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Information Flow and the Shape of the Yield Curve
Different information hits the yield curve at different maturities;
S0 measuring market activity at different yields should be
central to understanding the shape of the Yield curve and how
it evolves over time.

@ Use tick by tick level Gov PX data to measure market activity

and information flow at different yields and use this to build a
market model of the yield curve.
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LObjectives

Information Flow and the Shape of the Yield Curve
Different information hits the yield curve at different maturities;
S0 measuring market activity at different yields should be
central to understanding the shape of the Yield curve and how
it evolves over time.

@ Use tick by tick level Gov PX data to measure market activity
and information flow at different yields and use this to build a
market model of the yield curve.

@ Natural measure of Information flow is given by price intensity at
each maturity.

© Use Hawkes Processes - univariate and multivariate- to
measure information flow - information clustering

© Examine how information flow as measured by instanteneous
volatility affects the shape of the 5 min Yield Curve

© Use the instanteneous volatility derived from the Hawkes models?
to calibrate an HIM model and price Caplets.
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L5 minute Yield Curves

5 minute Yield Curves

2000 5 Minute Yield Curve

yield.3m
5400 6.000 6600 7.200

I\




Mark Salmon, Wing Wah Tham and Nick Webber Warwick Business School
LObjectives

L Instantaneous Volatility Term Structure

Instantaneous Volatility Term Structure
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L Research objecitves

Research Objectives

So can we model the yield curve by measuring information
flow at different points along the yield curve?
If so:

@ How do we measure volatility?

© Given HIM Theory Instantaneous volatility should be able to

explain the standard factors used in non-arbitrage models- does
it?

© How accurate are option prices that are priced off the volatility
Yield Curve model based on Hawkes processes?

© Develop an approach to pricing fixed income derivatives based

on an estimated instantaneous volatility.
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U.S. Treasury Securities - GovPX

@ One of the most important financial markets in the world

@ Daily trading volume in the secondary market of about averages
$200 billion.

© Almost round-the-clock trading - New York, Tokyo and London
© Trade sizes starting at $1 million for bonds and $5 million for bills
@ Almost no high frequency analysis of this important market

© About 1,700 brokers and dealers trade in the secondary market,
the 39 primary government securities dealers account for the
majority of trading volume.
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Hawkes Processes

Bowsher (2002), Hautsch (2004), Large( 2005), McCulloch and
Salmon (2004)(2005)

@ Model the rate that financial events take place as a
conditional random intensity with self-excited and cross
excited dependence.

t
)L(t):v+/g(t—u)dN(u) (1)
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L Hawkes Processes

Hawkes Processes

Bowsher (2002), Hautsch (2004), Large( 2005), McCulloch and
Salmon (2004)(2005)

@ Model the rate that financial events take place as a
conditional random intensity with self-excited and cross
excited dependence.

© The conditional intensity function can be modelled as a
function of its backward recurrence time,Hawkes(1971).

t
)L(t):v+/g(t—u)dN(u) (1)
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LObjectives

L Hawkes Processes

An exponential decay for univariate Hawkes can be modelled as

N(t—e)

A(t) = pu+ > ae P(t-t) (2)
i=max(1,N(t—e)—R+1)

where R is the number of lags in backwards recurrence time
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Hawkes Processes I

The unknown parameters can be estimated using MLE (Daley
and Vere-Jones, 2003)

N

)
£= [logat| 7)) - /0 A—At|F))dt (@)

0

N T,
L= ;Iog()\(ti)) —/0 At)ot (4)
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Multivariate Hawkes Process

The multivariate-multidimensional intensity function reads

P D N:(t)

As(t) ‘us—}—ZZZo/S,eXp{ ﬁlsr Trk}

r=1j=1 k=1

where P- number of processes, D number of dimensions, N
number of data points of process s,
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L Multivariate Hawkes Process

which can be equivalently written in terms of a pooled process

D N*(t)
As(t) = ys+z Z ocf *exp[ B, - (t T}Q)} (5)
j=1 k=1
P D N*(t) . .
=1+ DD D Sreysrep | —BL(t=Ti)| ()
r=1j=1 k=1

with the Kronecker J-function defined as 6, = 1ifa=band 0
otherwise.
The LLF for process s

Ts,Ng

Ns
s= log ()] - / As(t)dt
i—1

Ts,1 lg
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Stationarity Conditions in the Univariate Case

The process needs to be stationary. We have a constant
average rate which is the expectation of the process

Adt = E {dN(t)}

moreover it is the expectation of the time-varying intensity
function A(t)
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LObjectives

L Stationarity Conditions

A= E{A(1)) 7)
t
—e{u+ [ gtt-wan(w)} ®)
t
—p+ [ _glt-wE {aN(w) ©
-
:pH—)_\/_ g(t—u)du (10)

which can only be true if the integral is between 0 and 1 (since
i, A > 0)
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LStationarity Conditions

0</Ooog(u)du<1 (11)
(12)

and in our case
g(u) = ae™

this gives the stationarity condition

0<E<1

p




Mark Salmon, Wing Wah Tham and Nick Webber Warwick Business School
LObjectives

LStationarity Multivariate Case

Stationarity in the Multivariate Case
In the MV case we have the average rates A5 as

which is

As = E{As(t)} (13)

Pt
:E{ys—i—Z/ gs,(t—u)st(u)} (14)
r=17-%

Pt
—ie+ Y [ gult-wE{aNs@)}  (19)
r=177%

P t
_— Zx,/ gsr(t — u)du (16),
r=1 -
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L Objectives

LStationarity Multivariate Case

using our assumed model
9sr(U) = “sreiﬁsru

gives P equations

14
Ao = Vs+z ‘Bsr
Sr

where conditions on the parameters can be extracted either by
directly reading them off or putting the equation for A; into the
equation for Ag, hence the following

Kst X n©
SEZE 125 for s#£t (17)

:Bst ﬁts ﬁss Y
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L Results

Results

Estimates of scaled parameters 3m (S.E)

H
i

p

L()

mean of residuals
o2 of residuals
LB (20 lags)

Disp

Obs

0.134374 (0.004)
2816 (0.046)
3.197 (0.045)
5188.2

1

105

260.94 (0.000)
1.33(0.000)
14163

2y(SE)
0.387 (0.008)
4459 (0.04)
4757 (0.041)
125223

1

104
406.46(0.000)
131(0.000)
77442

5y(SE) 10y(SE)  30y(SE)
0413(0.007) 0.375(0.007) 0.1351 (0.004)
5578(0.039) 5566 (0.05) 4.323(0.087)
5.848(0.04) 5856 (0.048) 4.79(0.092)
246605 204826 11533

1 0.99 0.99

101 1.03 101
345.98(0.000) 324.45(0.000) 245.37(0.000)
124(0000) 111(0.00)  147(0.00)
112375 95189 17321
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L Results Multivariate

Results Multivariate

3m(t - stats)
g (t - Sats)
o5 (t - Stats)
oy0y(t - Stats)
a0y (t - tats)
Bam(SE.)
P2y(SE.)
PBsy(SE.)
Proy(SE.)
Pay(SE.)
WSE)

3m(SE)
2.352826(44.256)
2.684901(160.20)
2.089888(62.71)
0.852139(54.35)
-0.084583(-L.40)
4668581(0.11)
9.628071(0.23)
21.791448(0.72)
15.409595(0.23)
33.568557(0.12)
0.004383(0.00)

2y(SE)
0.362883(2.88)
3.137544(84.12)
3.604475(9.98)
162365(3.08)
-0.004175(-0.04)
5.78676(0.38)
4,826595(0.05)
14.834681(4.00)
15.260858(1.81)
14.778038(0.17)
0.307226(0.01)

5y(SE)
0.583034(3.83)

24.224321(273.44)

3.726708(92.93)
10.194776(54.81)
0.230784(2.30)
47.042115(0.35)
245.569308(0.40)
6.034754(0.06)
171.609503(1.93)
31.920671(0.41)
0.213167(0.01)

10y(SE)
0.165256(2.12)

10.344241(176.09)

21557467(61.63)
4.300337(94.89)
0.391175(2.45)
21,533799(0.23)
127,577995(0.60)
128,587993(2.67)
6.113891(0.06)
11.979099(0.18)
0.195392(0.01)

30y(SE)
0.021324(-1.53)
1122166(188.86)
1.878735(126.66)
4.674444(242.09)
4.893357(53.68)
38.260298(0.05)
39.771582(0.26)
7.808274(0.24)
19.334739(0.55)
6.557604(0.13)

0.042997(CF00)
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L Results Multivariate

Estimated Conditional Intensity of 2 Year Treasury Note
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L Results Multivariate

Integrated Intensity of 2 Year Treasury Note
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Instantaneous volatility

@ Relationship between trade arrivals and volatilty
© Instantaneous volatility can be defined by

v ol (P+A)-P(1) )
o(t)_AIIT)E|:A( P(t) ) |“F‘}

E%Xdp)() I|m [prob|Pt+A P(t)| > dp | ‘(]:IZJE(

2
& (1) - Adr’(t;zr%)E(P“%)t)‘P(” | fﬂz)

P(t+A) - P(t) 2
o)
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L Instantaneous volatility

Estimated Instantaneous Volatiltiy of 2-year
Treasury Notes at 5 Minutes Interval

Instantaneous Volatility
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Heath Jarrow Morton

Suppose that
n
dfy(T) = a(t, T)dt + ) oi(t, T)dzy,
i=1

Seta;i(t, T) = —ftTa,-(t,s)ds, i=1,...,n.
Pure discount bond prices then follow the process

dBt(T)
B(T)

= (rn+b(t,T))dt+a(t T)dz,

under the objective measure Q, where
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L Heath Jarrow Morton

a=(a,...,ap) (19)

b(t, T,w) = —/tT(x(t,s,w)ds+ Zn:a,?(t, T, w). (21)
i=1
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@ No-arbitrage models-model the yield curve at one point in
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@ Equilibrium models- model the dynamics of the short rate
using affine models after which other maturities can be
derived- Vasicek(1977), CIR(1985), Duffie Kan (1996).




Mark Salmon, Wing Wah Tham and Nick Webber Warwick Business School
LObjectives
L Factor Models

Factor Models

@ Three basic approaches to Yield Curve Modelling

@ No-arbitrage models-model the yield curve at one point in
time to ensure no arbitrage possibilities exist-pricing
derivatives; Hull White (1990), HIM (1992)

@ Equilibrium models- model the dynamics of the short rate
using affine models after which other maturities can be
derived- Vasicek(1977), CIR(1985), Duffie Kan (1996).

© Factor models- distill entire yield cuve period by period
into a finite dimensional space - typically three-that evolves
dynamically- used for forecasting-Nelson Siegel (1987),
Litterman and Scheinkman(1991)-level slope curvature -
first three principal components of the yield space—forecast

the yield curve by forecasting the factors but where do-the
factors come from- what do they mean? Ig
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Forward Rate Curve:
fi(T) = By + Bor T + By AreMT

and corresponding
Yield Curve

() = 51t+ﬁ2t(1—e“> ﬁst(—;f_e_@

Diebold and Li (2006) interpret B,;, B,;,and B; as three latent
factors; long term, short term and medium term. Also numerical
factors representing level-B,, = y;(o0); slope

Boy = yi(c0) — y¢(0) for us (y(120) — y(3)), curvature
2y:(24) — y:(3) — y:(120) o
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Yields 1999
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Principal Components 1999

Factor Returns
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Yields 2000
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Principal Components 2000

Factor Returns
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LPrincipal Components 2000
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L Can volatility explain the factors?

Can volatility explain standard factors?

dep variable const vol3m vol2yr vol5yr voll0yr vol30yr R2
0.0016 0.0231 0.2328 0.0376 0.0183 0.0224 0.07

pCl (23.06) (2.61). (11.15) (3.56) (3.62) (4.33)
0.001 0.1933  0.0457 0.0431  0.0012 0.0073

pC2 (9.65) (14.48) (1.45) (2.70) (0.16) (0.92) 0.01
0.0009 0.1373  0.0171 0.0287  0.0046 0.0161

pC3 (11.83) (13.84) (0.73) (2.43) (0.80) (2.77) 0.01

of Aprincipal components on the volatilities

No!
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Can volatility explain the Shape of the Yield Curve?

We estimate a modified Nelson-Siegel function following
Diebold and Li (2006) using volatility in place of the maturity.

1— e—/\vol(r) 1— e—Avol(T) \vol
— -z T g—Aw(7)
V(1) = B¢+ By ( Aol (7) + B3y Avol (7) e
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Fitting the Yield Curve with volatility

Yes!
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Fit to 3m over 50,000 obs
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Pricing Caps using intensity based volatility
Suppose that

n
dfy(T) = a(t, T)dt + ) oi(t, T)dzy,
i=1
as usual, where cr,(t T),i=1,...,n, are Gaussian.
Set a;(t, T) ——ft (T,tS)dSI—1 ..... n.
Pure discount bond prices then follow the process
dB;(T)
B:(T)
under the objective measure Q, where

= (n+b(t,T))dt+a(t T)dz,
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When forward rate volatilities are Gaussian it possible to obtain
formulae for some simpler instruments. Brenner and Jarrow
(1993) and Au and Thurston(1994) showed that there is a
standard Black formula for a caplet ¢¢( T4, T»), in order to
hedge interest rate risk.

ct(Ty, T2) = Bt(To)N(d) — XB¢(T1)N(d — w) (26)

where

1 (BT
=" (XBt(ﬂ)

n

T )
w = Z/t (aj(u, T2) —aj(u, T1))  du, (28)
i=1

) NG (27)

and the initial forward curve has been fitted to match the market

values B; (T) of PDBs.
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Suppose that the bond volatility curve has been fitted by a
curve of Nelson and Siegel type so that

a(t) =By + (By+Bo1) e " (29)

wheret =T —u.

Forward-forward volatilities
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Then solving for w gives a closed form expression;

wo = /tT1 (ai(u, Tp) — aj(u, T4))? du

T4
- /t (:Bo + (By+ Bo (T2 —u)) e X727 — B — (B, + B, (Ty —

Ti (By + By (T2 — u))? e 2K (T2-u)
B / + (B + B (T1 — U))2 e—2k(T1—u)
C\ 20+ By (To— ) (By + By (Tr — ) e KTrTa20)

_ /T1 (‘31 + ‘32 (Tz - u)>2 e—2k(T2—U)du
t

T
+/t (B + B (T1 — u))? e M-ty

Ty
—2/t (By + B (T — 1)) (By + By (T4 — u)) e *Tp+Tz"2u)gy
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Conclusions

@ We have been able to show through the multivariate Hawkes
model how information measured by intensity of activity in yields
affects other parts of the Yield curve- information flows through
the Yield Curve.

© We have been able to estimate instantaneous volatility from the
estimated Hawkes model and used this to show that

@ We have difficulty explaining the standard factors with
volatility at the different maturities

@ We can however capture the shape of the 5 minute Yield
Curve with the instantaneous volatility term structure with
some degree of accuracy

@ Offering the potential for activity or information based
forecasting of short term yield movements

© We have also shown how we can use the instantaneous volatility,

to price caplets to hedge interest rate risk off a 5 minute HJM
Yield Clirve
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