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Testing for Elliptic Distributions 
 

 A spherical distribution is an extension of the multivariate 
normal distribution (0, )dN I   where X RU=  for some positive 
random variable R independent of a random vector U  which is 
uniformly distributed on the unit hypersphere 

{ ¦ 1}d T
d z z zΩ = ∈ =\  

 An elliptic distribution is an extension of ( , )nN µ Σ  
 ( , )dN µ Σ   is the distribution of X AYµ= +    

where (0, )dY N I∼          with the shape matrix TAAΣ =        

 

 So X RAUµ= +  follows an elliptic distribution and the 
covariance matrix of X  , 0Σ  is proportional to Σ  

 An elliptic distribution is uniquely determined by its mean, 
covariance structure and its marginal distributions ( ie. tν or 
normal,…) 
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 The copula of a multivariate elliptic distribution is uniquely 
determined by its correlation matrix and its type.  

eg.  Gaussian Copula: 1 1
1( ) ( ( ),..., ( ))G

nC u u uρ ρ φ φ− −= Φ  
           or  

       Multivariate tν  Copula: 1 1
, , 1( ) ( ( ),..., ( ))t

v v nC u t u t uν ρ νρ
− −= Θ  

 So fat tails can be accommodated  as a deviation from 
Gaussianity within the elliptic class although the use of the t 
Copula implies symmetry. 
 The t Copula implies equal upper and lower tail dependence. 

( )12 1 1 / 1u tνλ ν ρ ρ+= + − +   with 
 

  1 1( ) 1 ( )t x t xν ν+ += −  
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Manzotti et al. (2002), Jnl of Multivariate Analysis1. 
 

 Let 1, nX X…  be an i.i.d. sample from a d dimensional 
distribution and we are interested in testing the null hypothesis 
that the sample comes from an elliptic distribution.  
 Let X  and S   denote the sample mean and covariance 
matrix so 1/ 2 ( )k kY S X X−= −  are called the scaled residuals 

1,k n= …   and /k k kW Y Y=   are their projections onto the unit 
sphere.  
 If X  is elliptically symmetric then W  is approximately 
uniformly distributed on dΩ   and this can be verified in several 
ways—Manzotti et al. take the following route based on 
averaging spherical harmonics over the 'kW s  ….. 

____________________ 
1see also Breymann, Dias and Embrechts, 2004, ETHZ, Zurich 
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 Spherical harmonics in the 2 dimensional case are just 
trigonometric functions on the unit circle. 
 Consider ε >0 fixed and let nε  be the nearest integer to the 

left of nε . Let nq  be the ε empirical quantile for the radial  
variables 1 2, , , nY Y Y…  , nε   are less than or equal to nq  and 
the rest are larger. We denote by ( )nQ h   the average over those 

'kW s  for which k nY q>   of a function h defined on dΩ : i.e. 
 

{ }
1( ) ( )

k nn k Y q
k n

Q h h W I
n >

≤

= ∑  

 
and the statistic is then given by 

2 2 ( )n n
h

Z Q h
∈ℑ

= ∑  
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where the function h selects the spherical harmonics of appropriate 
degree . eg. For the d=2 case 

1/ 2 1/ 2
1 2( ) 2 cos( ), ( ) 2 sin( )j k k j k kh W j h W jϑ ϑ= =   for 3 6j≤ ≤  and 

(cos( ),sin( ))k k kW ϑ ϑ= . 
 Manzotti et al showed that the asymptotic distribution of 2

nZ  
is then chi squared regardless of the parameters defining the 
underlying distribution. 
 Statistics related to 2

nZ   have shown very good power in 
testing for multivariate normality against a wide range of 
alternatives (See Manzotti and Quiroz (2001),TEST) 

 
 
 
 
 
 



 8

 
An Example 

 
 We will look at the question of the information content of 
realised volatility and volume in terms of explaining daily 
returns.  
 The Mixture of Distributions hypothesis ( Clark 1972 and 
many papers since) suggests the non-normality of returns 
follows from the irregular arrival of information events in the 
market- so the price change process is subordinated to the 
information arrival process which is random hence the central 
limit theorem does not apply and returns are Non- Gaussian. 
 This subordination process effectively defines a new time 
scale- instead of clock time we define a new clock which 
advances time on the basis of market activity- as the  market 
is more active time moves faster –when the market is slow 
time moves forward slowly. 
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 This leads naturally to Stochastic Volatility models- but 
questions still remain as to how to measure information flow 
into the market—is it the number of transactions in any 
interval, the volume or some other measure of activity. 
 The importance of this issue is that if we can find the 
appropriate time deformation variable which measures market 
activity then by re-expressing returns in market time in place 
of clock time we can recover conditional-Gaussianity in 
returns.  
 If we can do this satisfactorily across the assets we are 
interested in then standard finance theory and methods will 
apply and this in fact will lessen the demand for non-Gaussian 
methods such as Copula! 
 We will consider the relationship between volume and 
realized volatility and returns.  
 Realised volatility is a measure of volatility that has 
attracted a lot of interest in the literature recently—it is 
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essentially a daily measure of volatility made up from the sum 
of intraday volatilities.  
 We use tick data on Dell aggregated up to the 5 minute 
level which we use to construct daily realised volatility- 
which we compare with daily volume of transactions and the 
daily returns.  
 The figures below show some of the characteristics of the 
data. 
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Estimating Parametric and Non-parametric 
Copulae 

 
 We assume a d dimensional cumulative distribution 
expressed in its Copula form as  

1 1 1( ) ( ( , ), ( , ), )d d dF x C F x F xϑ δ δ ϑ= …  

where Cϑ  is the copula function and the Fi  are the margins. 
 One of the main advantages of the Copula approach is that 
it enables us to construct the  multivariate distribution by first 
modelling each univariate marginal distribution, either 
parametrically or non-parametrically and then, in a second 
step, specifying and estimating the Copula function which 
captures all the dependencies between the margins. 
 This second step is in fact much more complicated than 
most people assume and has been relatively under researched. 
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 Part of the problem lies in dynamic dependencies, serial 
correlation or autoregressive heteroskedasticity in financial 
returns. So how can we can we estimate Copulae? 
 As long as the true copula belongs to a parametric family  

{ },Cϑ ϑ= ∈ΘC  
then standard application of Maximum likelihood methods will, in 
principle, deliver consistent, efficient and asymptotically normally 
distributed estimates. 

 Two routes have been followed; 
a) Parametric 

1. Concentrated MLE (or IFM) 
2. Full MLE 

b) Semi-parametric  
   3.     Canonical MLE (CML) 
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a)  Parametric MLE: 
 

The density function of X is written 
 

1 2 1 1 1
1

( ; , ,...., , ) ( ( , ),... ( , ); ) ( , )
d

d d d d i i i
i

f x c F x F x f xδ δ δ ϑ δ δ ϑ δ
=

= ∏  

where the copula density is given by 
1 2

1 2
1 2

( , ,.., , )( , ,.., , )
... ,

d
d

d
d

C u u uc u u u
u u u

ϑϑ ∂
=

∂ ∂ ∂
  .  

The log-likelihood is then given by 

1 1 1
1 1

( , ; ) log ( ( , ),... ( , ); ) log ( , )
n d

d d d i i it t t
t i

l X c F x F x f xϑ δ δ δ ϑ δ
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑  

 



 22

Note that the estimation of the copula relies on the specification of 
parametric univariate marginal distributions in some way – once 
this has been done - their parameters iδ  can either be  

1. estimated prior to inclusion in the full likelihood – a two 
step procedure-(Concentrated MLE) and substituted into 
the full likelihood function; so first estimate the δ ’s by 

numerically maximising ,
1

log ( , ) for 1..
n

i i t i
t

f x i dδ
=

=∑  

and then maximising 

( )1 1 1
1

ˆ ˆ( ; ) log ( ( , ),... ( , ); )
n

d d dt t
t

l X c F x F xϑ δ δ ϑ
=

= ∑  

to get the estimates of the copula parameters ϑ . 
 
2.  alternatively the marginal parameters δ  can be 

estimated at the same time as the copula parameters ϑ   are 
estimated, although as the scale of the problem increases 
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this option is often considered too burdensome 
computationally. Either way the prior specification of the 
marginal distributions leads to potential misspecification 
problems 

 
 The properties of the Full Maximum Likelihood estimators 
under 2. above are well established under a range of regularity 
conditions and the procedure delivers consistent, efficient and 
asymptotically normal estimators when the model is correctly 
specified.  

1ˆ( ) (0, ( ))dn Nϑ ϑ ϑ−− → ℑ  
 

 Estimation by the two step procedure generally delivers less 
efficient but consistent estimates of the copula parameters and 
the finite sample estimates and properties will be different as 
different likelihood equations are used to construct the 
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estimates. See Newey Ec.Letters 1984 for a Method of 
Moments interpretation of sequential estimators. 
 When there is misspecification in some form then we 
should use, on a regular basis, the theory outlined by Hal 
White (Econometrica 1982) for Maximum Likelihood 
Estimation in Misspecified models should be adopted. This 
implies that the ML estimates will converge to the values that 
are closest to the true values within the assumed model space 
in the Kullback Leibler sense of distance. Fisher’s information 
matrix is no longer the  correct basis for constructing 
confidence intervals. This issue appears to have been almost 
completely ignored in the copula literature. 
 This is particularly important in this area as it has been 
common practice to simply assume a copula form or to 
assume the form of convenient margins. 
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b)  Semi-Parametric: 
The semi-parametric route avoids the problem of specifying the 
parametric form for the  margins and instead substitutes the 
univariate empirical cumulative distribution functions for the 
margins. So for each i we substitute  

{ }
1

1ˆ ( )
1 ij

n

i X x
j

F x I
n <

=

=
+ ∑  

 
and maximise the “pseudo log likelihood” 

1 1, ,
1

ˆ ˆlog ( ( ), ( ))
n

d dj j
j

c F x F xϑ
=

∑ …  

 
However this approach leads to inefficient parameter estimates 
except in the case of the normal copula and independence. 
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 Essentially the marginal distributions appear statistically as 
infinitely dimensioned nuisance parameters. 

 
 In both cases the copula function itself maybe misspecified 
and hence as in standard likelihood methods the asymptotic 
variance should be replaced by the sandwich estimator as in  
White (Econometrica,1982) or Gourieroux et al Pseudo MLE( 
Econometrica,1984) 
 Fermanian and Scaillet (2004) provide a Monte Carlo 
example of the impact of misspecification of margins.  
 The true model corresponds to a Frank copula with two 
student t margins, the copula parameter θ=1 and 2 with 
degrees of freedom equal to 3 for both margins. The 
misspecified model assumes Gaussian margins. The results 
for four estimators are reported, full MLE,  the concentrated 2 
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step MLE,  the semi- parametric method and MLE applied to 
the true model. Nreps =1000. 

 
                      Sample Size : n=200 
θ=1 Full MLE Two step Semi-par true 
    Bias 0.7012 0.6094 -0.0206 -0.0164 
    MSE 1.5119 1.0591 0.1754 0.1797 
θ=2     
    Bias 1.1144 0.9292 -0.0202 -0.0124 
    MSE 2.2869 1.4851 0.1913 0.1928 
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                      Sample Size : n=500 
θ=1 Full MLE Two step Semi-par true 
    Bias 0.7720 0.6931 -0.0081 -0.0067 
    MSE 1.1114 0.8184 0.0673 0.0684 
θ=2     
    Bias 1.2165 1.0354 -0.0067 -0.0045 
    MSE 2.0494 1.3977 0.0730 0.0729 
 
                      Sample Size : n=1000 
θ=1 Full MLE Two step Semi-par true 
    Bias 0.7904 0.7190 -0.0046 -0.0048 
    MSE 0.9647 0.7397 0.0360 0.0360 
θ=2     
    Bias 1.2553 1.0784 -0.0037 -0.0037 
    MSE 1.9702 1.3853 0.0387 0.0382 
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 Clearly the effects of misspecifying the marginal 
distributions can be a severe bias and this in turn leads to an 
over-estimation of the degree of dependence in the data. 
 While asymptotically they have the same distribution in this 
the bias seems to be consistently larger in the one step 
method. 
 The MSE is also considerably larger when compared to the 
semi-parametric method ( which by assumption is in fact 
correctly specified) 
 These same results have also been found by 
Silvapulle,Kim,Silvapulle, Monash WP-2004. 

 
It would seem natural to follow the semi-parametric 

route…but 
 

 As mentioned above; following the original suggestion of 
the method by Oaks (1994), estimation by the Semi-
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parametric method was considered by Genest,Ghoudi and 
Rivest (1995, Biometrika) who show only consistency and 
asymptotic normality of the resulting estimates. 

 
 Genest and Werker (2002, proceedings of Conference on 
Distributions with Given Marginals and Statistical Modelling 
ed C.M.Cuardas and J.A. Rodrigues- Lallena) showed that the 
standard estimator is in general semi-parametrically 
inefficient. Using standard empirical distribution functions for 
the margins leads to inefficient estimates and semi-
parametrically efficient estimates of the margins need to be 
used.  

 
 I know that Yanqin Fan  and Xiaohong Chen at Vanderbilt 
and John Einmahl and Bas Werker at Tilburg are working on 
this issue but this is as far as it has got I believe.  
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 Yanqin Fan and X. Chen (NYU) (2004) have extended the 
semi-parametric estimator to time series models ( non i.i.d 
data and shown the consistency and asymptotic normality 
under β mixing processes. They also provide a consistent 
estimate of the asymptotic variance using a parametric 
bootstrap procedure. 

 
 Bouye, Gaussel and Salmon (2003) FERC consider 
semiparametric nonlinear dynamic models implied by 
different copula and develop auto-concordance measures in 
place of autocorrelation. 

 
 
Mispecification Chen Fan paper 
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Fully Non-Parametric Estimation: 
 

 Since the Copula is just a multivariate distribution function 
standard smoothing methods can be used to estimate Copula 
non-parametrically using Kernel density estimators. 
 Deheuvals (1978)(1981) proposed an early nonparametric 

estimator which has become know as the empirical copula 
but these are highly discontinuous and not of much use in 
practice. 

 Fermanian and Scaillet (2003) WP HEC Geneva propose 
nonparametric estimators for copulas of time series for 
multivariate stationary processes satisfying strong mixing 
conditions. 
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 The pdf of Xjt at xj i.e. ( )j jf x   is estimated by the usual 
kernel estimator 

1

1

ˆ ( ) ( )
n

j jt
j j j j

j j

x X
f x nh k

h
−

=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
 
with the usual kernel function conditions such that 

( ) 1 1,jk x dx j n= =∫ …    
while the pdf of Xt at x, f(x) will be estimated by  

1

1

ˆ ( ) ( ) ( ; )
n

t
j

f T h k h−

=

= −∑x x X  

hence an estimator of the cumulative distribution of Xt  at some 
point x is given by 
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1

ˆˆ ( ) ( )
dxx

F f dx
−∞ −∞

= ∫ ∫x x…    

and if a single Gaussian Kernel is used kj (x)=ϕ(x) then we have 
1

1 1

ˆ ( ) (( ) / )
dn

i it i
j i

F x X h−

= =

= Φ −∑∏x n   

so the estimate of the copula at some point is simply given by 
{ }ˆ ˆ ˆˆ ˆ( ) ( ) where inf :x j jC F x F uζ ζ ∈= = ≥u \  

 Fermanian and Scaillet demonstrate the asymptotic 
normality of these kernel estimators for copulas under suitable 
regularity conditions and the asymptotic behaviour of the 
bandwidth and the mixing assumptions on the data. 
 They then apply these estimators in a Monte-Carlo study 
for a VAR(1) with Gaussian innovations showing satisfactory 
bias and MSE and then consider empirical measures of 
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positive quadrant dependence and VaR for CAC40-DAX35 
and  SP500-DJ 
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How to choose the Correct Copula? 

 
 

Akaike’s Information Criterion: 
 This is the simplest method that has been regularly used to 
select a copula up to this point. It does not provide a test and 
so we have no understanding of the size of the  decision rule 
that is implied nor its power—it is simply a selection criterion 
that says we should use the  copula that delivers the smallest 
value of the adjusted likelihood criterion; 

ˆ ˆ2 ( , ; ) 2AIC L x qϑ δ= − +  

where q is the number of parameters of the family being fitted. 
The adjustment to the maximised likelihood penalizes models 
that employ more parameters. 
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Goodness of Fit tests: 
 The probability integral transform (PIT) of Rosenblatt 
(1952) and can be used for any copula family. The basic idea 
follows from thinking about the transformation from the data 
to the cdf: 
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 Essentially if we define new variables, z, by transforming 
our observed data by using an assumed distribution –say F(x)-  
so we have ( )z F X=   then if the data is actually drawn from 
the F(.) distribution so that 1( )x F u−=  then the z variables will 
be uniform and i.i.d..as  1( ( ))z F F u u−= = …  
 If the data were generated by some other distribution, say 
G(.),  then this would not hold as we would have 

1( ( ))z F G u u−= ≠ . This simple observation underlies most of 
the recent work in testing distributions and copula. 
 Let { }0 1( ,... ;dC u u ϑ   be a class of parametric copula; we are 
interested in testing: 

0 1 0 1 0: Pr( ( ,... ) ( ,... ; )) 1d dH C U U C U U ϑ= =  for some 0ϑ ∈Θ 
against 

1 0 1: Pr( ( ,... ) ( ,... ; )) 1a d dH C U U C U U ϑ= <  for all ϑ ∈Θ 
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  In the univariate case a number of tests have been put 
forward which compare the empirical cdf with the cdf of the 
null distribution. In particular Kolmogorov-Smirnov and the  
Anderson-Darling Statistics; 

1. Kolmogorov-Smirnov: 2 2
2 2

1 max ( ) ( )z z
d F z F z

χ
= −  

2. Average K-S: 2 2 2
2 2 2

2 ( ) ( ) ( )
z

d F z F z dF z
χ χ

= −∫  

3. Anderson Darling: 
2 2

2 2

2 2

3
2 2

( ) ( )
max

( ) 1 ( )

z
z

z

F z F z
d

F z F z

χ

χ

−
=

⎡ ⎤−⎣ ⎦

 

4. Average A-D: 

2 2

2

2 2

2 2
2

4
2 2

( ) ( )
( )

( ) 1 ( )

z

z

F z F z
d dF z

F z F z

χ

χ

χ

−
=

⎡ ⎤−⎣ ⎦
∫  
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Breymann, Dias, Embrechts(2004) use the PIT idea as follows: 
 

5. Let 1 2( , , )dX X X=X …   denote a random vector with 
cdf. 1 2( , , )X dF x x x…   and let ( ) ( )

iX i i iF x P X x= ≤   be the 
distribution function for the univariate margins Xi  , 
i=1,…,n.  

6. Consider the following PIT defining d random variables 
( )i iZ T X=   which will be uniform and independently 

distributed: 
1

2 1

1 1

1 1 1 1

2 2 2 1 1 ¦ 2 1

1 1 1 1

¦ .... 1 1

( ) ( ) ( )

( ) ( ¦ ) ( ¦ )

( ) ( ¦ ,..., )
( ¦ ,..., )

d d

X

X X

d d d d d

X X X d d

T x P X x F x

T x P X x X x F x x

T x P X x X x X x
F x x x

−

− −

−

= ≤ =

= ≤ = =

= ≤ = =
=

#  
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Suppose that C is a copula so that 

11 2 1( , ,..., ) ( ( ), ( ))
dX d X X dF x x x C F x F x= …  

and if 1( ,... )i iC u u   denotes the  joint i-distribution of 1( ,..., )iU U  with 
1 1 1 1 1( ) and ( ,..., ) ( ,..., )d d dC u u C u u C u u= =  then the conditional 

distribution of Ul given the values of 1 1,..., iU U −  is given by 
 

1 1
1 1 1 1

1 1
1 1 1 1

( ,..., ) ( ,..., )( ¦ ,..., ) /
.... ....

i i
i i i i

i i i
i i

C u u C u uC u u u
u u u u

− −
− −

−
− −

∂ ∂
=

∂ ∂ ∂ ∂
 

for i=2,….d. 
 

7. Hence we can write the  variables Zi for i=2,….d. using 
the conditional distributions Ci as 

1 11 1( ( ) ¦ ( ),..., ( ))
i ii i X i X X iZ C F X F X F X

− −=   

8. As the copula is a multivariate  distribution function it 
follows that H0 holds if and only if the PIT transformed 
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variables are i.i.d. and uniformly distributed  [ ]0,1  hence H0 
is equivalent to  

'
0 1: ( ( ,... ) 1) 1dH P g Z Z − =  

 
where 1( ,... )dg z z  is the joint density of the transformed 
variables. 
 
 
 

     Breymann et al.then use this construction as follows:-  
 

If 
1 21 2( ( ), ( ),..., ( ))

dX X X dF X F X F X  has distribution function C0 then 
1( ), 1,...,iZ i dφ − =  are i.i.d. N(0,1).  
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So ( )( )21
1

d
ii

S Zφ −
=

= ∑  will have a chi squared distribution with d 
degrees of freedom.  
 
 In the case d=2 we have; 

1 2 1

1 2 1 2
1 2 1 2 2 1( , ) ( ( ( )) ( ( ( ( ) ¦ ( ))))X X XS X X F X C F X F Xφ φ− −= +  

 
They then use the Anderson Darling Statistic to carry out the test. 
 

 However the marginal distributions in their set up are 
unspecified, and should be treated as infinite dimensional 
nuisance parameters. As a results the existing critical values for 
the  A-D are invalid and there is considerable uncertainty about 
the size of their test. 

 
 Malvergne and Sornette suggest the use of Bootstrap critical 
values for the A-D test in this case. 
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Chen,Fan, Patton (2004) 

 Propose two simple asymptotically valid tests for the goodness 
of fit for any parametric copula model of the contemporaneous 
dependence between two time series based on the multivariate 
PIT and kernel smoothing—both are asymptotically normally 
distributed under the null  hence distribution free and easy to 
compute. 
 The first is consistent but requires the kernel estimation of a 
multivariate density function and hence is suitable when only a 
small number of assets is being considered. 
 The second may not be consistent in all directions away from 
the null- ie. all alternatives --but it only requires the kernel 
estimation of a univariate density and so is useful when testing 
the  dependence between a large number of assets. 
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 Their approach is to test '
0H   by first estimating the joint 

density 1( ,... )dg z z   by a multivariate kernel estimator 

1 1
1

1( ,... ) ( , )
n d

d h j jtd j
t

g z z K z Z
nh =

=

⎡ ⎤= ⎣ ⎦∑ ∏  

and the test is based on [ ]
1 1

2
1 1

0 0

.... ( ,... ) 1 ...n d dI g z z dz dz= −∫ ∫  once the 

unobserved Z variables have been estimated from 
1 1

ˆ ˆ ( )it tZ F X=  and 0 1 1 1 1
ˆˆ ˆ ˆ ˆ( ( ); ¦ ( )... ( ))jt j jt t j j tZ C F X F X F Xϑ − −=  j=2,…d 

where ϑ̂   is a consistent estimator of ϑ   under H0 and 

{ }
1

1ˆ ( ) 1
1 jt j

n

j j X x
t

F x
n ≤

=

=
+ ∑  

Under suitable normalisation this statistic is shown to be 
asymptotically Gaussian beta mixing assumptions on the time 
series in Xt -- The temporal dependence within the data can 
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therefore be left totally unspecified- a chi squared form of the test 
can be used as well. 

 Fermanian(2004) has recently proposed essentially the 
same test but based on the original data rather than the  PIT 
transformed data. There is evidence that the PIT transformed 
form of the test performs better. 
 The problem with this test is that it requires the multivariate 
kernel density estimation  which is cumbersome and leads to 
inaccuracy. 
 Their second test is based on noting that if H0  holds then 

the  scalar random variable 
21

1

( )
d

j
j

W Zφ −

=

⎡ ⎤= ⎣ ⎦∑  follows a 2
dχ  

under H0. 
 This is just Breymann’s test described above where they 
used the Anderson Darling Statistic but since W is not 
observed they based their test on the pseudo observations 
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from the PIT transforms and this affects the critical values of 
the A-D test in critical ways. 
 Instead Fan et al propose a kernel based equivalent test. 
'' 2
0 : dH W χ∼  so on 2

''
0 , ( )

d
H F W

χ
 follows a uniform distribution 

and so they develop a test which is based on caomparing 
the kernel density of (.)Wg  with the uniform density where 

(.)Wg   is the density function of 2 ( )
d

F W
χ

 where  

2

1

1 ˆˆ ( ) ( , ( ))
d

n

W h t
t

g w K w F W
nh χ

=

= ∑  

 

and 
21

1

ˆ ˆ( )
d

t jt
i

W Zφ −

=

⎡ ⎤= ⎣ ⎦∑  

so their second test is given by 
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[ ]
1

2

0

ˆ ˆ ( ) 1n WJ g w dw= −∫  
 
 

Again they show under beta mixing conditions that this test is 
asymptotically Gaussian. 
 

 Monte Carlo with DGP 
 

41( ,.., ) (1 ) ( ) ( )t dt normal tU U iid p C pCρ ρ− +∼  
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Cox Tests of Non-Nested Hypotheses: 
Hafez and Salmon (2004) 

 
Comparison between Copula is a case of Non-nested testing. 
 
Use Simulated Cox tests 

{ }
{ }

: ( ¦ , )

: ( ¦ , )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

f

g

f f g f f g

H F f y x

H F g y x

T l l E l l

ϑ

λ

ϑ

λ

ϑ λ ϑ λ

=

=

⎡ ⎤= − − −⎣ ⎦
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Copula Quantile Regression and Tail area 
Dependence 

 
 

Bouyé Salmon Paper 
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