer) to varying degrees from a given program,

and therefore the distribution of welfare can be very different for some subpopulations (Jimenez-

Gomez 2017).

Using economic theory is not without caveats. It is always possible that the particular eco-

nomic theory we consider is wrong, and this concern has been exacerbated with the rise in impor-

tance of behavioral economics (Banerjee 2005). Moreover, structural estimates are sensitive to

assumptions about functional forms and distribution of unobservables (Heckman 2010). The correct

design of the experiment can never be undermined due to confidence in the theory.78 To conclude,

we would like to emphasize what we are not advocating. We do not call for every experiment to be

derived from economic theory or to be structurally estimated. There are occasions when a descrip-

tive study is perfectly appropriate, for example when attempting to differentiate between several

competing theories whose predictions go in opposite directions (Acemoglu 2010). We also do not

advocate for journals to demand that authors include ad-hoc economic models after the experiment

has been conducted and the data analyzed. Such models add little value in our opinion and can con-

fuse readers as to the true intent and nature of the studies. We do believe that there is value in

descriptive experiments, but the limitations of these types of studies should be explicitly acknowl-

edged. We also believe that in order to make generalizable predictions, using economic theory to

design experiments and to guide the analysis is often the correct choice (Heckman 2010;

Acemoglu 2010).

3.11 Focus on the Long Run, Not Just on the Short Run

Economic experiments often tend to focus on estimating short-term substitution effects. This

is probably due to the fact that conducting an experiment that follows up subjects for several

months or years is substantially more costly: the logistics required become complex, and there is a

need to incentivize subjects to come back for follow-ups to avoid attrition.79 In addition, there is

always an implicit opportunity cost associated with longer experiments, because their longer time to

completion delays publication compared to similar trials that focus on short-term effects.

77 When individuals face behavioral biases, welfare calculations using only the demand curve (and therefore ignoring those
biases) can be potentially mistaken by orders of magnitude, and even have the wrong sign (Baicker, Mullainathan, and
Schwartzstein 2015).

78 Card, DellaVigna, and Malmendier (2011) claim this was the case in the negative income tax experiments conducted in the
late 1960s and early 1970s.

79 For example, Charness and Gneezy (2009) paid 50 U.S. dollars to subjects for each of two follow-ups.
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However, understanding the long-term effects of interventions is critical. For example, demand

elasticities can be very different in the short-run versus the long-run (Huang, Reiley, and Riabov

2017). Long-term effects are especially relevant when the interventions are programs that govern-

ments or other organizations intend to roll out in large scale (we discuss scalability in section 3.12).

As we emphasized in section 3.10, it is fundamental to take into account the GE effects of the

implemented policies and programs. However, those GE effects often need time to manifest, so

measuring the long-term effect of interventions is even more important. Moreover, Hawthorne, John

Henry, and experimenter demand effects can in principle be identified by collecting long-run data

(Duflo, Glennerster, and Kremer 2007). In addition, the ROI per dollar will be much larger if the

effects persist in the long-term. For example, Levitt et al. (2016) provided financial incentives to

high school freshmen for eight months conditional on meeting an achievement standard, and

followed the participants for five years. They found a significant positive impact of the incentives

on academic achievement in the short run, but the long-term follow-up revealed that the gains did

not persist beyond the first year.

Despite the widespread focus on the short term in experimental economics, there are several

notable papers that analyze the medium- and long-run effects of experimental interventions.80 As

Brandon et al. (2017) demonstrate the evidence on whether interventions work in the long run is

mixed even when restricted to a single subfield. Out of 10 studies included in their review (covering

the fields of charitable giving, education, exercise, smoking cessation and weight loss), four are

consistent with habit formation, whereas the other six are not (see Figure 2, plotting the proportion

of the intervention’s effect that persists after incentives are removed). Moreover, even when the

effects persist, they decay rapidly: only two of the aforementioned studies found estimated effect

sizes larger than 25% of the initial effect after just a month, and only one found any persistence

after six months.

There are two potential and nonexcluding reasons why researchers may find no or small effects

of interventions in the long run, with very different implications for the actual existence of a treat-

ment effect. The first and most obvious explanation is that the effect of the interventions is truly

zero in the long run. This could happen if the intervention is not successful in changing behavior in

the first place, either because subjects do not enroll in the relevant treatment, because the incentives

or nudges are “too weak,” or because the treatment changes behavior in a way different than

expected. Even if the treatment is successful in changing behavior in the short-term, subjects could

revert to baseline behavior over time even in the presence of the intervention: as the novelty of the

incentives tapers off, or if the intervention crowds out intrinsic motivation, subjects revert to old

habits.

Yet, there is a second reason why long-run estimates of treatment effects are so often

(close to) zero: the “attenuation bias over time.” Consider a field experiment where subjects are

80 We found relevant papers in the following areas: exercise (Charness and Gneezy 2009; Milkman, Minson, and Volpp 2013;
Royer, Stehr, and Sydnor 2015; Acland and Levy 2015), smoking cessation (Volpp et al. 2006, 2009; Giné, Karlan, and
Zinman 2010), weight loss (Volpp et al. 2008; Burke et al. 2012; John et al. 2011; Anderson et al. 2009), charitable giving
(Meier 2007; Shang and Croson 2009; Landry et al. 2010), water conservation (Ferraro, Miranda, and Price 2011; Ferraro
and Price 2013), energy conservation (Allcott and Rogers 2014; Brandon et al. 2017), voting (Gerber, Green, and Shachar
2003), labor effort (Gneezy and List 2006), exposure to better neighborhoods (Chetty, Hendren, and Katz 2016) and educa-
tion (Jackson 2010; Jensen 2010; Walton and Cohen 2011; Rodriguez-Planas 2012; Levitt, List, and Sadoff 2016). Note
that some of these papers would be better classified as belonging to the literatures on psychology, medicine and behavior
change, but are included here for completeness. In their review, Rogers and Frey (2016) analyze how field interventions to
improve societal wellbeing work over time.
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assigned to a treatment zi 2 Z. The researchers would like to measure the ATE at time

t, τ*t =E yi1t −yi1t0

 �

− yi0t −yi0t0

 �� �

.81 Note, however, that they can only measure τ = E[yit− yit0 |

zi0 = 1]−E[yit− yit0 |zi0 = 0].82 Importantly, zi0 refers to the original assignment at time t0, but sub-

jects may change their behavior over time, effectively changing their treatment (we discuss this form

of noncompliance in section 3.1). Subjects may self-select into different treatments over time: we

can think of this change as probabilistic, happening with a higher probability when the gains from

changing treatment status are high and the cost of changing is low. As time goes by, attenuation bias

increases and as time goes to infinity, the estimated ATE approaches zero.83

If selection into the experiment (pi = 1) is positively correlated with the utility from, or nega-

tively correlated with the cost of changing treatments, then the attenuation bias will be exacerbated

Figure 2. Persistence of Effects Across Domains.
Notes: Reproduced with permission from Brandon et al. (2017): “each point represents the proportion of the initial
treatment that persists for a given amount of time since the end of a given intervention […] insignificance at the five
percent level constituting persistence of zero.” [Color figure can be viewed at wileyonlinelibrary.com]

81 Where yidt is the outcome of individual i in treatment d at time t, and t0 is the time at which the intervention starts.
82 Where yit = yidit t is the outcome of individual i at time t, given the fact that individual i is in treatment dit.
83 In the Appendix, we assume that the occurrence of opportunities to change treatment follows a Poisson distribution, and

that the actual change of treatment follows a Markov process, and formally show that in the limit, τt ! 0.
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in overt experiments compared to NFEs. When researchers find an ATE close to zero due to attenu-

ation bias over time in a an overt experiment, it does not mean that the treatment did not work in

the first place, but that subjects who selected into the experiment (pi = 1) found a way to improve

their outcomes over time, even when they were initially assigned to control.84 A solution to attenua-

tion bias over time is to measure the effect of the intervention with respect to a control group that

did not self-select into the experiment (p = 0): τ0 = E[yit− yit0 |p = 1, z0 = 1]−E[yit− yt0 |p = 0],

where yit = yidit t is the outcome for individual i at time t. Note that τ0 controls for changes that hap-
pen in the treated group, with respect to a group that is not part of the experiment.85 This also

allows researchers to identify cases when the treatment works and has spillover effects, which could

otherwise be mistaken for a lack of long-run effect.

For all the reasons mentioned above, studying long-run effects should be a routine practice of

experimental economics whenever doing so enhances our scientific understanding of the theory,

mechanisms, or facts around the question. To reduce the delay in publishing that long-term studies

require, researchers could in principle continue to collect data after their first, short-term results

have been published (Banerjee 2005). Moreover, it is often possible to track subjects over time

without incurring additional costs, for example when data is already being collected for administra-

tive purposes, or when researchers establish long-term collaborations with firms who continue to

share their data beyond the initial experiment.

3.12 Understand the Science of Scaling ex ante and ex post

Throughout this article, we have discussed problems related to statistical inference, gener-

alization and reproducibility. These issues become especially salient when researchers attempt

to scale up their interventions, that is, to extend them to a population which is larger (and usu-

ally more diverse) than the original one. Unfortunately, out of the large number of program

evaluations performed today, few programs are ever scaled, and when they are, the effect sizes

often diminish substantially: a phenomenon known as “voltage drop” (Al-Ubaydli et al. 2017a).

There are many possible reasons why such a voltage drop might occur, and it is crucial to

understand why scaled-up programs often do not work as intended. Yet we believe that the

problem is currently too narrowly defined along two important dimensions (Al-Ubaydli, List,

and Suskind 2017c). First, the discussion around voltage effects in the implementation science

literature tends to focus mostly on the scaled-up program’s benefits. However, understanding

the relative benefits and costs are both invaluable to the scalability discussion. Second, whereas

that literature tends to focus on program fidelity as a major reason for the lack of proper scal-

ing, we see three main areas where challenges to scalability arise: statistical inference, repre-

sentativeness of the population and representativeness of the situation. Al-Ubaydli, List, and

Suskind (2017c) provide a formal model of the way these three factors manifest in the market

for scientific knowledge; we simply sketch them below to highlight issues experimenters should

84 This could happen if those who selected into the experiment were more motivated, and hence more likely to find ways to
enroll into alternative programs outside of the experiment that would improve their outcomes, or if there were spillover
effects in the experiment (see section 3.10) and those initially assigned to the control group were more likely to be affected
by the treatment because of the fact that the experiment was being run (e.g., their friends in the treatment group informed
them about the ways to get enrolled in similar programs, etc).

85 This can be seen because τ0 gives us the correct measurement in the extreme cases when either the treatment has no effect
but selection into the experiment has an effect (in which case τ0 = 0), or when selection into the experiment has no effect
but the treatment has an effect (in which case τ0 = τ*).
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consider in their design, analysis, and interpretation that could affect the scalability of their

results.

Statistical Inference

In section 3.4, we introduced the concept of the PSP (Maniadis, Tufano, and List 2014): the

probability that a declaration of a research finding made upon statistical significance would actually

be true. We discussed how insufficient statistical power combined with bias resulting from specifi-

cation searching may lead to low poststudy probabilities. We further explained that as more

researchers investigate the same relationship independently of each other, the probability that a sta-

tistically significant effect or association truly exists becomes smaller. Moreover, studies with “sur-

prising” results (i.e., low prior probabilities of being true) tend to be published in journals more

often, in turn resulting in low PSP. For all these reasons, a program that is selected on the basis of

just one successful initial trial may fail to produce effects when scaled. Furthermore, the phenome-

non of effect inflation, that is, obtaining an exaggerated estimate of the magnitude of a true effect

(discussed in section 3.4), implies that a program that is scaled after a single study is likely to yield

a much smaller effect than the original study.

To curb these problems, Al-Ubaydli et al. (2017a) advocate for only advancing results to the

policymaking stage once their PSP passes 95%. Crucially, the PSP increases substantially if the ini-

tial positive finding is followed by at least two successful replications (section 3.5). Moreover, suc-

cessful replications in different contexts are valuable for ensuring generalizability (Duflo 2004;

Muralidharan and Niehaus 2017, see section 3.1). Replication may also be used to measure average

within- and across-study variation in outcomes: when these are close, the concern about across-

context generalizability is reduced (Vivalt 2017).

Representativeness of the Population

Heterogeneity in populations may present problems for scalability, as discussed in the context

of generalizability in section 3.1. During scaling, the population that selects into the program is

often different than the original experimental sample, raising the concern that the estimated treat-

ment effect will be different (usually smaller) in the new population. Such “scaling bias” may result

from adverse heterogeneity (Al-Ubaydli, List, and Suskind 2017c), describing a situation when the

original experimental participants’ attributes are correlated with higher expected outcomes. This

may occur as a result of participation bias (participants self-select into the experiment on the basis

of their expected gains from participation Al-Ubaydli and List 2013) or publication bias

(researchers have incentives to find participants who yield large treatment effects Al-Ubaydli, List,

and Suskind 2017c). Another concern for scalability related to the population is attrition, an issue

we discussed in detail in section 3.1.

Representativeness of the Situation

The first and most obvious change when scaling up a smaller program concerns the infrastruc-

ture: scaled-up programs often need a larger and more complex infrastructure to support them, lead-

ing to a potential increase in their cost. Moreover, program evaluations are often run by particularly

high-quality officials or NGOs in a way that is hardly possible to scale up: as the program is

expanded, its quality may deteriorate (Duflo, Glennerster, and Kremer 2007). When scaling,
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researchers need to be aware that more workers must be hired, and they might be of lower quality

or have less interest in the program, simply due to the diseconomies of scale associated with requir-

ing more labor in a labor market with inelastically supplied human capital (Al-Ubaydli, List, and

Suskind 2017c; Davis et al. 2017; Banerjee et al. 2017a). This may reduce the benefits of the pro-

gram (through lower-quality program workers) and/or increase its costs (when trying to keep the

quality of workers high). In addition, the cost of recruiting more subjects may be lower or higher

than in the initial experiment, depending on the particular implementation of the scaled-up program

(e.g., a program that automatically enrolls citizens can have lower marginal costs, once the setup for

recruitment is ready).86

In addition to the three areas listed above, GE effects are also crucial when considering scaling

(Banerjee, Chassang, and Snowberg 2017b; Al-Ubaydli et al. 2017b, also section 3.10 for the

importance of GE effects). GE effects can cause researchers to underestimate the effect of their

interventions in at least two ways: if there are spillovers from the treated group to the control group,

in such a way that the ATE was biased downwards in the original intervention because the control

group was benefiting from treatment; and if there are complementarities between those treated, for

example in an educational intervention in which students benefit not only from their own treatment,

but also from having treated peers.87

On the other hand, researchers may overestimate the effect of their intervention if they do not

take into account its crowding out effect (Crépon et al. 2013).88 Moreover, the interventions that

work when scaling up might be more complex than those employed while piloting the program. For

example, in the case of long-term, chronic medical conditions, the most effective interventions are

usually complex combinations of basic interventions such as educational sessions, counseling, and

a selection of reminder methods (Al-Ubaydli et al. 2017a). Therefore, the benefit of a scaled-up pro-

gram can be higher or lower than that of the original intervention, depending on the direction of the

GE effects.

In light of the scaling problem, our main recommendation is that researchers “backward

induct,” having the issue of scaling already in mind when designing their experiments and pro-

grams. First, both clinical researchers and economists can greatly benefit from following experimen-

tal best practices, such as emphasizing sound inference (sections 3.2 and 3.3), ensuring appropriate

sample sizes and sufficient power (section 3.6) and conducting replications (section 3.5). Moreover,

a unified framework for addressing scalability should consider the underlying mechanisms of the

program, as well as the relevant population, time-span, implementation partners needed, and so

86 Interestingly, many of these issues could be exacerbated “when rolling out revolutionary ideas, as these often challenge the
power and established practices of incumbent organizations” (Al-Ubaydli, List, and Suskind 2017c). Therefore, programs
with greater community coalition functions, communication to stakeholders, and sustainability are more likely to still be in
place over two or more years beyond their original funding (Cooper, Bumbarger, and Moore 2015).

87 Dramatic evidence of such spillovers comes from List, Momeni, and Zenou (2019a), who examine a randomized field
experiment among 3–5 year olds in Chicago described in Fryer, Levitt, and List (2015, 2017). They find that each addi-
tional treated child residing within a three kilometer radius of a control child’s home increases that child’s cognitive score
by 0.0033 to 0.0042 standard deviations. Given that an average child in their sample has 178 treated neighbors residing
within a three-kilometer radius of her home, on average, a child gains between 0.6 and 0.7 in cognitive test scores and about
1.2 in noncognitive test scores in spillover effects from her treated neighbors. These are large spillovers, which serve to
highlight that the program at scale would have much larger effects than the Fryer, Levitt, and List (2015, 2017) summaries
of the research program predicted, ceteris paribus.

88 A related issue is that of construal, that is, the subjects’ subjective understanding of the intervention. Paluck and Shafir
(2017) argue that scaling up mandatory arrest of abusive domestic partners (as a result of an experiment) backfired due to
the construal of (what it meant) calling the police in that situation.
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forth. In short, programs are more likely to scale up when they are driven by an understanding of

the underlying mechanisms, the randomization (of subjects and of workers) happens in a large

enough population, and the time scale is long enough to accurately measure the main effects as well

as spillovers and GE effects.

First, in terms of mechanisms, researchers should go beyond A/B testing to the whys of the

phenomena they want to study, using existing evidence to build theories that can help explain the

experimental results, and providing a theoretical basis for fidelity in the Al-Ubaydli, List, and

Suskind (2017c) model. Economists could structurally estimate behavioral models as they seek to

scale results, as we argued in section 3.10.

Researchers should also consider whether results from their program are likely to generalize,

being especially sensitive to heterogeneity across populations and contexts (section 3.1), and choose

the optimal experiment type in light of their scaling goals (an issue we discussed in section 3.3). In

terms of the population, an approach that is likely to result in better generalization is to consider the

(large) population of interest first, take a representative (smaller) sample of observations this popu-

lation, and then randomize those to treatment or control (Muralidharan and Niehaus 2017).89 Com-

pliance to the program must also be taken into account. Lessons derived from earlier interventions

can help in this endeavor: Al-Ubaydli et al. (2017a) argue that there is much to be learned from

medical researchers who have been rigorously studying a similar problem for years.90

The issue of diseconomies of scaling in hiring workers to scale up an intervention can be tack-

led by randomizing the hiring process itself as part of the initial experiment, in a way that allows

researchers to estimate the loss in worker quality as they move along the supply curve (Davis et al.

2017). Researchers can then use these insights in their initial cost effectiveness calculations before

rolling out the experiment on a larger scale. In addition, GE effects can be estimated by using large

units of randomization whenever possible (e.g., randomizing at the school level instead of at the

student level, Muralidharan and Niehaus 2017).91

Finally, it is important to evaluate the program’s implementation, and document all steps of the

process (Duflo, Glennerster, and Kremer 2007; Banerjee et al. 2017a). This includes having a

preanalysis plan, and creating an initial program that is modular, in the sense that its implementa-

tion can described by a simple protocol (Banerjee 2005).

It is worth adding that ML can offer new opportunities for improving the scaling of interven-

tions. ML offers several potential advantages that economists can profit from (Mullainathan and

Spiess 2017; Athey 2018), such as providing a benchmark against which to test economic theory,

predicting who will benefit from a certain policy (e.g., Björkegren and Grissen 2018, use ML to

predict loan repayment using cellphone data),92 and estimating heterogeneous treatment effects.

Although ML and artificial intelligence have only started making their way into economic research,

89 For example, Muralidharan and Sundararaman (2015) first sample a “representative universe” of villages with a private
school, and then randomly assign each of them to treatment or control in a school choice experiment.

90 In particular, nonadherence to medication can lead to financial and personal costs—incentives that nonetheless seem too
weak to motivate individuals.

91 A prominent example is that of Miguel and Kremer (2004) who realized the importance of spillover effects from deworming
programs by randomizing the programs at the school (rather than the student) level. However, Banerjee et al. (2017a) warn
that sometimes it is difficult to know ex ante what randomization unit will be large enough to capture all GE effects.

92 Other examples of ML for predicting behavior are Glaeser et al. (2016), who crowdsourced an algorithm for predicting
health code violations in restaurants; and Goel et al. (2016), who predict the likelihood that a target of stop-and-frisk poli-
cies actually has a weapon.

420 Czibor, Jimenez-Gomez, and List

 23258012, 2019, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/soej.12392 by E

esc H
ec Paris, W

iley O
nline L

ibrary on [11/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



they have great potential and, when combined with experiments, offer the promise of improving the

scaling of interventions.

4. Conclusion

When new areas of inquiry arise in the sciences, they are oftentimes greeted with much skepti-

cism, yet if they prove fruitful, they grow quickly but many times nonoptimally. Such an oft-

observed pattern effectively results in a missed moment to advance knowledge, and backtracking

on ill-advised research journeys often is difficult. We now find ourselves in a phase of rapid growth

of the experimental method in economics, especially as applied in the field. To help ensure that we

seize this opportunity to maximize the scientific knowledge created using experiments, we take this

occasion to step back and attempt to set up some guard rails by crafting a 12 item wish list that we

hope scholars can do more of in their own research. By creating such a list we are not implying that

these 12 items are entirely ignored in the extant literature; indeed, throughout our article we high-

light examples of research that already engages in these best practices.

Although picking a dozen items for such an exercise is akin to picking one’s favorite research

project or one’s favorite child, we nevertheless attempt in this tome to do just that. Rather than

regurgitate how our 12 items span three bins that are usefully summarized by three questions, we

wish to close with a few items that we find important but just missed our wish list.

Our first addition is a call to define the research questions and analysis plan before observing

the outcomes of an experiment—a practice known as preregistration (Nosek et al. 2018). This

approach has been adopted as a remedy against specification searching in a plethora of other fields,

most notably medical trials, and we fully anticipate considerable scientific gains in economics

thanks to this movement.93 The reason we did not include it on our list, though it did permeate cer-

tain aspects of our discussion (see section 3.8), is that this push has taken place and is relatively far

along already: the Open Science Framework’s database has received 18,000 preregistrations since

its launch in 2012, with the number roughly doubling every year, and more than 120 journals in

various fields now offer registered reports. As such, while we strongly recommend preregistering

experiments (possibly augmented with ML, as recently suggested by Ludwig, Mullainathan, and

Spiess 2019), we feel that its inclusion in our wish list would add less value than other, less-

discussed items.

Our second addition emphasizes the need to work on issues of first order import, and dissemi-

nate results from economic experiments more broadly. Academic researchers, responding to career

incentives that are almost exclusively tied to publications in peer-reviewed economics journals, typi-

cally spend little time and effort communicating their findings to a wider audience. Although the

profession has made progress towards experiments that produce relevant, generalizable and scalable

results, researchers are typically not rewarded for getting involved with the actual larger-scale

implementation of their results. As a result, even the most important new scientific findings with

93 The practice of requiring detailed preanalysis plans for all empirical work has not been unanimously endorsed by all in the
profession. For instance, Coffman and Niederle (2015) warn that preanalysis plans may discourage the use of novel research
designs. Instead, Heckman and Singer (2017, p. 299) recommend the practice of abduction, whereby”[t]he successful
abductor immerses himself in the data and the conceptual issues underlying its generation and its interpretation, and reports
the results of this immersion to the reader. It is a public process where evidence, provisional models, and methods are rev-
ealed and scrutinized.”
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direct practical relevance often take long to reach policymakers or practitioners, and when they do,

they are often misrepresented. To change this practice, we urge researchers to make their results

more available by creating informative press briefings, posting summaries and nongated versions of

their published papers online, exploiting the opportunities offered by social media, and establishing

contact with policymakers and practitioners interested in applying their findings in practice. Further-

more, we see great potential gains in engaging with the scientific community more broadly, both by

working more closely with researchers from other social science disciplines, and by following the

methodological discussions in other experimental sciences such as biostatistics or neuroscience.

We end our wish list with a call to the experimental economics community to continue engag-

ing in the discussion to improve our field. Although Samuelson’s famous quip that doing methodo-

logical research is akin to doing calisthenics remains true today, we hope that our work provides a

useful starting point for those new to this discussion. We encourage researchers who have been

actively shaping this debate to create their own wish lists, or to share with us items that we have

missed in ours, since choosing one’s favorite methodological points is often fraught with err and

oversight, and we trust that our list contains both.

Appendix

Generalizability Threat III: Noncompliance Case

We consider here the more general case of Threat III to generalizability (see section 3.1), for the case of noncompliance.
The issue of selective noncompliance can be exacerbated by nonrandom selection into the experiments, in which case pi is corre-
lated with (zi,di).

94 In that case, there is a problem of generalizability when rolling the program to the entire population.95 If the

researchers are interested in the effect of the program λ* =E yi1−yi0jωFFE,d zi = 1ð Þ= 1d zi = 0ð Þ = 0½ �, we have that

λ* =P pi = 1½ ��LATEp = 1 +P pi = 0½ ��LATEp = 0,

where LATEp = 1 is defined as in Equation 1, and LATEp = 0 is defined analogously for those with pi = 0.96 We can calculate
the bias as we did in Equation 2 for the case of noncompliance, which is given by P[pi = 0] � (LATEp = 1 − LATEp = 0).

97 If
the value of LATEp = 0 is very different from LATEp = 1, then the estimate from the FFE is not generalizable because, for most
FFE, P[pi = 0] is much larger than P[pi = 1]. However, the estimate from FFE will be generalizable when
LATEp = 1 ≈ LATEp = 0, and this can happen if p is independent of (zi,di):

pi?? zi,dið Þ j xi Compliance Independence Conditionð Þ:

Generalizability Framework from Al-Ubaydli and List (2013)

We present a very similar version of the framework in Al-Ubaydli and List (2013), which was based on Heck-
man (2000).

94 For example, if the stakes involved may affect both the selection decision into the experiment pi, and then the subsequent
behavior in response to the treatment di, or if those who select into the experiment are more likely to comply with their
assigned treatment, or the opposite, those who select into the experiment are more likely to choose a particular d no matter
what zi is.

95 See also section 3.12 for issues on scalability.
96 That is, LATEp = 0 =E yi1−yi0jωFFE,di zi = 1ð Þ= 1di zi = 0ð Þ= 0pi = 0½ �.
97 Because LATEp = 1 − λ* = (1 − P[pi = 1]) � LATEp = 1 − P[pi = 0] � LATEp = 0.
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We say D has local generalizability if

8 x,x0,zð Þ 2D,9ϵ> 0 :Bϵ x,x0,zð Þ �D[Δ Rð Þ:

Note that if D is an open set, then D has local generalizability, even if D has zero generalizability.98 We say that D has
global generalizability (of size M) if DM � D [Δ (R), where

Dϵ = x,x0,zð Þ : 9 �x,�x0,�zð Þ 2Dwith x,x0,zð Þ 2Bϵ �x,�x0,�zð Þf g:

Note that global generalizability of size M > 0 implies local generalizability. Moreover, if D is finite, local generalizabil-
ity implies global generalizability for some M > 0.99

Attenuation Bias Over Time

Let τt = E[yit− yit0 |zi0 = 1]−E[yit− yit0 |zi0 = 0]. Since zi0 is random, then we have that E[yit0 |zi0 = 1] = E[yit0 |zi0 = 0],

and hence

τt =E yit jzi0 = 1½ �−E yit jzi0 = 0½ �:

We assume that each individual changes treatments with a constant probability that is positive if the new treatment has
a higher outcome, and zero otherwise. For each individual, this generates a Markov Chain, and the stationary distribution πi is
such that there is a mass 1 of probability at the treatment with the highest outcome (it is an absorbing state) for individual i.
Therefore, as t ! ∞, each individual converges to the treatment with the highest outcome. Again, as a result of zi0 being ran-
dom, the stationary distribution πi is the same in expectation for zi0 = 1 and zi0 = 0, and therefore:

lim
t!∞

τt = lim
t!∞

E yit jzi0 = 1½ �−E yit jzi0 = 0½ �=E y�πijzi0 = 1½ �−E y�πijzi0 = 0½ �= 0:
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