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Abstract

We use asymptotic analysis to derive the optimal hedging strategy

for an option portfolio hedged using an imperfectly correlated hedging

asset with small transaction costs, both fixed per trade and propor-

tional to the value traded. In special cases we opbtain explicit formu-

lae. The hedging strategy involves holding a position in the hedging

asset whose value lies between two bounds, which are independent of

the value of the hedging asset itself, as is the option value. The bounds

depend on the leading order Gamma and Delta of the option position.

Decreasing absolute correlation decreases the absolute value of the

centre of the no-transaction band, the no-transaction bandwidth and

the certainty equivalent value of transaction costs. However generally

the increase in unhedgeable risk has a greater effect on option values,

which decrease with |ρ|.
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1 Introduction

Dynamic hedging of derivative securities written on a portfolio of

assets, basket options, often proves impractical because of the pro-

bibitive associated cost of transacting in each asset. One alternative

is to hedge the derivatives using an imperfectly correlated hedging

asset with lower associated transaction costs.

In this paper we use asymptotic analysis1 to derive formulae for

the hedging strategy in such a situation, taking account of both the

transaction costs and the imperfect correlation. We also derive the

equations satisfied by the resulting certainty equivalent value of the

derivatives. We find that both hedging strategy and option values are

independent of the current value of the hedging asset, so the equations

have the same dimension as in the case of perfect correlation. How-

ever with imperfect correlation the formulae describing the hedging

strategy depend on the Delta of the derivative position as well as its

Gamma, and the leading order option value in the absence of trans-

action costs is no longer the Black-Scholes value, but the nonlinear

certainty equivalent value for costless imperfect hedging derived by

Henderson (2005) [13].

This work extends two lines of literature in the valuation of fi-

nancial options: hedging under transaction costs and hedging with

an imperfectly correlated hedging asset. The incorporation of trans-

action costs into the valuation of financial options and the associated

hedging strategy has been extensively studied. Leland (1985) [18] first

recognised that hedging options using the Black-Scholes delta-hedging

strategy in the presence of non-zero transaction costs led to potentially

unbounded costs. He proposed a discrete hedging strategy of trans-

acting at fixed points in time and derived the value of plain-vanilla

European options under this hedging strategy in closed form. This

was extended to value portfolios of options by Hoggard, Whalley &

Wilmott (1992) [17]; other models incorporating exogenous hedging

1We exploit the generally small magnitude of transaction costs

2



strategies include Henrotte (1993) [14], Whalley & Wilmott (1993)

[24], Grannan & Swindle (1996) [12] and Avellaneda & Paras (1993)

[2] and, using a binomial framework, Boyle & Vorst (1992) [5], Ben-

said, Lesne, Pages & Schienkman (1992) [3] and Edirisinghe, Naik &

Uppal (1993) [11].

Hodges & Neuberger (1989) [16] were the first to derive an optimal

hedging strategy and associated reservation value (certainty equiv-

alent value) for options incorporating transaction costs in a utility-

based framework. They found that the optimal hedging strategy in-

volves maintaining the number of the underlying asset held within an

endogenously determined no-transaction band, transacting only when

the edge of the band is reached. Davis, Panas & Zariphopoulou (1993)

[9], Hodges & Clewlow (1997) [6], Andersen & Damgaard (1999) [1],

Damgaard (2003, 2000) [7], [8], Ho (2003) [15], Monoyios (2004) [19]

Zakamouline (2003, 2004, 2004b) [27], [28], [29], and Subramanian

(2005) [22] considered similar models and Whalley & Wilmott (1997,

1999) [25], [26] found formulae for the hedging strategy and less com-

putationally demanding approximations to the option values for small

cost levels using asymptotic analysis.

All the above papers consider the case where the asset used for

hedging purposes is identical to (perfectly correlated with) the asset

underlying the option portfolio. Thus in theory with zero transaction

costs and continuous transacting, perfect hedging (complete elimina-

tion of the risk associated with the hedging strategy) is possible. We

extend this to allow the asset used for hedging purposes to differ from

(be imperfectly correlated with) the asset underlying the derivatives

contract. In this case the minimum possible hedging error, even with

zsero transaction costs, is strictly positive, and this reduces certainty

equivalent option values.

The hedging strategy for and valuation of options hedged cost-

lessly using an imperfectly correlated hedging asset were derived by

Henderson (2005) [13], who applied the model to executive stock op-

tion valuation. She derived a non-linear partial differential equation
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for the certainty equivalent option value and found that option val-

ues always lie strictly below the Black-Scholes value. Other anal-

yses of costless hedging with an imperfectly correlated asset include

Musiela & Zariphopoulou (2004) and Monoyios (2004b) [20], who con-

sidered optimal and ‘naive’ suboptimal2 hedging of basket options us-

ing imperfectly correlated index futures as the hedging asset and used

asymptotic analysis (assuming the effect of the imperfect hedging on

the option value was small) to derive closed form solutions for the

optimal hedging strategy. However, neither Henderson nor Monoyios

incorporated transaction costs into their analysis.

We recover earlier results as limiting cases of our analysis: in the

limit as transaction costs tend to zero we obtain the partial differential

equation in Henderson (2005) [13]. and for perfectly correlated hedg-

ing assets we recover results given in Whalley & Wilmott (1997, 1999)

([25], [26]). However, for the case of proportional transaction costs

we extend the asymptotic analysis of the effects of transaction costs

to higher order so the extended asymptotic scheme now also has the

characteristic features of transaction cost model hedging strategies:

the centre of the hedging band differs from the costlessly hedged op-

tion delta systematically. For perfectly correlated hedging assets the

difference depends on the sign of the option’s Gamma; more generally

it depends on both the Delta and Gamma of the option position.

We find that both increasing transaction costs and decreasing ab-

solute correlation decrease option values. Intuitively, decreasing ab-

solute correlation increases the minimum possible hedging error (with

costless hedging); increasing transaction cost levels increases the op-

timal hedging error further by widening the no-transaction band, as

well as increasing expected total transaction costs. Increased undi-

versifiedrisk or hedging error in the investor’s portfolio reduces their

utility and hence the certainty equivalent option value. The relative

magnitude of the effect of each depends on the level of risk aversion,

the size of the option position, the correlation between returns on the

2i.e. using a time-based strategy of hedging to the Black-Scholes delta
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hedged and hedging assets and the level of transaction costs.

In the presence of an imperfectly correlated hedging asset, the opti-

mal hedging strategy changes from holding a number of the underlying

asset which lies within a no transaction band centred (to leading or-

der) on the option’s delta to having a position in the hedging asset,

the value of which lies between two bounds. The hedging band is thus

defined in terms of the value held in the hedging asset and is centred

to leading order on the value which would be held in the hedging asset

in the absence of transaction costs. Decreasing absolute correlation

decreases both the absolute value of the centre of the band and also

its width; this leads to a reduction in the certainty equivalent value

of transaction costs. However for the parameter values we consider

the decrease in option values due to increasing undiversifiable risk

dominates any increase in value due to a reduction in the certainty

equivalent transaction cost value, so option values decrease with abso-

lute correlation. Finally, we find that the nonlinearlity of the problem

means portfolio effects are significant, so in particular the certainty

equivalent value per option (and also the marginal value of an option)

depends on the size and sign of the option portfolio as a whole. The

magnitude of the effect of the nonlinearity depends on the absolute

value of the Delta, and thus also differs between calls and puts.

In section 2 we set out the optimisation problem, derive the par-

tial differential equations and associated boundary conditions for the

certainty equivalent option values, and perform asymptotic analysis

to simplify their solution. Section 3 considers special cases where

explicit formulae are obtainable for the hedging strategy, hence sim-

plifying the partial differential equations for the leading order terms in

the asymptotic expansion of the option value. Section 4 investigates

the relative importance and sensitivity of option prices to the corre-

lation of hedging and hedged assets and size of the option position.

Section 5 concludes and considers further work.
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2 The model

We consider a risk-averse investor who can trade in a risky asset,

M , and a riskless asset, B, and derive his optimal trading strategy.

Transfers between the risky (hedging) asset, M , and the riskless asset,

B, incur a cost with two components: a fixed amount per trade and

a cost proportional to the value traded

k(M,dy) = kf + kpM |dy|

where dy is the number of hedging assets traded. Thus M and B

evolve respectively as:

dM = (r + λσ)Mdt + σMdZ

dB = rB − Mdy − k(M,dy)

with λ = µM−r
σ

the Sharpe ratio of the hedging asset, M .

The investor will value any option position by its certainty equiv-

alent value assuming optimal hedging of his portfolio including the

option position. The hedging strategy for the option position can be

represented by the change in the trading strategy resulting from the

option position.

We assume the investor holds an option position written on an

asset, S, whose returns are imperfectly correlated with M .

dS = (r + ξη)Sdt + ηSdZS

with ξ = µS−r
η

similarly the Sharpe ratio of the hedged asset, S, and

where dZdZS = ρdt with |ρ| ≤ 1.

We further assume the investor does not3 trade in S, but may

partially hedge the risk associated with the option position by trading

in the hedging asset, M , and consider only European-style options.

3Reasons for not hedging the option position with the underlying asset include im-

practicality (due to the number and cost of transactions, particularly if S is composed of

a number of thinly-traded or high transaction cost assets) or regulation (as in the case

of executive stock options, whose holders are prohibited from trading in the underlying

shares of the firms they manage). See Whalley (2006) [23] for an application to executive

stock options.
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The investor thus maximises his utility of terminal wealth, solving

J(S,M,B, t, y) = sup
dys,t≤s≤T

Et [U(WT + Λ(ST ))] (1)

where Λ(S) represents the cash payoff to the option position4, e.g. for

n call options

Λ(S) = n max(S − K, 0)

and terminal wealth, WT , consists of holdings of BT in the riskless

asset and a number yT of the risky asset and is assumed to be net of

transaction costs incurred in liquidating the risky asset position

WT = BT + MT yT − k(MT , yT ).

Expanding (1) we have

J(S,M,B, t, y) =

= sup
dys,t≤s≤T

Et [Et+dt [U(WT + Λ(ST ))]]

= sup
dyt

Et [J(S + dS,M + dM,B + dB, t + dt, y + dy)]

Applying Itô’s lemma gives the differential equation satisfied by J :

0 = +Jt + (r + ξη)SJS + (r + λσ)MJM + rBJB

+
η2

2
S2JSS + ρησSMJSM +

σ2

2
M2JMM (2)

+ sup
dy

{J(S,M,B − Mdy − k(M,dy), t, y + dy) − J(S,M,B, t, y)}

As in [16], [9], [25], we find that there are three regions:

• a no transaction region, within which y, the number of units of

the market held, remains constant. Thus dy∗ = 0 and J satisfies:

0 = Jt + (r + ξη)SJS + (r + λσ)MJM + rBJB

+
η2

2
S2JSS + ρησSMJSM +

σ2

2
M2JMM (3)

In this region the decrease in utility from holding a suboptimal

number of units of the market is lower than the marginal utility

4We assume cash settlement of the option position
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loss arising from the transaction costs of adjusting the position

J(S,M,B − Mdy − (kf + kpM |dy|), t, y + dy)

< J(S,M,B, t, y) ∀ dy 6= 0 (4)

Thus y is close to its ”optimal” value, y∗(S,M, t), i.e. the num-

ber of units of the market which would be held in the absence of

transaction costs. Writing the edges of the no-transaction region

as y+ and y− respectively, we thus have

y−(S,M,B, t) ≤ y ≤ y+(S,M,B, t)

• a buy region in which dy∗ > 0 and

J(S,M,B − M(1 + kp)dy∗ − kf , t, y + dy∗) > J(S,M,B, t, y) (5)

holds. Utility is maximised by choosing dy as large as possible

(as long as (St,Mt, t) remains in this region) Hence if (St,Mt, t)

moves into this region where y < y−, a transaction is made (y is

increased) until y lies within the no transaction region again.

• a sell region in which dy∗ < 0 and

J(S,M,B − M(1 − kp)dy∗ − kf , t, y + dy∗) > J(S,M,B, t, y) (6)

holds. Utility is maximised by choosing dy as negative as possible

(as long as (St,Mt, t) remains in this region) Again, if (St,Mt, t)

moves into this region where y > y+, a transaction is made (y is

decreased) until y lies within the no transaction region again.

For the case of negative exponential utility, U(x) = 1
γ
e−γx the

solution is independent of the investor’s initial wealth, which has the

effect of reducing the dimension of the problem by one. We thus look

for a solution of the form

J(S,M,B, t, y) = −
1

γ
e−γ̂(t)(B+hw(S,M,t,y))

where γ̂(t) = γer(T−t), for the problem including the option position

and similarly J0(M,B, t, y) = − 1
γ
e−γ̂(t)(B+h0(M,t,y)) for the portfolio
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without. hw and h0 thus represent certainty equivalent values of the

trading strategy net of transaction costs for the portfolios including

and excluding the option position respectively.

hw satisfies:

0 = hw
t − rhw + (r + ξη)Shw

S + (r + λσ)Mhw
M

+
η2

2
S2(hw

SS − γ̂(t)hw
S

2) + ρησSM(hw
SM − γ̂(t)hw

S hw
M )

+
σ2

2
M2(hw

MM − γ̂(t)hw
M

2) (7)

where γ̂(t) = γer(T−t) and subject to:

hw(S,M, t, y + dy) ≤ hw(S,M, t, y) + Mdy + k(M,dy) ∀ dy 6= 0

hw(S,M, T, y) = Λ(S,M) + h0(M,T, y)

Similarly the certainty equivalent value for the non-option prob-

lem, h0, satisfies:

0 = h0
t − rh0 + (r + λσ)Mh0

M +
σ2

2
M2(h0

MM − γ̂(t)h0
M

2) (8)

subject to:

h0(M, t, y + dy) ≤ h0(M, t, y) + Mdy + k(M,dy) ∀ dy 6= 0

h0(M,T, y) = yM − kM |y|

These non-linear three or four dimensional problems must be solved

numerically. We can, however, simplify them by exploiting the fact

that transaction costs, k � 1 are generally very small. We thus ex-

pand in powers of k using an asymptotic expansion in order to obtain

the leading order behaviour.

2.1 Asymptotic expansion

We follow [25] and [26] in expanding the value function, h, and the

width of the no-transaction band, y+ − y− as asymptotic expansions
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in fractional powers of a small parameter, ε � 1, which we take to

represent the transaction cost magnitude.

k(S,M, u) = εκ(S,M,U)

with κ = O(1), in changing variables from (S,M, t, y) to (S,M, t, Y )

where Y represents the ’unhedgedness’ of the portfolio, i.e. the dif-

ference between the actual number of units of the market held, y and

the ”optimal” number in the absence of transaction costs, y∗(S,M, t),

and in finding that the width of the no transaction band is O(ε
1
4 ) so

y = y∗(S,M, t) + ε
1
4 Y.

We denote by Y + and −Y − the sell and buy edges of the no-transaction

band respectively in terms of the new unhedgedness variable, Y , and

by Ŷ +(< Y +) and −Ŷ −(> −Y −) the optimal rebalance points (levels

of unhedgedness after transaction) on sale and purchase respectively.

We thus expand the value functions for the part of the investor’s

portfolio held in risky assets, hw and h0, in powers of ε
1
4 :

hw = M(y∗(S,M, t) + ε
1
4 Y ) + hw

0 (S,M, t, Y )

+ε
1
4 hw

1 (S,M, t, Y ) + ε
1
2 hw

2 (S,M, t, Y ) + ε
3
4 hw

3 (S,M, t, Y ) + . . .

h0 = M(y∗0(S,M, t) + ε
1
4 Y ) + h0

0(S,M, t, Y )

+ε
1
4 h0

1(S,M, t, Y ) + ε
1
2 h0

2(S,M, t, Y ) + ε
3
4 h0

3(S,M, t, Y ) + . . .

Here the first two terms in each equation represent the value of the

holding in the hedging asset, x = My, so the certainty equivalent

value of the option is given by the difference between the remaining

terms

H(S,M, t, y) =
∑

i

(hw
i (S,M, t, y) − h0

i (M, t, y)).

We consider successive orders of magnitude of the terms obtained

on substitution into the differential equations 5 and boundary condi-

5Note since the derivatives in (7) and (8) are keeping y fixed, this change of variables
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alters the differential equation, since

∂

∂y
→ ε−

1

4

∂

∂Y
,

∂

∂t
→

∂

∂t
− ε−

1

4 y∗

t

∂

∂Y
,

∂

∂M
→

∂

∂M
− ε−

1

4 y∗

M

∂

∂Y
,

∂

∂S
→ ε−

1

4 y∗

S

∂

∂Y
.

∂2

∂S2
→

∂2

∂S2
− ε−

1

4

(

y∗

SS

∂

∂Y
+ 2y∗

S

∂2

∂Y ∂S

)

+ ε−
1

2 y∗2
S

∂2

∂Y 2
,

∂2

∂S∂M
→

∂2

∂S∂M
− ε−

1

4

(

y∗

SM

∂

∂Y
+ y∗

S

∂2

∂Y ∂M
+ y∗

M

∂2

∂Y ∂S

)

+ ε−
1

2 y∗

Sy∗

M

∂2

∂Y 2
,

∂2

∂M2
→

∂2

∂M2
− ε−

1

4

(

y∗

MM

∂

∂Y
+ 2y∗

M

∂2

∂Y ∂M

)

+ ε−
1

2 y∗2
M

∂2

∂Y 2
,

These are reflected in the equations we obtain at successive orders of ε
1

4 .
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tions6. The problems satisfied by hw and h0 differ only in the final

boundary conditions. We will thus work with h; differences between

the solutions for hw and h0 will be discussed later.

6The free boundary conditions between the transaction (buy and sell) and no-

transaction regions become

hw
0 (S, M, t,±Ŷ ±) + ε

1

4 hw
1 (S, M, t,±Ŷ ±) + ε

1

2 hw
2 (S, M, t,±Ŷ ±) + ε

3

4 hw
3 (S, M, t,±Ŷ ±)

+εhw
4 (S, M, t,±Ŷ ±) + . . . (9)

= hw
0 (S, M, t,±Y ±) + ε

1

4 hw
1 (S, M, t,±Y ±) + ε

1

2 hw
2 (S, M, t,±Y ±)

+ε
3

4 hw
3 (S, M, t,±Y ±) + εhw

4 (S, M, t,±Y ±) + . . . + ε(κf + κpM | ± Y ± − (±Ŷ ±)|

hw
0Y

(S, M, t,±Ŷ ±) + ε
1

4 hw
1Y

(S, M, t,±Ŷ ±) + ε
1

2 hw
2Y

(S, M, t,±Ŷ ±) (10)

+ε
3

4 hw
3Y

(S, M, t,±Ŷ ±) + εhw
4Y

(S, M, t,±Ŷ ±) + . . . = εκpMsgn(±Y ± − (±Ŷ ±))

hw
0Y

(S, M, t,±Y ±) + ε
1

4 hw
1Y

(S, M, t,±Y ±) + ε
1

2 hw
2Y

(S, M, t,±Y ±) (11)

+ε
3

4 hw
3Y

(S, M, t,±Y ±) + εhw
4Y

(S, M, t,±Y ±) + . . . = εκpMsgn(±Y ± − (±Ŷ ±))

where

sgn(x) =

{

+1 ifx > 0

−1 ifx < 0

and the smooth pasting conditions (11) and (10) represent the optimality of the choice of

the edge of the no-transaction region and optimal rebalance point respectively. Note since

the hedging bandwidth is O(ε
1

4 ), transaction costs are

k(M, dy) = kf + kpM |dy| = εκ(M, dY ) = εκf + (ε
3

4 κp)M |ε
1

4 dY |

so kf = εκf and kp = ε
3

4 κp. For the case of purely proportional transaction costs, the

edge of the no-transaction region and the optimal rebalance point coincide and the value

matching and smooth pasting conditions become:

hw
0Y

(S, M, t,±Y ±) + ε
1

4 hw
1Y

(S, M, t,±Y ±) + ε
1

2 hw
2Y

(S, M, t,±Y ±)

+ε
3

4 hw
3Y

(S, M, t,±Y ±) + εhw
4Y

(S, M, t,±Y ±) = −εκpM(12)

hw
0Y Y

(S, M, t,±Y ±) + ε
1

4 hw
1Y Y

(S, M, t,±Y ±) + ε
1

2 hw
2Y Y

(S, M, t,±Y ±)

+ε
3

4 hw
3Y Y

(S, M, t,±Y ±) + εhw
4Y Y

(S, M, t,±Y ±) = 0 (13)

Considering each successive power in εi/4 separately gives the respective boundary condi-

tions for hi.
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2.1.1 The O(ε−
1
2 ) equation

The leading order terms in the equation are at O(ε−
1
2 ) and involve

derivatives with respect to the level of unhedgedness, Y :

A(y∗)
(

h0Y Y
− γ̂(t)h2

0Y

)

= 0 (14)

subject to

h0Y
(Y +) = h0Y

(−Y −) = 0

h0Y Y
(Y +) = h0Y Y

(−Y −) = 0

h0
0(M,Y, T ) = 0; hw

0 (S,M, Y, T ) = Λ(S,M)

where

A(y∗) ≡
1

2
η2S2y∗

2

S + ρσηSMy∗Sy∗M +
1

2
σ2M2y∗

2

M . (15)

This has solution h0Y
= 0, so to leading order the option value is

independent of the current level of unhedgedness and h0 ≡ h0(S,M, t).

2.1.2 The O(ε−
1
4 ) equation

Considering the terms at O(ε−
1
4 ) and using h0Y

= 0, we find an equa-

tion for the dependence of h1 on Y :

A(y∗)h1Y Y
= 0 (16)

which can be solved subject to

h1Y
(Y +) = h1Y

(−Y −) = 0

h1Y Y
(Y +) = h1Y Y

(−Y −) = 0

h1(S,M, Y, T ) = 0

to give h1Y
= 0, so h1 ≡ h1(S,M, t).
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2.1.3 The O(1) equation

Now considering the O(1) terms and using h0Y
= h1Y

= 0 we obtain

A(y∗)h2Y Y
+ σMy∗

(

λ − γ̂(t)

(

σM

(

h0M
+

y∗

2

)

+ ρηSh0S

))

+L(h0) − ˆγ(t)

(

η2

2
S2h2

0S
+ ρησSMh0S

h0M
+

σ2

2
M2h2

0M

)

= 0

where

L(h) ≡ ht − rh + (r + ξη)ShS + (r + λσ)MhM

+
1

2
η2S2hSS + ρσηSMhSM +

1

2
σ2M2hMM . (17)

Regarding this as an ordinary differential equation in Y for h2,

which can be solved subject to

h2Y
(Y +) = h2Y

(−Y −) = 0

h2Y Y
(Y +) = h2Y Y

(−Y −) = 0

we similarly find h2Y
= 0, so h2 ≡ h2(S,M, t).

2.1.4 The O(ε
1
4 ) equation

We can similarly view the O(ε
1
4 ) terms as an ordinary differential

equation in Y for h3:

A(y∗)h3Y Y
+ L(h1) + σMY (λ − γ̂(t) (σM (h0M

+ y∗) + ρηSh0S
))

− γ̂(t)
(

η2S2h0S
h1S

+ ρησSM(h0S
h1M

+ h1S
h0M

) + σ2M2h0M
h1M

)

− γ̂(t)y∗
(

σ2M2h1M
+ ρησSMh1S

)
)

= 0 (18)

subject to

h3Y
(Y +) = h3Y

(−Y −) = 0

h3Y Y
(Y +) = h3Y Y

(−Y −) = 0

and obtain h3Y
= 0, so h3 ≡ h3(S,M, t).

Hence both the coefficient of Y and the terms independent of Y

must seperately equal zero. From the coefficient of Y we obtain an
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equation for My∗(S,M, t), the amount invested in the market to lead-

ing order:

My∗(S,M, t) =
λ

σγ̂(t)
−

ρηS

σ
h0S

− Mh0M
(19)

and from the terms independent of Y we obtain the differential equa-

tion satisfied by h1(S,M, t):

0 = L(h1) − γ̂(t)

((

λ

γ̂(t)
− σMh1M

− ρηSh0S

)

(σMh1M
+ ρηSh1S

)

)

− γ̂(t)
(

η2S2h0S
h1S

+ ρησSM(h0S
h1M

+ h1S
h0M

) + σ2M2h0M
h1M

)

Solving this subject to h1(S,M, T ) = 0 we find h1 = 0.

Returning to the O(1) equation and substituting for y∗ from (19)

we obtain the equation satisfied by the leading order option value, h0:

L(h0) +
γ̂(t)

2

(

(
λ

γ̂(t)
− (σMh0M

+ ρηSh0S
)

)2

− ˆγ(t)

(

η2

2
S2h2

0S
+ ρησSMh0S

h0M
+

σ2

2
M2h2

0M

)

= 0

This reduces to

h0t
+ rMh0M

+ rSh0S
− rh0 +

σ2

2
M2h0MM

+ ρησSMh0SM

+
η2

2
S2h0SS

− γ̂(t)
η2

2
(1 − ρ2)S2h2

0S
= −

λ2

2γ̂(t)
(20)

which must be solved subject to hw
0 (S,M, T ) = Λ(S,M) or h0

0(S,M, T ) =

0 as appropriate.

2.1.5 The O(ε
1
2 ) equation

The O(ε
1
2 ) terms are

A(y∗)h4Y Y
−

γ̂(t)σ2

2
M2Y 2 + L(h2)

− γ̂(t)
(

η2S2h0S
h2S

+ ρησSM(h0S
h2M

+ h2S
h0M

) + σ2M2h0M
h2M

)

− γ̂(t)y∗
(

σ2M2h2M
+ ρησSMh2S

)
)

= 0 (21)

These give us an ordinary differential equation in Y for h4

h4Y Y
= α4Y

2 − β4 (22)
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where

α4 =
γ̂(t)σ2M2

2A(y∗)

and

β4 =
1

A(y∗)

(

L(h2) − γ̂(t)y∗
(

σ2M2h2M
+ ρησSMh2S

)
)

−γ̂(t)
(

η2S2h0S
h2S

+ ρησSM(h0S
h2M

+ h2S
h0M

) + σ2M2h0M
h2M

))

If kf 6= 0, this must be solved subject to7

h4(Y
+) = h4(Ŷ

+) − (κf + κpM |Y + − Ŷ +|) (25)

h4(−Y −) = h4(−Ŷ −) − (κf + κpM | − Y − + Ŷ −|) (26)

h4Y
(Y +) = h4Y

(Ŷ +) = −κpM (27)

−h4Y
(−Y −) = −h4Y

(−Ŷ −) = −κpM (28)

where Y +, −Y − represent the edges of the no-transaction region and

Ŷ +, −Ŷ − the optimal rebalance points, which lie strictly within the

no-transaction region. Thus if the Y reaches −Y −, more of the hedg-

ing asset is bought so the new value of Y (number of the hedging asset

held in excess of y∗) is −Ŷ −; similarly if Y reaches Y +, the hedging

asset is sold until Y = Ŷ +. Note the free boundaries Y +, −Y −, Ŷ +

and −Ŷ − are as yet unknown.

The solution to (22) is

h4 =
α4

12
Y 4 −

β4

2
Y 2 + a4Y + b4

with a4 and b4 unknown functions of S,M, t.

Applying the boundary conditions (25)-(28) gives Y − = Y +, Ŷ − =

Ŷ +, a4 = 0 and

β4 =
α4

3

(

(Y +)2 + Y +Ŷ + + (Ŷ +)2
)

7If κf = 0, Y + = Ŷ + and −Y − = −Ŷ − (each edge of the no transaction region and

the appropriate optimal rebalance point coincide) and the equations are instead:

h4Y
(Y +) = −h4Y

(−Y −) = −κpM (23)

h4Y Y
(Y +) = h4Y Y

(−Y −) = 0. (24)

We will consider this case separately in section 3.1.
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or

L(h2) − γ̂(t)y∗
(

σ2M2h2M
+ ρησSMh2S

)
)

− γ̂(t)
(

η2S2h0S
h2S

+ ρησSM(h0S
h2M

+ h2S
h0M

) + σ2M2h0M
h2M

)

= γ̂(t)
σ2M2

2

(

(Y +)2 + Y +Ŷ + + (Ŷ +)2
)

3
(29)

which must be solved subject to h2(S,M, T ) = 0. This gives the

leading order correction to the option value due to transaction costs.

The semibandwidth, Y +, and optimal rebalance point, Ŷ +, are

given by the solution to

(Y + + Ŷ +)(Y + − Ŷ +)3 = Q =
24κfA(y∗)

γ̂(t)σ2M2
(30)

Y +Ŷ +(Y + + Ŷ +) = P =
6κpA(y∗)

γ̂(t)σ2M
(31)

In general (30) and (31) must be solved numerically8; explicit so-

lutions are however available in some special cases which will be con-

sidered in section 3.

2.1.6 The O(ε
3
4 ) equation

As above, we first regard the O(ε
3
4 ) terms as an ordinary differential

equation in Y for h5:

h5Y Y
= α5Y

3 − β5Y + ω5 (32)

with

α5 =
1

3A(y∗)

(

α4
BM (y∗)

M
− BM (y∗)α4M

− BS(y∗)α4S

)

(33)

8They can be transformed into a ninth-order polynomial satisfied by Y +,

8PY +
9

+ QY +
∗

− 12P2Y +
6

− 10PQY +
5

−Q2Y +
4

+ 6P3Y +
3

− 2P2QY +
2

− P4 = 0

together with

Ŷ + =
Y +

2

2

(

−1 +

√

(

1 +
4P

Y +3

)

)

,
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β5 =
1

A(y∗)

(

−β4
BM (y∗)

M
+ BM(y∗)β4M

+ BS(y∗)β4S

− γ̂(t)ρσηSMh2S
) (34)

and

ω5 =
1

A(y∗)

(

L(h3) − γ̂(t)y∗
(

σ2M2h3M
+ ρησSMh3S

)

− γ̂(t)
(

η2S2h0S
h3S

+ ρησSM(h0S
h3M

+ h3S
h0M

) + σ2M2h0M
h3M

))

This has general solution

h5 =
α5

20
Y 5 −

β5

6
Y 3 +

ω5

2
Y 2 + a5Y + b5

with a5 and b5 unknown functions of S,M, t.

The free boundary conditions (25), (26), (27) and (28) and the free

boundaries must now be expanded to higher order: we write the top

and bottom free boundaries as Ȳ + + ε
1
4 z+ and −Ȳ − + ε

1
4 z− respec-

tively, the optimal rebalance points as ˆ̄Y
+

+ ε
1
4 ẑ+ and − ˆ̄Y

−

+ ε
1
4 ẑ−,

and h̄+
n and h̄−

n for evaluations at the leading order boundaries Ȳ +

and −Ȳ − and and ˆ̄h
+

n and ˆ̄h
−

n for evaluations at the leading order

boundaries ˆ̄Y
+

and − ˆ̄Y
−

respectively. We will deal with the case

when kf 6= 0; the analysis for kf = 0 differs and will be covered in

section 3.1.

Expanding the value matching and smooth pasting conditions to

higher order we obtain

(h4(±Y ±) − h4(±Ŷ ±)) + ε
1
4 (h5(±Y ±) − h5(±Ŷ ±)) + O(ε

1
2 )

= − κf − κpM | ± Y ± − (±Ŷ ±)| (35)

−h4Y
(±Y ±) − ε

1
4 h5Y

(±Y ±) + O(ε
1
2 ) = ±κpM (36)

−h4Y
(±Ŷ ±) − ε

1
4 h5Y

(±Ŷ ±) + O(ε
1
2 ) = ±κpM (37)

or, transferring the boundary conditions to the leading order bound-

aries ±Ȳ ±,
(

h̄±
4 − ˆ̄h

±

4

)

+ ε
1
4

(

z±h̄±
4Y

+ h̄±
5 − (ẑ± ˆ̄h

±

4Y
+ ˆ̄h

±

5 )

)

+ O(ε
1
2 )

= − κf − κpM | ± Ȳ ± − (± ˆ̄Y
±

) ± ε
1
4 (z± − ẑ±)| (38)
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−h̄±
4Y

− ε
1
4 (z±h̄±

4Y Y
− h̄±

5Y
) + O(ε

1
2 ) = ±κpM (39)

−ˆ̄h
±

4Y
− ε

1
4 (ẑ±h̄±

4Y Y
− h̄±

5Y
) + O(ε

1
2 ) = ±κpM (40)

From (38) we obtain h̄+
5 − ˆ̄h

+

5 = 0 (since −h̄±
4Y

= −ˆ̄h
±

4Y
= ±κpM)

and hence ω5 = 0. After some simplification, this gives the differential

equation satisfied by h3:

h3t
+ rMh3M

+ rSh3S
− rh3 +

σ2

2
M2h3MM

+ ρησSMh0SM

+
η2

2
S2h3SS

− γ̂(t)η2(1 − ρ2)S2h0S
h3S

= 0 (41)

which must be solved subject to hw
3 (S,M, T ) = −κp|My∗(T )| or

hw
3 (S,M, T ) = −κp|My∗0(T )| as appropriate.

We also obtain the corrections to the leading order boundaries:

z+ = −
h̄+

5Y

h̄+
4Y Y

, z− = −
h̄−

5Y

h̄−
4Y Y

(42)

ẑ+ = −
ˆ̄h

+

5Y

ˆ̄h
+

4Y Y

, ẑ− = −
ˆ̄h
−

5Y

ˆ̄h
−

4Y Y

(43)

Since both h5Y
and h4Y Y

contain only even powers of Y , we find

z− = z+, ẑ− = ẑ+

so the difference between the unhedgedness of the two edges of the

band Y + − (−Y −) = Ȳ + + ε
1
4 z+ − (−Ȳ − + ε

1
4 z−) = 2Ȳ + does not

change; its location (i.e. the centre of the band) merely shifts.

2.2 Option value

In principle the value of the option and the location of the no-transaction

band could be functions of S,M, y and t; however we find that, at least

to the orders of magnitude we consider, successive terms in the expan-

sion of the option value, and also the locations of the centre and edges

of the no-transaction band in the amount of the hedging asset held

are all independent of the actual value of the hedging asset, M . This

simplifies their calculation significantly.
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We reflect this independence of M and thus write the hedging

strategy in terms of the value held in the hedging asset, so x = My,

X = MY etc. and also H(S, x, t) =
∑

i(h
w
i − h0

i ) for the value of the

option once part of the investor’s portfolio. Note the initial price the

investor should be willing to pay to take on the option position will

also take account of the initial costs of setting up the hedge and so

will be

H(S, 0, t) = H(S, x, t) − k1 − k3
ρη

σ
SH0S

(S, t)

where

H(S, x, t) = H0(S, t) + ε
1
2 H2(S, t) + ε

3
4 H3(S, t) + εH4(S,X, t) + . . .

with Hi = (hw
i − h0

i ). We thus have that H0 satisfies

H0t
+ rSH0S

− rH0 +
η2

2
S2H0SS

− γ̂(t)
η2

2
(1 − ρ2)S2H2

0S
= 0

subject to final condition H0(S, T ) = Λ(S). This is exactly the equa-

tion satisfied by a costlessly imperfectly hedged option value as in

Henderson (2005) [13].

The leading order correction to the option value, H2, satisfies

H2t
+ (r + η(ξ − λρ))SH2S

− rH2 +
η2

2
S2H2SS

− γ̂(t)η2(1 − ρ2)S2H0S
H2S

(44)

= γ̂(t)
σ2

2

(

(X+2 + X+X̂+ + X̂+2)

3
−

(X+
0

2 + X+
0 X̂+

0 + X̂+
0

2)

3

)

subject to H2(S, T ) = 0. Here X+(S, t) = MY + and X̂+(S, t) =

MŶ + are the semi-bandwidth and optimal rebalance point in terms

of the values held in the hedging asset and are given by the solution

to (47) and (48) below. H2 represents to leading order the certainty

equivalent value of transaction costs incurred during the life of the op-

tion as a result of hedging due to moving outside the transaction band.

Note the right-hand side of this equation involves only derivatives of

H0, so the equation is linear.
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H3, which represents the leading order effects of certainty equiva-

lent cost of unwinding the hedge at expiry, satisfies

H3t
+ (r + η(ξ − λρ))SH3S

− rH3 +
η2

2
S2H3SS

− γ̂(t)η2(1 − ρ2)S2H0S
H3S

= 0 (45)

with final condition

H3(S, T ) = −κ3(|x
∗(S, T )| − |x∗

0(T )|) (46)

where x∗ = My∗ and x∗
0 = My∗0.

Equations (44), (44) and (45) and associated final conditions are

straightforward to solve numerically using finite difference methods.

2.3 Hedging strategy

The optimal trading strategy consists of a no transaction region, within

which the number, y, of the hedging aset hold remains constant. If the

prices of the hedged (underlying share price) or hedging asset move

so the value held in the hedging asset, My ≡ x, moves outside this

band, transactions are made to bring x back within the band. The no

transaction band can be written as

x∗ − ε
1
4 X+ = x−(S, t) ≤ x ≤ x+(S, t) = x∗ + ε

1
4 X+

with My∗ = x∗(S, t), MY + = X+(S, t) and MY − = X−(S, t) to

emphasise the lack of dependence of the location of the band on the

current value of the hedging asset, M . The value of x thus changes

with changes in M , whereas the location and width of the band change

with S and t.

The centre of the no-transaction band for the problem with the

option grant is related to the Delta of the leading order option value

x∗(S, t) = x∗
0(t) −

ρη

σ
Sh0S

(S, t)

where x∗
0 = λe−r(T−t)

γσ
is the amount of the hedging asset held without

the option grant in the absence of transaction costs.
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Thus the leading order difference between the amounts held in the

hedging asset, i.e. the extra amount held due to the option grant,

x∗ − x∗
0 ≈ −

ρηS

σ
h0S

,

is proportional to the firm’s stock price multiplied by the option’s

delta. Note however that, since h0 does not satisfy the Black-Scholes

equation, h0S
is not the Black-Scholes delta and must be calculated

numerically.

We further find that the no-transaction band is symmetrical to

leading order.The leading order values for the semi bandwidth, X+,

and optimal rebalance point, X̂+, are given by the solutions to

(X+ + X̂+)(X+ − X̂+)3 = Q =
24κf A(x∗)

γ̂(t)σ2
(47)

X+X̂+(X+ + X̂+) = P =
6κpA(x∗)

γ̂(t)σ2
(48)

where A(x∗) = M2A(y∗) is independent of M . X+ and X̂+ thus

depend on the level and form of the transaction costs, the investor’s

risk aversion and the Delta and Gamma (first and second derivatives)

of the option position. In the special cases in section 3 we can obtain

explicit formulae for the semibandwidth; however from (47) and (48)

we can see in all cases both X+ and X̂+ depend positively on A(x∗)

given by

A(x∗) =
η2

2

[

ρ2
(

λ

γ̂(t)η
+

(

η

σ
− ρ

)

Sh0S
+

η

σ
S2h0SS

)2

+ (1 − ρ2)

(

λ

γ̂(t)η
− ρSh0S

)2
]

(49)

Note if ρ = 1 and σ = η, the equations for the semibandwidth

and optimal rebalancing point reduce to those of Whalley & Wilmott

(1999) [26], for the case of perfect correlation. These depend only on

the option’s Gamma, hSS since

A(x∗) =
1

2

(

λ

γ̂(t)
+ ηS2h0SS

)2

(50)

Imperfect correlation between the underlying and hedging asset

thus introduces dependence also on the option’s Delta, hS into the
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bandwidth and hence the certainty equivalent value of transaction

costs.

3 Special cases

3.1 Proportional transaction costs only

When costs are purely proportional to the value of the hedging asset

traded (so kf = 0)9 the optimal rebalance point co-incides with the

edge of the hedging band, so X̂+ = X+, X̂− = X− and we obtain

explicit formulae for the leading order hedging strategy in terms of

the leading order option Greeks.

X+
(p) ≡ X̄+ = X̄− =

(

3κp

σ2γ̂(t)

) 1
3

|A(x∗)|
1
3 (51)

where A(x∗) is as given in (49) above.

Note there is also a hedging bandwidth for the problem without

the option given by

X̄+
0 =

1

γ̂(t)

(

3κpλ
2

σ2

) 1
3

(52)

In this case10 we also find that the leading order correction to the

hedging band is given by

w− = w+ = −
ρη

σ
Sh2S

,

9From the value matching and smooth pasting conditions (23) - (24) for this case we

can deduce Y + = Y − = Ŷ + = Ŷ − and β4 = α4

Y
+2. Substituting into (23) we obtain an

explicit formula for Y + equivalent to (51).
10Expanding the value matching and smooth pasting conditions (23) - (24) to higher

order we obtain:

h4Y
(±Y ±) + ε

1

4 h5Y
(±Y ±) + O(ε

1

2 ) = ±κ3M (53)

h4Y Y
(±Y ±) + ε

1

4 h5Y Y
(±Y ±) + O(ε

1

2 ) = 0 (54)

or, transferring the boundary conditions to the leading order boundaries ±Ȳ ±,

h̄±

4Y
+ ε

1

4 (z±h̄±

4Y Y
+ h̄±

5Y
) + O(ε

1

2 ) = ±κ3M (55)

h̄±

4Y Y
+ ε

1

4 (z±h̄±

4Y Y Y
+ h̄±

5Y Y
) + O(ε

1

2 ) = 0 (56)
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Figure 1: O(ε
1
2 ) correction to per option Delta values as a function of mon-

eyness, S/K. Parameter values for perfect correlation: T = 1, σ = η = 0.3,

ρ = 1, r = 0.04, γ = 1 × 10−6, nK = 1 × 106 and kp = 0.01. Parameter

values for imperfect correlation base case: T = 1, σ = 0.3, σ = 0.2, ρ = 0.8,

r = 0.04, γ = 1 × 10−6, nK = 1 × 106 and kp = 0.01.

where w+ = Mz+, w− = Mz− and so X+
(p) + ε

1
4 w+ and −X+

(p) + ε
1
4 w−

represent the edges of the no transaction band in terms of values held

in the hedging asset. We see that this correction does not change the

width of the band; its location (i.e. the centre of the band) merely

shifts to reflect the leading order correction to the delta.

Figure 1 shows the effect of the corrections to the centre of the

hedging band for the special case of long call options with ρ = 1 and

for the base case partially correlated value. In the perfect correla-

tion case, since the hedging and underlying assets are identical, we

The leading order corrections to the boundaries are given by

z+ = z− = −
h̄+

5Y Y

h̄+

4Y Y Y

= −
α5Y

+
2

+ β5

2α4

After some tedious calculation we find all the terms involving h0 and y∗ cancel and we are

left with z± = − ρη
σ Sh2S

.
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can express the band in terms of the option’s delta. Here the leading

order delta is given by Black Scholes; note the higher order effect on

the centre of the band gives rise the characteristic effect that option

values incorporating transaction costs change the effective volatility

of the option depending on the sign of the option’s Gamma. Imper-

fect correlation introduces an additional negative effect on per-option

Delta values due to the unhedgeable risk, particularly for asset values

where |h0S
| is large (large S for long call options).

Thus optimal hedging occurs only when the value of the amount

held of the hedging asset, M , moves outside the hedging band given

by

x∗
0(t) −

ρη

σ
S(h0S

+ ε
1
2 h2S

) − ε
1
4 X̄+

≤ x ≤ x∗
0(t) −

ρη

σ
S(h0S

+ ε
1
2 h2S

) + ε
1
4 X̄+

with X̄+ given by (51).

If the investor initially holds x∗
0 in the hedging asset11, then the

option value is given by

H(S, x∗
0, t) = H0 + ε

1
2 H2 + ε

3
4

(

H3 − κp

∣

∣

∣

∣

−
ρη

σ
Sh0S

∣

∣

∣

∣

)

+ ε
(

H4(S,±X̄±, t) + κpX̄
+)+ . . .

= H0 + ε
1
2 H2 + ε

3
4

(

H3 − κp
ρη

σ
S|h0S

|

)

+ ε
3

8
κpX̄

+ + . . .

since H4(S,±X̄±.t) = −5
8κpX̄

+. The leading order value for portfo-

lios of European options is the zero-transaction cost value, which is

11This assumes x∗
0 is outside the no-transaction region for the problem including the

option position. If the investor holds x0 = x∗
0 + ε

1

4 X0 (with −X̄+

0 ≤ X0 ≤ X̄+

0 , the option

value would decrease by εX0 if x0 > x∗ + ε
1

4 X+, so the initial transaction is to sell the

hedging asset. If x0 is initially in the buy region for the problem including the option

position, x0 < x∗ − ε
1

4 X+, then the option value would increase by εX0, and if x0 is

within the no-transaction region for the problem including the option position, then no

initial transaction would be required and

H(S, x0, t) = H0 + ε
1

2 H2 + ε
3

4 H3 + εH4(S, ε−
1

4 (x0 − x∗), t) + . . .
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the solution to (44) with appropriate final condition H0(S, T ) = Λ(S).

The leading order component of the option value resulting from trans-

action costs, H2, now has an explicit partial differential equation to

be solved subject to H2(S, T ) = 0:

H2t
+ (r + η(ξ − λρ))SH2S

− rH2 +
η2

2
S2H2SS

− γ̂(t)η2(1 − ρ2)S2H0S
H2S

(57)

= γ̂(t)
σ2

2

(

X̄+2 − X̄+
0

2
)

= γ̂(t)
σ2

2

(

3κp

σ2γ̂(t)

)
2
3



|A(x∗)|
2
3 −

(

λ2

2γ̂2(t)

) 2
3





where X̄+ and X̄+
0 are given by (51) and (52) respectively, and A(x∗)

is given by (49).

The component of the option value reflecting the leading order

certainty equivalent value of final transaction costs, H3, is given by

the solution to (45) with final condition (46).

3.2 Fixed costs only

When the only component of transaction costs is the fixed cost per

trade (so kp = 0) we can solve (47) and (48) to obtain explicit formulae

for the leading order hedging strategy in terms of the leading order

option Greeks. In this case the optimal rebalance point differs from

the edge of the no-transaction band:

¯̂
X

+
=

¯̂
X

−

= 0 (58)

X+
(f) ≡ X̄+ = X̄− =

(

24κf

σ2γ̂(t)

) 1
4

|A(x∗)|
1
4 (59)

where A(x∗) is as given in (49) above.

Similarly the leading order optimal rebalance point and edge of

band for the problem without the option are given by

X̄+
0 =

(

12κfλ2

γ̂3(t)σ2

) 1
4

,
¯̂
X

+

0 = 0 (60)
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If the investor initially holds x0 in the hedging asset12, then the

option value is given by

H(S, x∗
0, t) = H0 + ε

1
2 H2 + ε

3
4 H3 + ε

(

H4(S,±X̄±, t) − κf

)

+ . . .

= H0 + ε
1
2 H2 − 2εκf + . . .

since the O(ε
3
4 ) term in the option value, H3, is given by the solu-

tion to the inhomogeneous linear equation (45) with final condition

H3(S, T ) = 0 and is thus identically zero H3(S, t) = 0.

The leading order value for portfolios of European options is again

the zero-transaction cost value, which is the solution to (44) with

appropriate final condition H0(S, T ) = Λ(S). The leading order com-

ponent of the option value resulting from transaction costs, H2, has an

explicit partial differential equation to be solved subject to H2(S, T ) =

0:

H2t
+ (r + η(ξ − λρ))SH2S

− rH2 +
η2

2
S2H2SS

− γ̂(t)η2(1 − ρ2)S2H0S
H2S

(61)

= γ̂(t)
σ2

2

(

X̄+2

3
−

X̄+
0

2

3

)

= γ̂(t)
σ2

6

(

24κf

σ2γ̂3(t)

) 1
2



|A(x∗)|
1
2 −

(

λ2

2γ̂2(t)

) 1
2





where A(x∗) given by (49).

4 Results

4.1 Effect of the inability to hedge perfectly

In the case where hedging with the asset underlying the derivatives

contract is possible, so ρ = 1 and σ = η, we recover the results of

12If x0 lies within the no-transaction region for the problem including the option position,

then no initial transaction would be required and

H(S, x, t) = H0 + ε
1

2 H2 + εH4(S, ε−
1

4 (x0 − x∗), t) + . . .
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Whalley & Wilmott (1997, 1999) [25, 26] for the optimal hedging

strategy and resulting option valuation in the presence of small but

arbitraty transaction costs. In particular, since in theory with costless

hedging the hedging error is zero, the leading order option value sat-

isfies the Black-Scholes equation. The hedging strategy is given by a

no transaction band in the number of assets held, y− ≤ y ≤ y+ which

corresponds to our hedging band where the value held in the hedging

asset lies between two bounds, x− = x∗− ε
1
4 X+ and x+ = x∗ + ε

1
4 X+.

They show the leading order difference between the centres of the

hedging bands for the problems with and without the option is, in our

notation, x∗ = −SH0S
. For proportional costs we have shown there

is an O(ε
1
2 ) correction to this so the centre of the band in this case is

−S(H0S
+ H2S

)

The width of the hedging band, X+, and the optimal rebalance point,

X̂+, are functions of A(x∗)|ρ=1,σ=η , which from (50) depends only on

the Gamma of the option position.

For imperfectly correlated hedging assets, any trading strategy

must involve a level of unhedgeable risk. In our certainty equivalent

framework, this reduces option values relative to the case of perfect

correlation, even in the absence of transaction costs. This ‘cost of

unhedgeable risk’ is reflected by additional terms in each differential

equation for successive terms hi. These extra terms all have the form

−ciγ̂(t)η2(1 − ρ2)S2H0S
HiS

for constants ci. In particular, the term in the leading order equation,

−
1

2
γ̂(t)η2(1 − ρ2)S2H2

0S

is unambiguously negative if |ρ| < 1 and therefore has the effect of re-

ducing option values13. The magnitude of this term increases, though

at an decreasing rate, as the (absolute) correlation between the hedg-

ing and hedged assets decreases from 1, causing the option value in

the absence of costs to decrease similarly.

13This can be shown using a comparison argument.
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Figure 2: Leading order per-option deltas for different hedging assets (ρ) as

a function of moneyness, S/K. Parameter values where not stated: T = 1,

η = 0.3, r = 0.05, γ = 1 × 10−6, nK = 1 × 106.

There is also an impact on the leading order option delta, H0S
.

As shown in Figure 2, the delta for a long call option decreases as

the potential hedging effectiveness of the hedging asset (absolute cor-

relation) decreases from 1. The leading order Gamma, H0SS
is also

affected.

The location of the difference in the centre of the no transaction

band due to the option holding,

x∗ − x∗
0 = −

ρη

σ
SH0S

is thus affected by differences in ρ both directly (due to the multiplier
ρη
σ

) and indirectly because of the effect on H0S
. For long call options,

as |ρ| decreases both effects reduce the absolute value of the centre of

the band, reducing the difference between the trading portfolios with

and without the option position. The width of the no-transaction

band is also affected through its dependence on A(x∗), which itself

depends on the correlation both explicitly and implicitly, through the

Delta and Gamma of the option position.
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Figure 3: No-transaction band semi-bandwidth per option for different hedg-

ing assets (ρ) as a function of moneyness, S/K. Parameter values where not

stated: T = 1, η = 0.3, r = 0.05, γ = 1 × 10−6, nK = 1 × 106, σ = 0.25 and

k = 0.01.

Figure 3 shows the semibandwidth for a long call option for a

range of values of ρ. We can see the effct of the Gamma term in A(x∗)

in the widening of the band close to the money, which decreases in

magnitude as |ρ| decreases, and, for in-the-money asset values, the

effect of the term including the Delta, which for these parameter values

first increases as |ρ| decreases from 1 and then decreases for lower |ρ|.

The location of the no-transaction band is shown for two values of

ρ in Figure 4. Note that the magnitude of the changes in the centre

of the band with differences in ρ is much greater than the effects of

changes in the width of the band. The square of the bandwidth affects

the leading order reduction in the certainty equivalent option value due

to transaction costs. This, together with the initial and final costs,

both of which increase with increases in |ρ|, is shown in Figure 5. Thus

overall the certainty equivalent value of transaction costs decreases as

|ρ| decreases. All else equal, the lower the proportion of risk which is
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Figure 4: Centre and edges of no-transaction band per option for different

hedging assets (ρ) as a function of moneyness, S/K. Parameter values where

not stated: T = 1, η = 0.3, r = 0.05, γ = 1 × 10−6, nK = 1 × 106, σ = 0.25

and k = 0.01.

hedgeable, the lower the CE transaction costs incurred in hedging.

However, the general decrease in the certainty equivalent value of

transaction csots for lower |ρ|, which has a positive effect on long op-

tion values, is offset by the decrease in the certainty equivalent option

value because of the unhedgeable risk. This effect occurs in the leading

order equation and thus, for the parameter values we consider, domi-

nates. Hence, as shown in Figure 6, overall long certainty equivalent

option values inclusive of transaction costs decrease as |ρ| decreases

from 1. The rate of decrease is greatest for |ρ| close to 1 and for asset

values for which |h0S
| is greatest (large S for calls).

4.2 Nonlinearities and large option portfolios

It has been recognised in earlier work, (e.g. Whalley & Wilmott (1999)

[26]), Damgaard (2003) [7], Zakamouline (2003) [27]) that utility based

or certainty equivalent valuation of options results in nonlinear valua-
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Figure 5: Total certainty equivalent value of transaction costs under optimal

hedging for n long call options as a function of moneyness, S/K, for different

choices of hedging asset (ρ). Parameter values where not stated: T = 1,

η = 0.3, r = 0.05, γ = 1 × 10−6, nK = 1 × 106, σ = 0.25, kf = 0 and

kp = 0.01.

tion equations. This means that option values are no longer additive,

that portfolios of options need to be valued as a whole and that the

value of an option to an investor equals its marginal value and thus

depends on the investor’s existing portfolio.

In particular, the size of an option portfolio will affect its value.

We will consider the simplest case of a portfolio of n identical options

and investigate how the hedging strategy and option value vary with

n.

Increasing the size of the option portfolio has three effects. Firstly

it increases the amount of unhedgeable risk (due to the imperfect cor-

relation). This decreases certainty equivalent values in the absence of

transaction costs at an increasing rate. For our portfolio of n identical

options, we write H = nh(n) so h(n) represents the certainty equivalent

value per option when there are n options in the portfolio in total. We
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Figure 6: Per option value under optimal hedging with transaction costs for

n long call options as a function of moneyness, S/K, for different choices

of hedging asset (ρ). Parameter values where not stated: T = 1, η = 0.3,

r = 0.05, γ = 1 × 10−6, nK = 1 × 106, σ = 0.25, kf = 0 and kp = 0.01.

find that increasing the number of options in the portfolio increases

the reduction in value per option from the Black-Scholes value even

in the costless case14: h
(n)
0 satisfies

h
(n)
0t

+ rSh
(n)
0S

− rh
(n)
0 +

η2

2
S2h

(n)
0SS

− nγ̂(t)
η2

2
(1 − ρ2)S2h

(n)
0S

2 = 0 (62)

subject to e.g. h(n)(S, T ) = max(S − K, 0) for a portfolio of n call

options.

There are terms in each of the higher order equations reflecting

this ‘cost of unhedgeable risk’ of the form

−nγ̂(t)η2(1 − ρ2)S2h
(n)
0S

h
(n)
iS

the effect of which also increases with n.

14The extra negative term in the differential equation for the per option value increases

with n. Thus by a comparison argument, the difference in value between the partially and

fully hedged option values is negative and the magnitude increases with n.
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a function of moneyness, S/K. Parameter values where not stated: T = 1,

η = 0.3, r = 0.05, σ = 0.25, ρ = 0.8, kf = 0 and kp = 0.01.

The second and third effects relate to the certainty equivalent value

of transaction costs and arise for hedges with both partially and per-

fectly correlated hedging assets. Considering initially proportional

costs only, the hedging bandwidth per option, X(n)+ = X̄+/n is given

by

X
(n)+

(p) ≡
X+

(p)

n
≈

1

n

(

3κp

σ2γ̂(t)

) 1
3
∣

∣

∣n2A(n)(x∗) + O(n)
∣

∣

∣

1
3 (63)

where

A(n)(x∗) ≡
A(x∗)

n2
=

η2

2

[

ρ2
(

λ

nγ̂(t)η
+

(

η

σ
− ρ

)

Sh
(n)
0S

+
η

σ
S2h

(n)
0SS

)2

+ (1 − ρ2)

(

λ

nγ̂(t)η
− ρSh

(n)
0S

)2
]

(64)

Note A(n)(x∗) depends on n through h
(n)
0S

and h
(n)
0SS

as well as x∗
0/n (all

of which decrease as n increases).

The per-option semi-bandwidth thus decreases as n increases. This

is shown in Figure 7 and reflects the trade-off in the utility maximi-
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Figure 8: Leading order certainty equivalent value of transaction costs per

option under optimal hedging as a function of moneyness, S/K, for different

values of ν = nKγ. Parameter values where not stated: T = 1, η = 0.3,

r = 0.05, σ = 0.25, ρ = 0.8, kf = 0 and kp = 0.01.

sation between additional cost and additional risk15 for proportional

transaction costs and the negative exponential utility function. Note

the amount equivalent to holding ShBS
S where hBS

S is the Black-Scholes

delta lies inside the no-transaction band only for low values of ν (i.e.

smaller option positions).

The effect of the change in the bandwidth on the per-option cer-

tainty equivalent of transaction costs during the life of the option,

h
(n)
2 , for proportional costs only is shown in Figure 8. The transac-

tion cost related terms in (44) are proportional to the square of the

total semi-bandwidth, and hence the terms in the per-option equa-

15Increasing the number of options whilst keeping the width of the hedging band per

option unchanged would increase the risk in the investor’s portfolio, decreasing its certainty

equivalent value by an amount which increases greater than proportionally with the risk,

due to the assumed convexity of the utility function. The investor is thus willing to trade

more frequently to offset part of the additional risk and so the width of the band per

option decreases.
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Figure 9: Optimal rebalance points and and edges of no-transaction band

per option for different values of ν = nKγ, as a function of moneyness, S/K.

Parameter values where not stated: T = 1, η = 0.3, r = 0.04, γ = 1 × 10−6,

K = 1, σ = 0.2, ρ = 0.8, kf = 100 and kp = 0.01.

tion for h
(n)
2 are proportional to n times the square of the per-option

semi-bandwidth, which for our parameter values decrease with n.

The final effect concerns the relative magnitude of the fixed and

proportional transaction cost terms. As the number of options in the

portfolio increases, the relative effect of the fixed costs, kf , decreases

whilst that of the proportional costs, kp|dx| increases. For a very

large portfolio of options, the proportional terms will have the domi-

nant effect, so the bandwidth becomes proportional to k
1
3
p |A(x∗)|

1
3 and

rehedging is of the minimum possible amount in order to stay within

the no transaction band. For intermediate sizes of option portfolios,

where the relative sizes of the transaction cost parameters become

comparable, the optimal rebalance points will gradually move away

from the edges of the band towards the centre as the size of the port-

folio decreases.

These effects can be seen in Figure 9, which shows how the location
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Figure 10: Leading order per-option certainty equivalent value as a function

of moneyness, S/K, for different values of n. Parameter values where not

stated: T = 1, η = 0.3, r = 0.05, γ = 1 × 10−6, K = 1, σ = 0.25, ρ = 0.8,

kf = 0 and kp = 0.01.

of the edges of the hedging band and the optimal rebalance points vary

with n. Note that for the smaller values of n in this figure (compared

to Figure 7) the centre of the band does not change as significantly

with n.

However overall for large n, the dominant effect again arises from

the cost of unhedgeable risk, which increases with n, and this out-

weighs any savings in per-option certainty equivalent transaction costs

due to changes in the hedging strategy. This is illustrated in Figure

10. Note in particular how the per-option value for large European

option grants lies below the option payoff.

5 Conclusions and further work

In this paper we have used asymptotic analysis to derive explicit for-

mulae in terms of the leading order Greeks for the optimal trading
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strategy for hedging an option position using a potentially imperfe-

cly correlated hedging asset when the associated transaction costs are

either fixed per trade or proportional to the value traded. For more

general forms of transaction costs characteristics of the trading strat-

egy are given in terms of the roots of a polynomial equation. This

extends not only the range of scenarios for which relatively simple

formulae for such hedging strategies are available, but, by considering

higher orders than in previous work, also increases their accuracy.

The optimal hedging strategy depends on the Delta and the Gamma

of the option position. Imperfect correlation introduces a level of un-

hedgeable risk which cannot be eliminated at any cost into the trade-

off between the level of residual risk, or hedging error, resulting from

the trading strategy and the transaction costs incurred. This has the

effect of reducing the additional risk incurred as a result of the trad-

ing strategy incorporating transaction costs (the hedging bandwidth

dcreases as |ρ| decreases) and also reducing the certainty equivalent

value of transaction costs relative to the case of perfect correlation.

However for the parameter values we consider, overall the unhedge-

able risk has a greater effect on the certainty equivalent option value,

which decreases as |ρ| decreases from 1.

The nonlinearity of the equations, both resulting from the trans-

action cost terms, but also because of the inherent non-linearity of

imperfectly hedged option values in the absence of costs, has signifi-

cant effects on the evaluation of portfolios of options which cannot be

hedged perfectly. The effects are particularly important for large op-

tion portfolios and when the absolute correlation between the hedging

and hedged asset is low. Thus whilst both (high) absolute correlations

and (low) transaction cost levels add value when choosing a hedging

asset, the former is generally more important, especially for large op-

tion positions and longer times to maturity.
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