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The essential feature of American style claims lies in the holder’s right to time the 

exercise decision. The value of the claim depends on the information about future prices 

that the holder will acquire over time. Much of the literature makes restrictive 

assumptions about information revelation – for example that the underlying price process 

is Markov. This paper explores the upper bound on the price of an American option, 

placing no assumptions on the information structure. The analysis provides insight into 

the processes that make the American feature valuable, and points the way to hedging 

strategies for American options that are robust to model error. 
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1. INTRODUCTION 
The essence of an American option lies in the holder’s right to time the exercise decision. 

The value of being American depends on the information that the holder will acquire 

about future asset returns. Much of the literature on American options assumes that the 

underlying asset price follows a Markov process, and that the only information the holder 

acquires about future returns is contained in past asset prices. With a richer information 

structure, where the holder learns about the distribution of future returns, the value of 

being American will in general be higher. We derive the arbitrage-free upper bound on 

the price of an American option given only the contemporaneous prices of all European 

options, and explore the price processes that support these values. 

American options are the most common and also the most subtle of exotic options. While 

many exotic options have pay-offs that are functions of the price path alone, the pay-off 

to an American option also depends on the exercise strategy of the holder. The decision 

to exercise will depend on all the information that the holder has at the time. In the 

standard Brownian diffusion model, the only relevant information for the holder of the 

option is the current asset price. The optimal exercise strategy is to exercise the option the 

first time the asset price breaches a barrier – the immediate exercise boundary (see 

Broadie and Detemple (2004) for a more formal treatment). With a richer information 

structure – for example with stochastic volatility – the exercise strategy is more complex, 

and depends on all state variables rather than just the underlying asset price. 

In general, holding the price of European options fixed, the richer the information 

structure, the greater the value of the American option. As Longstaff, Santa-Clara and 

Schwartz (2001) argue in the context of American and Bermudan style swaptions, the 

costs of using a single-factor model to make exercise decisions when the term structure is 

driven by multiple factors are substantial. They argue that these costs remain substantial 

even if the model is recalibrated to fit the current set of market prices of related derivative 

securities (in this case European swaptions) at each possible exercise date. While 

Andersen and Andreasen (2001) and Svenstrup (2005) contest this latter conclusion, the 

need to recalibrate a single factor model to take account of new information revealed in 

market prices when deciding whether to exercise the option is common ground. 
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Taking account of new information though repeated recalibration of a model is internally 

inconsistent. It violates the model’s own assumptions that the parameters are constant. 

Internal consistency could be obtained by using a multi-factor model with at least as 

many factors as the number of parameters required to fit the surface of call option prices. 

But the number of factors needed, and the associated problems of parameter estimation 

and stability, make this an unattractive way of accounting for new information. 

We therefore follow a different route. To get a bound on how much new information 

could matter, we ask the question: given the prices of European options, how much could 

an American option be worth without allowing arbitrage opportunities? In answering the 

question, the only assumption (apart from the standard assumptions of frictionless 

markets and absence of arbitrage) is that interest rates and dividends are deterministic. 

The search for arbitrage-based option pricing bounds goes as far back as Merton (1973) 

who shows that the price of an American put option is bounded below by the equivalent 

European put option; using obvious notation, ( ) ( ),a eP X T P X T≥ , . It can readily be 

shown that the European put with the same maturity as the American, but a strike whose 

present value is equal to the nominal strike of the American option provides an upper 

bound; ( ) ( ), ,a e rP X T P Xe T≤ T . 

Merton (1973) concerns the dominance relationship between two claims. Brown, 

Hobson, and Rogers (2001) generalize the question by searching for the tightest bounds 

on a claim (in their case barrier and lookback options) in the presence of a whole set of 

other claims (European options with the same maturity). The bounds have a number of 

uses. The bound is enforced by a hedging strategy which is of interest because it is 

robust. Robust strategies put a floor on potential hedging losses. Being model free, they 

avoid the problems highlighted by Green and Figlewski (1999) when conventional 

hedging techniques are used with an incorrect model, or poor parameter estimates. The 

extreme processes that maximize the value of the exotic option cast light on the features 

of a price process that make the exotic option particularly valuable.  
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The bound on the value of the American feature is not in general very close to the price 

from standard pricing models. As will be shown in the case of the American put option, 

the maximum possible value of the American premium (defined below) can readily be 

three or more times larger than that implied by a standard diffusion process before 

creating an arbitrage opportunity. This suggests that there is scope for models with richer 

information structures to generate American option values that differ substantially from 

traditional models. Examples given in this paper confirm that insight. 

The model is set in a discrete time, discrete space world. This is for convenience only. It 

makes it possible to formulate the problem of finding the rational bounds as a finite 

dimensional linear program. The continuous time, continuous space limits are easily 

identified. The strategy for finding the arbitrage bound is as follows: in the first stage, we 

identify a class of strategies using European options that bound the American option. The 

search for the cheapest member of the family is formulated as a linear program (LP). In 

the second stage, a family of processes for the underlying asset is characterized. The 

search for the member of the family that places the greatest value on the American option 

is formulated as a second LP. It is shown that the second LP is the dual of the first, so 

they have the same solution. The solution is both a feasible price for the American 

option, and an upper bound on its price. So it is the highest possible price consistent with 

the absence of arbitrage. 

Others authors (Andersen and Broadie (2004), Rogers (2002) and Haugh and Kogan 

(2004)) also exploit the relationship between the primal and dual problems to bound the 

value of an American option. Their work differs from ours in that their bounds are 

designed to bracket the true value of the American option under a known price process by 

using a near to optimal exercise strategy. We, on the other hand, are seeking price bounds 

that are independent of the process. 

Having identified the bounds on the general American option in the next section, section 

3 explores numerically the bounds on the price of the American put option. The nature of 

the dominating strategies and of the processes that support these extreme values are 

identified. These processes involve jumps and state dependent volatility. Section 4 
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explores the extent to which processes with jumps and state dependent volatility may lead 

to particularly high values for the American feature. The fifth section tightens the bounds 

by ruling out implausible processes. The final section concludes. 

2. IDENTIFICATION OF THE BOUNDS 

2.1 The Set Up  

The model is set in a discrete time, discrete space framework. The time index t goes from 

0 to T. There is a single risky security. It pays no dividends1 and is traded in a frictionless 

market at price St. St  can take one of J possible values: 

(2.1) { } 11,...,  for all ,  with ... .t jS x j J t x x∈ = < < J

                                                

 

The spacing of the time and price nodes is not critical, though it is natural to think of the 

discrete times being equally spaced, and the discrete prices being placed in a geometrical 

progression. The interest rate is non-stochastic. We work with discounted prices, 

discounting the nominal price to t = 0. Price is used as shorthand for discounted price. 

An American option is characterized by a J × T  pay-off matrix A = {ajt}. If St = xj and 

the option has not previously been exercised, the holder can choose to exercise it and 

receive a pay-off whose discounted value is ajt.2 Once the option has been exercised, it is 

dead; it cannot be exercised again. The holder can chose to let the option expire without 

exercising it. 

For each node (j, t) there exists an elementary security that pays 1 if St = xj and 0 

otherwise3. Its time zero price is pjt. The J × T matrix {pjt} is denoted by P. pjt can be 
 

1 The extension to assets with a constant yield, or a known dividend, is described in 1.4. 

2 It is implicitly assumed that the American option cannot be exercised at time 0; this is for notational 

convenience and has no effect on the results. 

3 We could instead have assumed the existence of a complete set of conventional European call options 

(that is an option for each strike  xj and each maturity t). The Arrow-Debreu claims we are assuming can be 
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interpreted as the risk-adjusted probability of state j occurring at time t, given information 

at time 0. The prices of the elementary claims are assumed to preclude arbitrage. This 

implies the existence of a process under which S is a martingale and Pr{St = xj} =  pj,t for 

all (j, t) (Davis and Hobson 2007).  

2.2 Dominating Portfolios 

A portfolio of elementary securities is represented by a J × T matrix E = {ejt}. The 

portfolio pays the holder an amount ejt at time t if St = xj. The cost of the portfolio, c(E), 

must be the same as the cost of the elementary securities that compose it: 

(2.2) ( ) , ,
,

.j t j t
j t

c e= p∑E  

The following theorem sets out sufficient conditions under which the European portfolio 

E dominates the American option A. 

THEOREM 2.1: if there exist three J × T matrices E, D and V that satisfy the following 

conditions: 

(2.3)  
( )

,

, , , , 1

, 1

, ,

1) 0 for all , ;

2)  for all , , ,

where 0;
3)  for all , ,

j t

j t j t j t m j m t

m T

j t j t

e j t

v e d x x v j m t

v
v a j t

+

+

≥

≤ + − +

≡

≥

then the cost of E is an upper bound on the price of the American claim A. 

Proof: suppose the theorem is false. An agent writes the American option at time 0, and 

uses the proceeds to buy the European option E. The agent then follows the following 

strategy: until the time the American option is exercised, the agent does nothing. If the 

                                                                                                                                                 

created from the call options using a butterfly spread – a long position in calls with strikes xj-1 and xj+1 and a 

short position in calls with strike xj.  
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option is exercised at time t*, then at any time t ≥ t*, the agent hedges by holding djt 4of 

the underlying asset. 

By assumption, A costs more than E, so the cash flow at inception is strictly positive. At 

every period up to time t*, the agent receives an amount ejt which is positive by condition 

(1). (2) ensures that the proceeds from the delta hedged portfolio E from time t* to the 

end is at least vj*,t*. Condition (3) ensures that this exceeds aj*,t*, the exercise cost of the 

American option. The aggregate cash flow is also strictly positive if the American option 

is never exercised. This is an arbitrage strategy. To avoid arbitrage, the price of the 

American option must be less than or equal to the price of the European portfolio. ■ 

To understand the theorem, interpret vj,t as the intrinsic value of the European portfolio E 

at node (j, t). That is to say, by delta hedging suitably (represented by the matrix D), the 

holder of the portfolio can ensure that the hedged proceeds from the portfolio from time t 

onwards will equal at least vj,t whatever path the asset subsequently follows. The theorem 

states that if E has positive cash flows only, and if the intrinsic value of E exceeds the 

immediate exercise value of the American option at all nodes, then E dominates the 

American option. 

The theorem identifies a set of strategies that bound the price of an American option. To 

find the tightest such bound, it is natural to express the problem as a linear program: 

 

{ }

( )

, ,
,

,

, ,

, , , , 1

,

: Find the triplet of   matrices , ,

that minimizes 

subject to the constraints:
1) 0 for all , ;

2)  for all , ;

3) 0 for all , ,

where 0 w

j t j t
j t

j t

j t j t

j t m j j t j t m t

m t

J T

e p

e j t

v a j t

e x x d v v j m

v
+

×

≥

≥

+ − − + ≥

≡

∑
LP1 D E V

hen 1.t T= +

t

                                                

  

 

4 Strictly, we should write , but we drop the second subscript for simplicity. ,tj td
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The feasible set is not empty5. The solution is bounded below by zero; otherwise there 

would exist a portfolio E that has positive cash flows in all states of the world, and has a 

negative cost, and this would be an arbitrage. So LP1 has a solution; the solution is 

denoted by an asterisk. Theorem 2.1 implies that the price of the American option is 

bounded above by c(E*). The next step is to show that it is the least upper bound.  

2.3 Feasible Prices 

c(E*) is proved to be the least upper bound by identifying a process for the underlying 

asset and an exercise strategy for the American option (“a feasible process”), under which 

the price of every traded security is a martingale, and under which the expected pay-off to 

the American option is c(E*). The set of feasible processes is of very high 

dimensionality. We rely on the intuition that the search for the cheapest dominating 

strategy, and the search for the process that places highest value on a claim, are in some 

sense dual problems. If we can show that the dual of LP1 can be interpreted as the search 

within a non-empty set of feasible processes then we have attained our goal.6

The dual of LP1 can be written as: 

                                                 

5 For example, define ejt = vjt = max[ajt , 0] and djt =0 for all j and t. 

6 If the set of dominating portfolios we identified in Proposition 1 is too small, so the upper bound is not the 

supremum, then our strategy will fail. The dual problem will still identify a process, but it will not be a 

feasible process.  
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( )

( )

, ,
,

, ,
1

, , ,
1

, , , 1 , ,
1

: Find the  matrix  and the  matrix 
that maximizes subject to the constraints:

1) 0 for all , ;

2)  for all , ;

3) 0 for 

=

=

−
=

× × ×

− =

≤

+ − =

∑

∑

∑

∑

j t j t
j t

J

m j j m t
m

J

j m t j t
m

J

j t m j t j m t
m

J T J J T
f a

x x h j t

h p j t

f h h

LP2 F H

, , 1

,

, ,

all ,

where 0 when 1;

4) 0 for all , ;

5) 0 for all , .

− ≡ =

≥

≥

m j t

j t

j m t

j t

h t

f j t

h j t

  

This program has a natural interpretation. Let It be an indicator variable that is 0 when the 

option is live, and 1 from the time the option is exercised. Interpret f and h as follows: 

 
{ }
{ }

, 1

, . 1

Pr 0 1 ,

Pr 1 .

−

+

≡ = ∧ = ∧ =

≡ = ∧ = ∧ =

j t t t t j

j m t t t j t m

f I I S x

h I S x S x
 

The last two constraints specify that the probabilities must be positive; the first three 

constraints specify that: 

 { } { }
{ } { } { }

1

1 1

1) , 1 0 for all , ;

2) Pr 1 Pr  for all , ;

3) Pr 1 Pr 1 Pr 0 1  for all , .

t t t t t

t j t t j

t t t t t t t t

E S S S I S t

S x I S x j t

I S I S I I S S

−

− −

⎡ − = ⎤ =⎣ ⎦

= ∧ = ≤ =

= = = + = ∧ = t

 

While the conditions in LP2 are necessary for (F, H) to characterize a martingale process 

for S (and exercise strategy) that is consistent with the risk neutral probabilities P, it is 

less obvious that they are sufficient. If they are insufficient, the solution to LP2 (and to 

LP1) may not be a feasible price for the American option. Rather than prove sufficiency, 

we use LP2 to motivate the characterization of a family of martingale processes and 

exercise strategy, and then search for the process and associated exercise strategy that 

maximizes the American option’s value. 
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Consider the following process: at time 0 the world is in state 0, so the state indicator 

function I0 = 0. If at some time τ it switches to state 1, It = 1 for all t ≥ τ. Consider the 

filtration jointly generated by the state and the asset price {St}. The process for the 

underlying can be fully captured by two J × J × T matrices G and H where: 

(2.4) 
{ }
{ }

, , 1

, , 1

Pr 0 ;

Pr 1 .

j m t t j t m t

j m t t j t m t

g S x S x I

h S x S x I

+

+

≡ = ∧ = ∧ =

≡ = ∧ = ∧ =
 

Also define fj,t, the probability that the state changes to state 1 at time t and St =xj, so 

{ }, 1Pr 0 1j t t j t tf S x I I−≡ = ∧ = ∧ = .  

For {F, G, H} to represent a feasible process, it is sufficient that they are positive, that S 

is a martingale with respect to past prices and the indicator variable, that they are 

consistent with P, and F is consistent with G and H. This requires that: 

(2.5)  

( ) ( )

( ) ( )

( )

, , ,

, , , ,

, , , , , , , , , , 1

, , , , , 1 , ,

1) 0; 2) 0; 3) 0;

4) 0; 5) 0;

6) ; 7)  ( );

8) (with 0 when 0);

for 1,...,  and 1,..., .

j t j t j t

m j j m t m j j m t
m m

j m t j m t j t m j t m j t j t
m m

j t j m t m j t m j t
m

f g h

x x g x x h

g h p g h p t T

f h h h t

j J t T

+

−

≥ ≥ ≥

− = − =

+ = + = <

= − ≡ =

= =

∑ ∑

∑ ∑

∑

Consider the strategy of exercising the option when the state changes to state 1. Under the 

process {F, G, H} and with this exercise strategy, the value of the American option is: 

(2.6) ( ) , ,
,

.j t j t
j t

v a= f∑F  

Now consider the linear program: 

LP3: Find the J × T matrix F and the two J ×  J × T matrices G and 

H that maximizes , ,
,

j t j t
j t

f a∑  subject to the constraints in (2.5). 
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The feasible set is not empty; consider for example the strategy of never exercising the 

American claim, so F = H = 0. G is then just a martingale process for the underlying 

asset that is consistent with the prices of the European options; such a process must exist 

if the market is free of arbitrage. The problem is also bounded since F is bounded  (pj,t ≥ 

fj,t ≥ 0). So there is a solution v(F*).  

THEOREM 2.2: the search for the cheapest dominating portfolio (LP1) is equivalent to 

the dual of the search for the process that maximizes the value of the American claim 

(LP3). The cost of the cheapest dominating portfolio c(E*) is equal to the maximum 

feasible price  v(F*), and they are therefore both equal to the least upper bound on the 

value of the American claim.  

Proof: in the Appendix. The proof proceeds by identifying the dual to LP3, and showing 

that it is equivalent to LP1 in the sense that the solutions to the two programs are the 

same. The second part of the theorem immediately follows because the solution to a 

primal and its dual are the same. ■ 

2.4 The Bounding Process 

In this section we explore the nature of the price process that maximizes the value of the 

American option. In solving LP1 to find the maximum value, the binding constraints can 

be identified. The Complementary Slackness Theorem then identifies the constraints in 

the dual problem, LP2, that are binding. These binding constraints help characterize the 

price processes that maximize the value of the American option and the corresponding 

exercise strategies. 

The table sets out the primal and dual LPs with complementary constraints matched: 

 Primal (LP1) Dual (LP2) 
Objective Minimize , ,

,
j t j t

j t

p e∑  Maximize , ,
,

j t j t
j t

a f∑  

Subject to:  
(1)  ( ) , , 0m j j m t

m

x x h− =∑  

(2) , 0j te ≥  , , ,j m t j t
m

h p≤∑  
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(3)  ( ), , , 1 , , 0j t m j t j m t
m

f h h−+ − =∑  

(4) , ,j t jv a≥ t  , 0j tf ≥  
(5) ( ), , , , 0j t m j j t j t m te x x d v v ++ − − + ≥1

 
, , 0j m th ≥  

 

By the Complementary Slackness Theorem: 

(2.7) 
( )

, , , ,

, , ,

, , ,

, ,

1) 0  (from 2);

2) 0 (from 4);

3) 0

 0 (from 5).

j t j m t j t
m

j t j t j t

j t m j j t j t m t

j m t

e h p

v a f

e x x d v v

h
+

> ⇒ =

> ⇒ =

, 1+ − − +

⇒ =

>

∑

  

The characteristics of the processes that maximize the value of the put and the 

corresponding optimal exercise strategies can now be identified: 

THEOREM 2.3: The extreme process that drives the option value to its maximum is given 

by the following: 

(a) if node (j,t) is attained and the option is dead, then the path continues to node (m, 

t+1) only if v.,t+1 is a linear function of the asset price in the range [xj, xm].  

(b)  nodes can be divided into four complementary sets: 

(2.8) 
{ } { }

{ } { }
, , , , ,

, , , , , ,

( , ) 0 ; ( , ) 0 ;

( , ) 0 ; ( , ) 0 .

j t j t j t j t j t j t

j t j t j t j t j t j t

W j t e v a X j t e v a

Y j t e v a Z j t e v a

= = ∧ = = > ∧ =

= = ∧ > = > ∧ >

,
  

The optimal strategy is to exercise in the X zone, and not to exercise  in the Y 

zone; the Z zone is attained only by paths where the option has already been 

exercised. The exercise strategy is not constrained in the W zone.  

Proof: the first part of the theorem follows from part (3) of (2.7), while the second part 

follows directly from parts (1) and (2). 
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The interpretation of Theorem 2.3 will become clearer when it is applied to specific types 

of American option. In the next section, the model is applied to the case of the American 

put option on an asset that pays no dividends, with nominal strike price K and with a 

constant risk-free return per period of R. In this case ajt = KR-t – xj.  

2.5 Extending the Model 

The theorems apply to an American option on an asset that pays no dividends. They can 

readily be extended to assets that do pay dividends, provided that the present value of the 

dividend is a known function of the asset price. In particular, take the case where the 

asset has a constant yield of d per period. If the option is exercisable into the cum-

dividend asset, and the yield is expressed as a proportion of the ex-dividend price, the 

underlying asset for the purposes of the model is a portfolio that starts with one unit of 

the asset, with dividends reinvested. This notional underlying asset pays no dividends by 

construction. The pay-off to an American option if exercised at time t when at node xj, 

which has been denoted by aj,t,  is a function of the node j and the time t. 

For example, take the case of an American call option on this asset with nominal strike K. 

The present value of the exercise value at node (j, t) is ajt = xj(1 + d)-t – KR-t where R is 

the one period return on the risk-free asset. The extension to discrete proportional 

dividends and to known cash dividends is straightforward, as is the extension to time 

varying but non-stochastic interest rates and dividend yields is straightforward. 

The model can also be used to bound the price of Bermudan-style options where the 

holder’s right to exercise the option is restricted to particular times or periods. If the 

holder cannot exercise the option at time t then ajt can be set equal to zero (or a negative 

number) for all j. Since the holder of a live option can chose to allow the option to expire 

unexercised, it is rational to defer exercise when a ≤ 0 and so keep the option alive.  
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3. EXPLORING THE BOUNDS 

3.1 Bounds on the American Put 

In this section the model is implemented for American put options with maturity τ years. 

The option can be exercised at any of T+1 equally spaced time points that start at 0 and 

end at τ. The length of each period is δ = τ/T. Price nodes are distributed geometrically 

with xj+1 = uxj for some u > 1. 

We assume initially that all European options trade at the same  implied volatility, and 

the risk free interest rate is constant. In particular, since the model is set in a discrete 

price framework, the European option prices and the state price densities are generated as 

if the discounted underlying asset follows the following (continuous time) Poisson jump 

process with volatility σ: 

(3.1) 

( )2 2

with probability 
with probability 
otherwise.

where (1 ) log .

t

t dt t

t

S u dt
S S u u

S

u u

π
dtπ

π σ

+

⎧
⎪= ⎨
⎪
⎩

+ =

  

The process followed by the asset price is independent of the coarseness of the time grid 

δ, but does depend on u. As u goes to 1, the jumps become smaller and more frequent, 

and the process converges to a diffusion, with a volatility that remains equal to σ. We 

will call the process with finite u a diffusion since it is the closest approximation to a pure 

diffusion that exists in a discrete space world. The American option can only be exercised 

at a node so δ does affect the value; as δ goes to zero, the permissible exercise dates 

converge to the continuum [0, τ].  

The support of the price at any time horizon is unbounded on the positive real line. For 

computational convenience, it is desirable to keep the number of nodes finite, so we set 

absorbing barriers at S0e±4σ√τ. These barriers have no significant impact on the valuation. 
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For the base case, the initial asset price S0 is 100, the time to maturity τ is 1 year, and the 

annualized volatility σ is 10%. Table I sets out the upper bound on the price of the 

American put option in the base case with a number of different values for the strike price 

K and the interest rate r. u =1.01, so price nodes are spaced at 1% intervals, and there are 

50 periods per year. J, the number of price levels is 130. 

The bound is compared with the conventional valuation of an American option – the 

expected pay-off to the option under the process in (3.1) under the optimal exercise 

strategy. Two European put option valuations are also reported. One is the value of a 

European put option PP

E(K, T) with nominal strike K and that matures after T periods. The 

other is the value of the European put option with nominal strike K and maturity of T or 

less that has maximum value, Max{PE
P (K, t)¦ t ≤ T }, which we denote by PP

E(K, ≤ T). The 

American premium is defined as the difference between the value of the American put 

and PE
P (K, ≤ T) with the same nominal strike and the same or shorter maturity. It 

represents the premium the holder pays for being able to specify the exercise time later, 

rather than having to choose the exercise time at inception. 

The value of an option depends on the level of the strike relative to the spot, so two 

measures of the moneyness of the put option are reported, one at inception, and the other 

at expiry: 

(3.2) 
( )
( )

0 ln ;

ln .r
T

d S K

d S Ke τ

σ τ

σ τ−

=

=
  

Table I: Upper Bound on the Value of an American Put 

Strike 
(K) 

Upper 
Bound 

(1) 

American,
Diffusion 

(2) 

 
PP

E(K, ≤T)
(3) 

 
PP

E(K, T)
(4) 

 
Ratio

(5) 

 
d0
(6) 

 
dT 
(7) 

r = 2% 
95 

 
1.64 1.40 1.35 1.35 18%

 
0.51 0.71

100 3.71 3.20 3.03 3.03 24% 0.00 0.20
105 6.83 6.09 5.67 5.67 36% -0.49 -0.29
110 10.81 10.06 10.00 9.18 8% -0.95 -0.75

r = 5%   
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95 1.28 0.90 0.77 0.77 25% 0.51 1.01
100 3.31 2.38 1.92 1.92 33% 0.00 0.50
105 6.51 5.23 5.00 3.92 15% -0.49 0.01
110 10.62 10.00 10.00 6.81 0% -0.95 -0.45

r = 10% 
95 

 
0.75 0.43 0.27 0.26 33%

 
0.51 1.51

100 2.65 1.54 0.99 0.79 34% 0.00 1.00
105 6.04 5.00 5.00 1.89 0% -0.49 0.51
110 10.38 10.00 10.00 3.75 0% -0.95 0.05

The table shows the upper bound on the value of an American put with 
maturity of 1 year for various levels of strike and interest rates, when the spot 
price of the underlying is 100, and European options are trading on an 
implied annual volatility of 10%. The second column shows the price of the 
American put assuming the asset follows the diffusion process; the next two 
columns show the prices of European options with the same strike and 
maturities of either up to 1 year, or of 1 year exactly. “Ratio” is the ratio of 
the American option premium under the diffusion process to the maximum 
premium, and is equal to {(2)-(3)}/{(1)-(3)}. d0 and dT are measures of 
moneyness, defined in the body of the paper. Values are calculated using 50 
steps/year, and a stock price mesh of 1%. 

One striking feature of table I is how small is the ratio (shown in column 5) between the 

value of being American assuming that the process is a diffusion, and the upper bound on 

the value of being American. Taking a crude average across strikes and interest rates, the 

standard valuation of model value is only 19% of its rational bound, and for no strike or 

interest rate does it rise above 37%, suggesting that the American feature may be 

seriously undervalued by standard models. 

With five parameters in the model (S, K, r, τ, σ), table I is apparently sampling only a 

small part of the parameter space. But relative prices are largely determined by the 

moneyness vector (d0,, dT); for a given moneyness vector, all the option prices are 

approximately proportional to Sσ√τ7. The ratio column then depends essentially only on 

                                                 

7 If the discounted exercise price Kt were linear in time, and if the process generating European option 

prices had constant variance of price changes, dSt then, holding moneyness constant, prices of all options 

(European, American, upper bound) would be exactly proportional to the standard deviation of the terminal 

price. In our model, it is lnKt that is linear in time, and ln(dSt) that has constant variance, but for low 

interest rates and volatility (small values of rτ and σ√τ) the homogeneity property holds approximately.  
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the (two-dimensional) moneyness vector. The range of parameters in Table I is chosen to 

give a suitably wide range of values for the moneyness vector. 

To exhibit the bounding European portfolios, the intrinsic value vj,t of the portfolio is 

plotted as a function of xj for different values of t. The lines are convex; it follows that the 

intrinsic value vj,t is identical to the sum ,

T

j s
s t

e
=

∑ . The values of e, the pay-out from the 

portfolio in each period, can be read off by looking at the difference between successive 

curves. Figure 1 shows these portfolios for an out of the money option (K = 98) and an in 

the money option (K = 102). In both cases it is easy to verify that the portfolios do 

dominate the American put: the fact that they are all positive and decreasing in t shows 

that e is positive. The values for vj,t either equal or strictly dominate the immediate 

exercise value of the American put, Kt – xj where Kt denotes the present value of the 

strike price discounted back from time t to time 0. 

For the out of the money American put, the dominating portfolio takes a particularly 

simple form: 

(3.3)   

,

1 1

, 1

;

if ;
if ;

0 if .

+

+ +

+

⎡ ⎤= −⎣ ⎦
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t t j t

j t t j t j t
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K K e K
e K x K e K

e K

While this portfolio always dominates the American put, the lower panel of Figure 1 

shows that it is not always the cheapest dominating portfolio. To understand how and 

why it dominates the American put option it is best to consider its counterpart in a 

continuous time world, and work with nominal rather than discounted prices. 

Consider a portfolio that consists of a European put with maturity τ and strike K, and also 

pays out at the rate rK per unit time so long as the option is in the money (St < K). This 

portfolio is the continuous time limit of (3.3). An agent who is long this portfolio and 

short the American option can ensure positive future cash flow in the following manner 

(assume for convenience that exercise is physical): the agent does nothing until the option 
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is exercised. In the unlikely event that the option is exercised when it is out of the money, 

the agent gets positive cash flow from the portfolio, and also positive cash flow from the 

exercise itself because he can sell the share immediately for more than he has paid for it. 

If the option is exercised when it is in the money, the agent borrows K and holds the 

share. The cash flow from the portfolio offsets the interest paid on the debt, whose value 

remains K so long as the option remains in the money. 

If the option stays in the money until maturity, the agent can use the European put option 

to exchange the share for K and use the cash to repay the debt. If the option goes out of 

the money prior to maturity, the agent can sell the share and repay the debt immediately, 

knowing that future cash flows from the portfolio will be positive. 

3.2 Extreme Processes   

To characterize the processes that lead to the high value of the American option, look 

first at the simple portfolio (3.3). From Theorem 2.3, the optimal strategy for the holder 

of the American put is to exercise it when the option is first in the money (all nodes that 

are in the money are members of X, while all nodes that are out of the money are 

members of Y. No nodes are in zones W 8or Z). Another implication of the theorem 

concerns the extreme process itself. Define the node (j, t) as deep in the money if xj < Kt+1 

define it as just in the money if  Kt+1 ≤ xj ≤ Kt, and as out of the money if xj > Kt. Define a 

path as being dead if the option has been exercised. Then Theorem 2.3 says that if the 

option is deep in the money this period, it will be in the money next period; if it is just in 

the money this period, it will be out of the money next period; and that if it is out of the 

money this period, and the path is dead, then it will remain out of the money. 

The extreme process is illustrated in Figure 2, where the zone of each node is shown, as 

is the prohibited transitions for dead paths. It is always optimal to exercise the option as 

soon as it is in the money. The logic is as follows: if the option is just in the money this 

                                                 

8 We implicitly assume that none of the nodes is exactly at the money; if this is not the case the discussion 

becomes rather more complex but the conclusions are substantially unaltered.  
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period, it will be out of the money and remain out thereafter, so it is worth exercising 

now while it still has value. But if the option is deep in the money now, it will still be in 

the money next period, so it is better to exercise the option now and get the strike price 

immediately rather than wait till next period. 

Turning now to the higher strike option, the picture as shown in Figure 3 becomes more 

complex. There is a large and growing wedge of Z zone between the X zone on the left 

where the option is exercised, and the Y zone on the right where the option is not 

exercised. Taking a live path (in the Y zone) it can stay in the Y zone or jump across the Z 

zone into the X zone. It is then exercised. It stays in the X zone, unless it moves close to 

the border with the Z zone when it can drift across the border. Once in the Z zone, it stays 

there. 

4. PROCESSES AND AMERICAN OPTION VALUE 
Table 1 shows that the upper bound on the American premium is a substantial multiple of 

the actual value computed using conventional valuation methods. The high bounds are 

actual prices under specific  price processes. These findings admit of two (not necessarily 

incompatible) interpretations: the American premium is substantially underestimated by 

conventional methods, and the set of theoretically admissible processes is so wide that 

they generate implausibly high prices. 

In this and the following section we attempt to cast some light on the validity of the two 

interpretations. In this section we specify processes that do generate high American 

option premia and ask how plausible they are. In the following section the no arbitrage 

restrictions are tightened by excluding some implausible processes. Plausibility is largely 

subjective, so the evidence presented is suggestive rather than conclusive. 

We start with a postulated process for the asset price and use it to generate European 

option prices. Three estimates of the value of the American option premium are 

computed: the value under the given process (PrT – the “true” value), the upper bound 

using the linear program (PrB – the bound) and the value if the asset price follows a 
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Markov diffusion process with a deterministic volatility σ(St, t) that is consistent with the 

prices of the European options (PrD – the diffusion value). 

Table 1 assumes that the true process is a diffusion, so PrD = PrT, and PrD is small 

compared with PrB, (PrD < 0.4PrB in all the cases examined). In general, PrD and PrT  

differ. If for a plausible process, the true value PrT approaches the upper bound PrB and is 

much higher than the diffusion value PrD , this suggests that the size of the American 

premium does depend heavily on the process. The standard assumption that the asset 

follows a Markov diffusion would need to be treated with caution. Conversely, if the true 

value and the diffusion value remain close, this would suggest that the high upper bound 

simply reflects the weakness of the no arbitrage condition. 

A useful starting point for the choice of processes is the extreme processes that support 

the bounds. Two features of the processes described in section II.2 above are striking: 

price jumps, and stochastic volatility. The asset jumps down from being deep out of the 

money (zone Y) to deep into the money (zone X). It would be interesting to see the extent 

to which large downward jumps increase the value of American puts relative to European 

puts. 

An alternative interpretation of the extreme process does not necessarily have jumps in it 

at all. Rather the two state process discussed in Section I.3 can be regarded as a regime 

switching model, with a high and low volatility state. It is plausible that the American 

feature is particularly valuable when the holder acquires new information about future 

volatility. For both jumps and stochastic volatility, we develop simple, if rather extreme 

models, to explore whether either phenomenon generates a substantially higher American 

premium than does a Markov diffusion . 

4.1 Testing Procedure  

Starting with the jump hypothesis, take a jump diffusion process of the form: 
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This process has fixed jump size J with frequency λ, and diffusion with volatility σ. The 

American put, and also all European call options are valued by taking the expected pay-

off to the option under this process. The upper bound on the American put is computed 

using the linear program LP1. 

To compute the value of the American put under a Markov diffusion, first calculate the 

local implied volatility from the European call prices (using the method of Dupire (1994) 

and Derman and Kani (1994)). Specifically, a local transition rate πj,t is computed: 

(4.2) 
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Cj,t is the price of a European call with strike xj and expiry t under the jump diffusion 

process. The American option is valued using a diffusion as in equation (3.1), but with 

the transition rate varying according to the node. This process generates European option 

values that approximate those from the jump diffusion model {Cj,t} as the grid becomes 

finer, but of course the American option valuation is different. 

A similar procedure is used to test whether stochastic volatility is important. The 

stochastic volatility model is designed to be simple and to represent an extreme example 

of substantial new information about future price processes becoming available in good 

time t be exploited by the holder of the American option. The world is in one of two 

states: a high volatility state where the asset price follows a diffusion with constant 

volatility σh and a low state with volatility σl. The state of the world is revealed 

immediately after time 0, and it does not change thereafter. The diffusion is modeled in 

the discrete space world by equation (3.1) with the appropriate volatility. The value of the 
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American option at time zero is the value in each of the two states weighted together by 

the state probabilities. We then follow exactly the same procedure as for the jump 

process. 

4.2 Results - The Jump Process 

For the jump diffusion process, we take J = -0.1, λ = 0.5, and σ = 7.07%. The standard 

deviation of annual continuously compounded returns is therefore 10%, as with the 

diffusion process used previously. On average jumps occur 0.5 times a year; when they 

occur the asset price declines by about 9.5%; in the absence of jumps the asset price 

diffuses with an annualized volatility of 7.07%. The jump and the diffusion contribute 

equally to the overall volatility of returns. 

The parameters are chosen to represent a process that is rather jumpier than would be 

observed in many markets. Bates (1996) estimates a deterministic volatility jump 

diffusion process from the prices of $/DM currency options with 38% of the volatility 

coming from jumps, jump size roughly symmetrical around zero with a standard 

deviation of 7.7%, and jump frequency of 0.76/year. 

Table II presents the value of the American option under the jump diffusion process, the 

bounds on the value of the American option, and the value of the asset price followed a 

pure diffusion supporting exactly the same European option values. 

Table II: Value of an American Put when European Option Prices 

support a Jump Diffusion 

American Prices European
Prices 

Relative prices Strike 
 

(K) Bound 
(1) 

Jump
(2) 

Diffusion
(3) 

PP

E(K, ≤T)
(4) 

Jump
(5) 

Diffusion 
(6) 

r = 2% 
95 

 
1.74 1.55 1.52 1.46 32%

 
21% 

100 3.63 3.24 3.16 3.01 37% 25% 
105 6.63 5.97 5.86 5.48 42% 33% 
110 10.60 10.00 10.00 10.00 0% 0% 

r = 5% 
95 

 
1.43 1.13 1.06 0.92 42%

 
29% 
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100 3.24 2.56 2.42 1.99 46% 35% 
105 6.35 5.15 5.00 5.00 11% 0% 
110 10.47 10.00 10.00 10.00 0% 0% 

r = 10% 
95 

 
1.01 0.71 0.62 0.40 50%

 
36% 

100 2.60 1.81 1.64 1.09 48% 36% 
105 5.97 5.00 5.00 5.00 0% 0% 
110 10.32 10.00 10.00 10.00 0% 0% 

The table shows the upper bound on the value of an American put with 
maturity of 1 year for various levels of strike and interest rates, when the spot 
price of the underlying is 100, and European options are trading as if the asset 
price process is a jump diffusion with jump size of -0.1, jump frequency of 
0.5/year, and diffusion volatility of 7.07%. The next column shows the price 
of the American put assuming the asset follows the jump-diffusion process. 
Column (3) shows the price assuming the asset price follows a pure diffusion 
process which is consistent with the same European put prices. Column (4) 
shows the price of the highest valued European option with the same strike 
and maturities of up to 1 year. The last two columns show the American 
premia (columns (2) and (3) respectively less column (4)) as a proportion of 
the maximum premium (column (1) less column (4)). Values are calculated 
using 200 steps/year, and a stock price mesh of 1%, with exercise being 
possible every 20 steps. 

Comparing the cells of Tables I and II, the effect of the jumps on option prices is quite 

complex, and varies according to maturity and strike. But it is possible to draw several 

conclusions: first, although the jump process has some impact on the prices of all options, 

European or American, the level of the American premium under a diffusion process as 

shown by column (5) is not greatly affected by the change in the shape of the European 

implied volatility surface in going from Table I to Table II. Second, given the European 

option prices, American puts are up to 50% more valuable under the jump process than 

they are under a pure diffusion process. Third, despite the size and frequency of the 

jumps, jumps go only a part of the way to capturing the types of process that yield very 

high American option values. Taking a crude arithmetic average across the strikes and 

interest rates, the value of the American premium under the Markov diffusion process 

averages 18% of its maximum possible value, about the same as in Table I. Under the 

jump diffusion process, this ratio is 26%. 

The assumption that jumps are all downwards is crucial. Jumps that are symmetrically 

distributed around zero have only a small effect on American option prices, while jumps 
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that are predominantly positive make the American premium lower than it would be 

under  pure diffusion. This example should be seen as providing an upper bound on the 

impact of jumps on the American premium.  

4.3 Results - The Stochastic Volatility Process 

For the stochastic volatility process, we take σl = 5%, σh = 15%, and Pr{σ =σh} = 37.5%.  

This means that the asset price follows a pure diffusion process. Immediately after time 0, 

it is revealed that the volatility, which thereafter remains constant, is either 5% and 15%. 

The mixing probability is chosen to ensure that unconditional standard deviation of 

annual continuously compounded returns is 10%, as with the diffusion process used 

previously. 

The model is chosen to represent an extreme form of stochastic volatility where a lot of 

new information about volatility is revealed very early in the life of the option. By 

comparison, Bates (1995) in estimating a stochastic volatility model from the prices of 

$/DM currency options, has an unconditional distribution for the squared volatility with a 

coefficient of variation of  1.14 and a half-life of innovations in volatility of just over 6 

months; the process used in this paper has a coefficient of variation of 1.50 and volatility 

shocks are permanent. 

Table III presents the value of the American option under this process, the bounds on the 

value of the American option, and the value of the asset price followed a pure diffusion 

supporting exactly the same European option values. 

Table III: Value of an American Put when European Option Prices 

support a Stochastic Volatility Process 

American Prices European
Prices 

Relative prices Strike 
 

(K) Bound 
(1) 

S Vol
(2) 

Diffusion
(3) 

PP

E(K, ≤T)
(4) 

S Vol
(5) 

Diffusion 
(6) 

r = 2% 
95 

 
1.43 1.26 1.26 1.22 17%

 
19% 

100 3.23 2.75 2.72 2.57 26% 22% 
105 6.60 6.10 5.74 5.24 63% 37% 
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110 10.88 10.52 10.10 10.00 59% 11% 
r = 5% 

95 
 

1.20 0.91 0.92 0.82 23%
 

26% 
100 2.87 2.05 2.00 1.64 33% 29% 
105 6.38 5.69 5.00 5.00 50% 0% 
110 10.75 10.14 10.00 10.00 18% 0% 

r = 10% 
95 

 
0.90 0.57 0.58 0.43 30%

 
32% 

100 2.27 1.38 1.35 0.88 36% 34% 
105 6.07 5.24 5.00 5.00 22% 0% 
110 10.57 10.00 10.00 10.00 0% 0% 

The table shows the upper bound on the value of an American put with 
maturity of 1 year for various levels of strike and interest rates, when the spot 
price of the underlying is 100, and European options are trading as if the asset 
price process is a pure diffusion with a volatility of 5% or 15%. The next 
column shows the price of the American put assuming the asset follows the 
mixed diffusion process. Column (3) shows the price assuming the asset price 
follows a pure diffusion process which is consistent with the same European 
put prices. Column (4) shows the price of the highest valued European option 
with the same strike and maturities of up to 1 year. The last two columns 
show the American premia (columns (2) and (3) respectively less column (4)) 
as a proportion of the maximum premium (column (1) less column (4)). 
Values are calculated using 200 steps/year, and a stock price mesh of 1%, 
with exercise being possible every 20 steps. 

Table III shows that American puts are generally more valuable when the true volatility is 

revealed immediately, with the major gain occurring for options that are deeper in the 

money. The revelation of the true volatility does go some way to capturing the types of 

process that yield very high American option values. The value of being American under 

the pure diffusion is 17% of its maximum possible value, about the same as in Table I. 

Under the jump diffusion process, this ratio is 31%. 

The analysis in this section suggests that asymmetric jumps and stochastic volatility can 

have a significant impact on the American option premium, and to that extent traditional 

approaches to valuing American options may be subject to significant error. However, 

even when the chosen processes that are quite extreme – large, very asymmetric jumps, 

or high degrees of volatility uncertainty that are largely resolved shortly after the 

American option is bought – the prices do not approach the rational bounds.  
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5. TIGHTENING THE BOUNDS 
The analysis in the previous section suggests that the high bounds may be due in part to 

allowing extreme and implausible processes. In this section we explore the possibility of 

generating tighter but still robust bounds by excluding some implausible processes. 

The “good-deal” literature starting with Cochrane and Saá-Requejo (2000) and Bernardo 

and Ledoit (2000) is motivated by a similar desire to find restrictions on pricing in 

incomplete markets that are tighter than no arbitrage. They assume that the objective 

process for the underlying is known, and impose restrictions on the behavior of the 

stochastic discount factor. Given our set-up, it is more natural to focus on the robust 

hedging strategy, and impose restrictions on the evolution of the prices of the European 

options that are used for constructing a dominating portfolio.  

The strategy that dominates the American option, as described in section I, involves 

buying a specific (convex, positive) European portfolio. When the American option is 

exercised, the European portfolio is liquidated. The strategy is conservative in that it 

allows for the possibility that the liquidation value of the European portfolio is no more 

than its intrinsic value. In other words, the strategy allows for the possibility that at some 

future time the long option position held as a hedge will be trading on an implied 

volatility of zero. 

While implied volatilities do vary widely over time, they never seem to approach zero. 

For example, the VIX index, which is traded on the Chicago Board Options Exchange, 

measures the implied volatility of an at-the-money option on the S&P 500 Index with 30 

days to expiry. Since its introduction in 1993 to end 2006, it has averaged 19% and 

reached a minimum of 8.6%. Inspection of the time series of the VIX index in Figure 4 

suggests strongly that it should be possible to nominate some non-trivial floor level for 

the implied volatility of a European portfolio over its lifetime without a large sacrifice of 

robustness. 

Avellaneda, Levy, and Paras (1995) follow a related approach when they set bounds on 

the volatility of the underlying price process to bound option prices, but there is a subtle 
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distinction. Since we do not directly restrict the path of the underlying asset we do not 

exclude the possibility that the realized volatility of the price path will be very low. What 

we do stipulate however that there is a floor on future implied volatility. 

To implement this idea, we stipulate that the probability of the price moving from its 

current level must exceed some critical level λ  per unit time. With the minimum total 

return on a price change in the discrete space world being of size u this corresponds to a 

floor volatility of ln( )λ u . This restriction can readily by incorporated within the linear 

program. Recall the matrix H = {hj,m,t}, which represents the probability of being at node 

j at time t, at node m at time t+1 and the option having been exercised by time t. The 

minimum volatility constraint, to be imposed in LP2, can be written as: 

(5.1) ( ), , , ,1 for all , , ,λδ≤ − ∑j j t j m t
m

h h j m t   

where δ is the length of the time period. 

In terms of the dual problem (LP1) this introduces a new positive variable Q = {qj,t} into 

the third constraint: 

(5.2) 
( ) ( ), , , , ,3) ' 0,

        where  is an indicator function. 
j t m j j t m j j t j t m t

m j

e x x d I q v v

I

λδ ≠

≠

+ − + − − + ≥1+   

 The interpretation of the constraint is that in addition to delta hedging by going long dj,t 

units of the underlying, the agent can write qj,t (> 0) instantaneous variance contracts. 

These contracts pay 1 if St+1 ≠ St and zero otherwise. The constraint in (5.2) specifies that 

the price of an instantaneous variance contract is greater than or equal to λδ . Implied 

variance (at least on one period contracts, but in fact on all convex claims) never falls 

below ( )22 ln .uσ λ=  

The effects of imposing a floor on implied volatility are shown in Table IV. The 

parameters are the same as in Table I, so in particular all European options trade on an 
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implied volatility of 10%, and the floor on the future implied volatility of options, σ , is 

5%. 

Table IV: Upper Bound on the Value of an American Put with a Floor 

Level of Implied Volatility 

 Upper Bound American European Ratio Ratio 
Strike 

 
Not 

restricted 
 

Min 
implied 

vol of 5% 

 value 
with 

diffusion 

PP

E(K,≤T) (3) (4)
(1) (4)

−
−

(2) (4)
(1) (4)

−
−

  

(K) (1) (2) (3) (4) (5) (6) 
r = 2% 

95 1.64 1.50 1.40 1.35 50% 18%
100 3.71 3.48 3.20 3.03 66% 24%
105 6.79 6.66 6.09 5.67 88% 37%
110 10.69 10.65 10.06 10.00 93% 9%

r = 5% 
95 1.28 1.09 0.90 0.77 62% 25%

100 3.31 3.01 2.38 1.92 78% 33%
105 6.39 6.26 5.23 5.00 91% 17%
110 10.31 10.28 10.00 10.00 90% 0%

r = 10% 
95 0.75 0.62 0.43 0.27 73% 33%

100 2.65 2.35 1.54 0.99 82% 34%
105 5.74 5.61 5.00 5.00 83% 0%
110 10.00 10.00 10.00 10.00 - -

The table shows the upper bound on the value of an American put with 
maturity of 1 year for various levels of strike and interest rates, when the spot 
price of the underlying is 100, and European options are trading on an 
implied annual volatility of 10%. The first column is the unrestricted upper 
bound, while the second assumes that European options will never trade in 
future on an implied volatility of less than 5%. The third column shows the 
price of the American put assuming the asset follows the diffusion process; 
and the fourth shows the price of the most valuable European option with the 
same strike and maturity of up to 1 year. The “Ratio” columns standardize 
columns (2) and (3). Values are calculated using 10 exercise dates and a stock 
price mesh of 1%. 

We have put a lower bound on the implied volatility of European options equal to half the 

current level of implied volatility. This does tighten the bounds substantially, reducing 

the maximum American premium by around 20% on average, with the effect being most 

pronounced for low strike options. But even so, the value of the American premium 
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assuming a Markov diffusion process is less than half the upper bound in all cases, 

suggesting that the width of the robust bounds can only be attributed in part to allowing 

implausible price processes.    

6. CONCLUSIONS 
The value of being American depends on the amount of information about the process 

that is revealed over the life of the option. In the standard Markov process, the only 

information revealed is the asset price itself. In a richer model, much more information 

may be revealed about the probabilities of future price paths, and this information may 

greatly increase the value of the right to determine the date of exercise. 

In order to understand better how much information about future returns could affect the 

American option premium, we have shown how to determine the upper bound on the 

value of an American option, and demonstrated how to construct a hedging strategy that 

enforces those bounds. The model applies to a variety of Bermudan and American 

structures. The key restrictions or assumptions is that there is just one underlying asset 

with a known yield or cash dividend stream, and that interest rates are non-stochastic. 

By applying the model to the pricing of an American put, we have demonstrated that the 

potential value of the American feature may be several times larger than is obtained from 

standard models. The price processes that yield these extreme values tend to assign as 

much volatility as possible to states of the world where the option is live, where the 

American option has not yet been exercised, and low volatility to states where the option 

will have been exercised. While we have been unable to identify plausible processes that 

generate American option values that are close to the rational bounds, we have seen that 

downward price jumps and, rather more significantly, information about future volatility 

do go some way to justify substantial increases in the value of being American. 

We have also shown that the very high American premia that are possible without 

allowing arbitrage are unlikely to materialize in practice since they would allow near 

arbitrages that would fail only if options were to trade at some future date at very low 

implied volatilities.  
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The strategies that enforce the bounds on the American option price have the useful 

property that they strictly limit the potential downside. The loss is limited to the 

difference between the rational bound on the American option and the price at which it is 

written. Whether there are better hedging strategies for American options using European 

options that are robust to changes in the surface of implied volatilities is a matter for 

future research. 
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Figure 1: The Cheapest Dominating Portfolios for an American Put 

 

 

The two charts show the European options that dominate an American put option. 

In the top chart the strike price of the American option is 95, while in the bottom it 
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is 105. The difference between successive lines shows the cash flow that period as a 

function of the asset price. The other parameters are: initial asset price 100, risk 

free rate 10%, option maturity 1 year, European options have an implied annual 

volatility (using a binomial model with a mesh of 1%) of 10%.  
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Figure 2: Bounding Process for Out-of-the-money Put 
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Each node is marked by a letter. The X shows that the put option must be exercised 

at that node, the y that the put option must not be exercised at that node. The 

oblique line is the present value of the exercise price. The short bold lines block 

transitions between nodes that cannot occur once the option has been optimally 

exercised. The parameters are as in the top panel of Figure 1: S = 100, K = 98, σ = 

10%, r = 10%, T = 1 year. 
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Figure 3: Bounding Process for In-the-money Put 
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Each node is marked by a letter. The X shows that the put option must be exercised 

at that node, the y that the put option must not be exercised at that node, the Z that 

all paths going through that node have already been exercised. The oblique line is 

the present value of the exercise price. The short bold lines block transitions 

between nodes that cannot occur once the option has been optimally exercised. The 

parameters are as in the bottom panel of Figure 1: S = 100, K = 103, σ = 10%, r = 

10%, T = 1 year. 
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Figure 4: The dynamics of implied volatility 
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The VIX index is the implied volatility of a synthetic at-the-money 30 day option on the 

S&P500 index, and it is traded on the Chicago Board Options Exchange. It is measured 

in annualized percentage points. Data collected from Yahoo Finance.  
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APPENDIX 
 

Proof of Theorem 2.2: 

Rewrite the problem LP2 as: 
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m m
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m j t
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j J t T h t

   

Compare this with the linear program in standard form: 

LP3: Find x ≥ 0 that maximizes z = cT.x subject to A.x ≤ b, 

where x, c are n x 1 vectors, b is m x 1, and A is m x n. 

It can be seen that n, the number of variables, is JT + 2J2T, while m, the number of 

constraints, is 10JT – 2J. The vector of variables x consists of three blocks: the elements 

of F, then the elements of G, and finally the elements of H. The vector c consists of the 

elements of A,  followed by 2J2T zeros. The vector b consists of the elements of P, 

followed by –P, then P again (minus its first row) and the negative of this, followed by 

6JT zeros. A is not readily describable in detail, but its general structure is illustrated 

below where the blocks of zeros are identified by a minus sign, and the blocks with some 

non-zero elements are denoted by a plus sign: 
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2 2J T J T JT  

 

The dual of LP3 is: 

LP4: Find y ≥ 0 that minimizes w = bT.y subject to AT.y ≥ c. 

If we break y into 10 blocks so y = (y1, y2, …, y10) then LP4 can be written as: 
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m t m t
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j m J t T

+ +− ≥
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The bracketing shows where terms are always associated. Define the four J × T matrices 

C, D, V and E as: 
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C y - y
D y - y
V y - y
E y - y + y - y

   

Then LP5 becomes: 
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:
Find  that minimizes subject to:
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2) 0;

3) 0;
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∑
LP6

C,D,V,E

Consider constraint (2).  By setting m = j it is seen to imply that E ≥ 0. But that is all that 

(2) implies, because this is the only place in the LP6 where C is mentioned, so provided 

E ≥ 0, we can ensure that (2) is satisfied by setting C = 0. The solution to LP6 remains 

unchanged if constraint (2) is replaced by ej,t ≥ 0, and C is dropped from the list of 

variables. But then the problem is identical to LP1. 

39 


	1. INTRODUCTION 
	2. IDENTIFICATION OF THE BOUNDS 
	2.1 The Set Up  
	2.2 Dominating Portfolios 
	2.3 Feasible Prices 
	2.4 The Bounding Process 
	2.5 Extending the Model 
	3. EXPLORING THE BOUNDS 
	3.1 Bounds on the American Put 
	3.2 Extreme Processes   

	4. PROCESSES AND AMERICAN OPTION VALUE 
	4.1 Testing Procedure  
	4.2 Results - The Jump Process 
	4.3 Results - The Stochastic Volatility Process 

	5. TIGHTENING THE BOUNDS 
	6. CONCLUSIONS 
	 REFERENCES 
	APPENDIX 


