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1. Introduction

Blockchain technology promises to render trusted intermediaries obsolete. Instead, a
blockchain records transactions by an open network of validators without centralized
control. To establish consensus about transaction histories without a third party requires
collaboration among validators. A consensus protocol specifies how validators reach con-
sensus and defines an incentive scheme to ensure that validators’ incentive-compatible
behavior aligns with a reliable record of transactions on the blockchain (Saleh, 2020;
Biais et al., 2021).

The consensus protocol design can take many different forms, but two building blocks
are fundamental to enabling blockchain-based settlement. First, unlike traditional stock
markets, blockchain technology requires pre-trade transparency. More specifically, trans-
actions waiting for validation are held in a memory pool (mempool), which is open for
network participants to retrieve information on pending activity. With dispersed val-
idators, achieving consensus naturally requires sufficient distribution of information for
verification (Cong and He, 2019). However, to ensure incentives for collaboration and,
thus, a reliable transaction history, transaction fees are necessary as the second major
building block for a blockchain-based system. In a decentralized system, where pending
transactions become public information, however, such fees are only paid if fast settle-
ment is a scarce resource. Consequently, blockchain-based settlement possesses capacity
constraints creating incentives to pay rewards to validators in order to exploit the rents
of public transactions (Chiu and Koeppl, 2019; Easley et al., 2019; Hinzen et al., 2022).
This causes a natural tension for fully decentralized (blockchain-based) settlement, mak-
ing pre-trade transparency and transaction fees indispensable.

Blockchain technology is the backbone for the fast-growing field of Decentralized Fi-
nance (DeFi) applications to enable seamless, frictionless trading. DeFi largely rests on
smart contracts, self-enforcing computer code based on terms contingent on the state of
the blockchain. For example, a decentralized exchange (DEX) is a set of smart contracts
that interact with each other to facilitate the trading of tokens created on the same
blockchain (Harvey et al., 2021; Lehar and Parlour, 2024). Smart contracts render DEXs
pure matchmakers and promise the exchange of assets without any exposure to coun-
terparty risk, execution risk, and limitations to arbitrage capital (Gromb and Vayanos,
2010).

In this paper, we show that pre-trade transparency paired with transaction fees for
validators imply substantial friction for any DeFi application. Counter the widespread
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belief that blockchain-based settlement has the potential to disrupt financial services,
we show that there is a fundamental dilemma that causes market inefficiencies in the
spirit of Grossman and Stiglitz (1980). In essence, the dilemma arises due to the fact
that pending transactions reveal rents that other market participants could realize. This
implies front-running risk and mitigates cross-DEX arbitrage. Consider a cross-DEX
arbitrage trade. The cross-DEX arbitrageur aims to exploit a concurrent mismatch in
prices. A smart contract-based transaction allows the joint submission of the resulting
buy-side and sell-side transaction for validation to the mempool. The transaction is
valid contingent on both transactions being executed simultaneously and fails otherwise.
However, network participants can leverage the pre-trade transparency and can extract
the profits from cross-DEX arbitrage transactions by copying the arbitrage transaction.
Such strategy is only profitable, however, if participants can front-run the cross-DEX
arbitrageur, i.e., getting validated first. This causes them to pay higher transaction fees
in order to increase the incentive for validators to prioritize a transaction. Consequently,
there is a wasteful arms race until transaction fees comprise the entire cross-DEX profit.
In such a situation, anticipating front-running risk, the cross-DEX arbitrageur becomes
indifferent between staying idle and arbitrage activity. As a result, the inner workings
of blockchain-based settlement harm price informativeness by reducing the incentives to
exploit smart contract-based cross-DEX arbitrage.

The empirical analysis in this paper utilizes novel, granular cross-DEX arbitrage data
to shed light on the extent of this friction. The data yields block-level data on DEX prices,
liquidity, and trading fees. We document three main findings: First, we report substantial
and persistent price differences across DEXs. With the possibility of smart contract-
based execution of cross-DEX arbitrage transactions, such an observation may seem,
at first sight, puzzling. However, we characterize the optimal decision of a cross-DEX
arbitrageur and identify substantial periods of time where, in the absence of front-running
risk, potential arbitrage gains remain unexploited. This finding cannot be attributed
to limited arbitrage capital: Given that buy and sell-side transactions occur within the
same block, execution risk (i.e., the risk that just one leg of the transaction is executed) is
eliminated and, as a result, such risk-free transactions can rely on virtually unconstrained
arbitrage capital via so-called flash loans. Substantial and persistent cross-DEX price
differences are thus attributed to front-running risk rendering arbitrage unprofitable.

Second, we provide evidence that network participants exploit the pre-trade trans-
parency of cross-DEX arbitrage transactions. Based on our data, we document excess
transaction fees for transactions with extractable rents. The publicly available informa-
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tion that cross-DEX transactions wait for verification in the mempool yields a wasteful
arms race for validation capacities. In our sample, executed cross-DEX arbitrage transac-
tions forego on average 64 percent of the arbitrage profits to validators, effectively yielding
median transaction fees of 78 USD, 81 percent higher than the median transaction settled
on the Ethereum blockchain.

Third, we quantify the magnitudes of price differences that would prevail if front-
running risk did not exist. That is, we trace price differences in a counterfactual world
where cross-DEX arbitrageurs exploit them whenever profitable without being faced
with front-running risk. We find that 90.8 percent of the documented price differences
can be directly attributed to front-running risk, rendering the frictions associated with
blockchain-based settlement economically highly relevant.

Our results spotlight a fundamental dilemma for DeFi, which is clearly beyond lim-
ited price informativeness due to the absence of cross-DEX arbitrage via smart contracts:
Transparency of transactions waiting for verification alone may not harm market effi-
ciency if execution is guaranteed based on time priority. The need for transaction fees to
compensate validators solely may neither harm market efficiency as long as arms races
could be prevented, as pending transactions would not be publicly available. However,
the idea of blockchain-based settlement relies on both pillars simultaneously: pre-trade
transparency and transaction fees are necessary conditions to enable financial interactions
without trusted intermediaries.

With publicly available transactions waiting for verification and the possibility to
front-run such transactions, it is questionable how DeFi can sustain itself. While this
paper focuses on impediments to cross-DEX arbitrage, a core component of market ef-
ficiency, Capponi and Jia (2021) and ? identify similar issues for liquidity providers:
Front-running risk renders liquidity provision costly such that liquidity may evaporate.

It should be noted, that our results do not indicate that arbitrage is impossible,
though. Costly alternatives exist that seem preferable choices for cross-DEX arbitrageurs.
We show that order splitting can be a costly alternative to smart contract-based cross-
DEX trading. Hence, instead of relying on smart contract technology to submit buy-
and sell-transactions, which are contingent on each other to switch off execution risks,
transactions can be submitted separately. In fact, we identify a substantial number of
such cases where cross-DEX arbitrageurs accept substantial execution risks in exchange
for substantially reduced front-running risk. The second alternative is to focus on price
differences between DEXs and centralized exchanges (CEX). A CEX facilitates trades by
running a limit order book maintained internally and settling transactions off-chain. Here,
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front-running risk is less of a concern because smart contract-based execution against the
internal order book of CEXes is impossible. However, CEXes act as largely unregulated
custodians of their customers’ funds, thus undermining the core principle of DeFi. Inter-
acting with trusted intermediaries such as CEXes reincarnates counterparty risks, which
can be substantial (Makarov and Schoar, 2020; Hautsch et al., 2024)

Hence, the core message of this paper is that DeFi faces a dilemma. A (seeming)
solution is to overcome front-running risk by limiting transparency, e.g., by establishing
dark pools instead of an open mempool. However, this requires a trusted central authority
(intermediary), thus undermining the DeFi principle. Another (seeming) solution is to
alter the consensus protocol to reduce the incentive for front-running either by introducing
a closed, trusted network of validators (a private blockchain) or direct regulation via a
central authority (Auer, 2019). Again, this undermines the DeFi principle since, in both
cases, trusted central counterparties are required.

2. Pre-trade transparency and the risk of front-running

Blockchain transactions require validation. Every transaction has to be propagated to the
(peer-to-peer) network, where transactions are gathered and wait for execution in the so-
called memory pool. Transparency is a fundamental feature of blockchains, encompassing
pre-trade transparency. On blockchain-based markets it manifests as the ability to easily
inspect the content of all transactions that are waiting in the mempool to be picked
for validation. Users have to attach a transaction fee to their transactions, which is
often called a gas fee (that compensates the validator for the computationally demanding
validation service). Ordering the transactions in the block is at the discretion of the
validator. Although, validators can pick and order transactions in the block in any manner
they prefer, they have an incentive to prioritize transactions based on the transaction
fees. The intuitive reason behind this is that the block space is limited, and the validator
prioritizes those who pay a higher transaction fee for a certain block space. Following this
scheme, the validator maximizes her revenue from the block. Transaction fees effectively
reflect the waiting costs of users, who can gain immediacy by increasing the transaction fee
attached to their transaction (Huberman et al., 2021). The most widely used transaction
fee mechanism requires blockchain users to submit a transaction fee above a certain
threshold (base fee) that dynamically changes based on the utilization of the blockchain.
This transaction fee mechanism is effectively an English-type auction combined with a
minimum bid (Roughgarden, 2023).
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The name transaction originally referred to a single transfer between two wallets on
the blockchain (e.g., on the Bitcoin blockchain). Still, with the emergence of smart con-
tracts, transactions became a more sophisticated tool through which users can interact
with blockchain-based applications such as DEXs. Users can include multiple actions
(e.g., taking a loan and exchanging tokens) in one transaction. Upon validation, every
action is executed in the order that was pre-specified by the user, otherwise the trans-
action fails entirely. This feature of blockchain-based transactions is called atomicity.
It enables users to execute a relatively sophisticated series of actions across platforms
without worrying about other transactions modifying the state of the blockchain. A rel-
evant example of such a transaction is a cross-DEX arbitrage transaction. A cross-DEX
arbitrage transaction requires (at least) a buy and a sell order that is placed after each
other. Figure 1 shows how cross-DEX arbitrage works. First, the cross-DEX arbitrageur
searches for price differences across DEXs in the latest validated block. Conditionally on
finding a profitable arbitrage opportunity, she submits an arbitrage transaction to the
network with a transaction fee sufficiently high to guarantee execution. The transaction
is placed in the mempool, where all transactions are waiting to be picked for validation.
Finally, the validator of the next block validates the transaction, and the cross-DEX
arbitrageur claims the arbitrage rent.

MempoolPrevious block Next block
1) The arbitrageur spots

a price difference
across two DEXs

2) The arbitrageur submits
an arbitrage transaction

3) The arbitrage
transaction

gets validated

4) The arbitrageur earns the rent

Figure 1: Arbitrage in the absence of front-running risk

As the previous example shows, arbitrage transactions can generate a private rent for
the cross-DEX arbitrageur. However, by leveraging the pre-trade transparency, other
participants can monitor the mempool and front-run the original arbitrage transaction by
copying its content (the smart contract code) and submitting it with a higher transaction
fee to the network (Qin et al., 2022, 2023). The higher transaction fee-paying transaction
enjoys a priority over the original arbitrage transaction, thus it will be validated first,
which renders the value of the original arbitrage transaction to zero. Figure 2 depicts
such a scenario. After the arbitrage transaction is propagated to the network and moves
into the mempool, another market participant infers its content and claims its rent by
submitting the same transaction with a higher transaction fee. The original arbitrage
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transaction fails as it is not profitable anymore and the cross-DEX arbitrageur pays a
reversion fee.

Mempool

×

Previous block Next block
1) The arbitrageur spots

a price difference
across two DEXs

2) The arbitrageur submits
an arbitrage transaction

3) Arbitrage transaction
is spotted by another
network participant

4) The network participant copies
the arbitrage transaction and
submits it with a higher fee

5a) The arbitrage
transaction

with the higher fee
gets validated

5b) The transaction of
the arbitrageur fails

6) The network participant
earns the rent

Figure 2: Arbitrage in the presence of front-running

Traditionally front-running refers to the practice when a market maker uses its pro-
prietary information on incoming orders to place a trade before a large incoming trade.1

However, in a DeFi context, transactions do not necessarily have to include a large trade
to be subject to the risk of front-running. Due to the atomicity of transactions, rent-
generating opportunities do not come solely in the form of large trades, but also in
the form of smart-contract code that interacts with the financial applications on the
blockchain. An arbitrageur, for instance, has to exert effort to find profitable arbitrage
opportunities, optimally select the amounts of tokens to trade across pools and assemble
these in the right order within a transaction. Albeit, the transaction is produced based
on public information, the value of the transaction lies in the smart-contract code that
generates a positive rent from it. As we noted earlier, cross-DEX arbitrage is a promi-
nent example of this practice due to its importance in financial markets, but there exist
other (and even more sophisticated) ways to extract rents utilizing public information.
Therefore, in contrast to the ’traditional’ case, where front-running refers to exploiting
the information from the incoming order flow of single trades, in DeFi the definition is
broader due to the atomicity of transactions and it also refers to exploiting information
from the content (smart-contract code) of transactions.

1Malinova and Park (2017) consider an environment where agents send single trade transactions to
each other via distributed ledger technology. In their model, an investor faces front-running risk when
trading with a large trader.
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3. The decision problem of the cross-DEX arbitrageur

In this section, we describe the decision problem of a cross-DEX arbitrageur who opti-
mally executes an arbitrage across two DEXs. We derive our results under a hypothetical
market environment where front-running is forbidden or impossible. Our intention is to
derive the formulas used in our empirical analysis and by presenting comparative statics
to enhance the understanding of our empirical results.

3.1 Setup

The cross-DEX arbitrageur follows the steps:

1. Monitoring of the (latest) state of the blockchain to exploit price differences across
the DEXs.

2. Every time a new block is released, calculate the maximal achievable gross arbitrage
profit that can be earned by trading away the price differences across the two DEXs.

3. Choosing a profit-maximizing amount of tokens to trade, given the pool liquidity
and trading fees on DEXs.

4. Choosing a transaction fee based on the current validation demand (that can be
inferred from the mempool), which guarantees the execution of the arbitrage trans-
action in the next block.

Figure 3 depicts the actions of the cross-DEX arbitrageur. The top part of the figure
shows a block on the left that is already part of the blockchain and a block to the right
that is about to be appended. The dashed line indicates the time that elapses between two
consecutive blocks. The bottom part of the figure shows the mempool. The green area
indicates that, in contrast to the blockchain state, the mempool state evolves continuously
in time.

3.2 Description of the market

Consider a blockchain with two DEXs indexed by i and j. There are liquidity pools on
both DEXs, where token X is traded against a numéraire token (denoted by Y ). Each
pool employs a constant product market maker (CPMM), where prices are determined by
the amount of liquidity (k) available in the pool and the trading fee charged on trading
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Block that is already appended
to the blockchain Block

Transactions have been executed
in the block

Order of transactions
within the block

Mempool

Mempool state

Arbitrageur chooses a transaction fee
at the front in the block

based on the mempool state

Price differences
across DEXes become

a state of the blockchain

Figure 3: The decision problem of the cross-DEX arbitrageur

volume (τ). Such types of automated market makers are widely adopted across DEXs.
The liquidity parameter (or invariant) is equal to the product of the actual reserves of
token X and the numéraire token in the pool. Thus, the liquidity on DEX i equals:

reserves of token X × reserves of numéraire token Y = xi × yi = ki.

The mid-price of token X relative to the numéraire on DEX i is determined by the ratio
of the reserves and equals pi = xi/yi. When a liquidity taker arrives at the pool on DEX
i, and exchanges ∆xi tokens of X for ∆yi numéraire tokens, the liquidity in the pool
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must remain the same by the pricing rule used by the CPMM:

xiyi︸︷︷︸
Before trading

=
(
xi + (1− τi)∆xi

)(
yi −∆yi

)︸ ︷︷ ︸
After trading

= ki.

The trading fee is charged on the incoming volume and accrues to the liquidity providers.
The price impact of a trade can be directly computed from the formula above, with its
magnitude depending on the trade size relative to the pool liquidity. Figure 4 gives an
example of how the price and token reserves change in the pool when a liquidity taker
exchanges USD for ETH.

2.5

8

Price: p = 8 ETH
2.5 USD = 3.2ETH/USD

Liquidity: x× y = 2.5× 8 = 20 = k

USD

E
T
H

2.5

8

5

4

p0 = 3.2ETH/USD
x0 × y0 = 2.5× 8 = 20 = k

p1 = 0.8ETH/USD
x1 × y1 = 5× 4 = 20 = k

USD

E
T
H

Figure 4: Trade example on a constant product market maker (CPMM)

3.3 Determining the maximal gross profit from arbitrage

Assume that the cross-DEX arbitrageur prefers to pocket the profit in the numéraire
token.2 For brevity, we refer to token X as ’token’ and the numéraire token as ’numéraire’.
Then, arbitrage requires two consecutive trades: (i) a buy trade to acquire tokens X for
numéraire tokens in the pool where the price of the token relative to the numéraire is
higher (i.e., the price of the numéraire relative to the token is lower) and (ii) a sell trade
using the acquired tokens X for the numéraire tokens in the other pool, where the price
of the token relative to the numéraire is lower (i.e., the price of the numéraire relative to
the token is higher).

2Our empirical analysis and several other empirical papers (e.g., McLaughlin et al. (2023)) show that
cross-DEX arbitrageurs on the Ethereum blockchain use the native token for arbitrage in a clear majority
of all cases.
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The token reserves in the pools are given by the tuples: (xi, yi) and (xj, yj) (which
also determine ki and kj), and the pools charge trading fees τi and τj on the incoming
trading volume. Furthermore, we assume that the mid-price of the token in the pool on
DEX i is higher than in the pool on DEX j, i.e., pi = xi/yi > pj = xj/yj. In a first step,
the cross-DEX arbitrageur buys ∆x tokens for ∆yinit numéraire in the pool on DEX i:

∆x =
(1− τi)xi∆yinit

yi + (1− τi)∆yinit
(1)

Then, the cross-DEX arbitrageur exchanges the acquired tokens ∆x for ∆yfinal numéraire
in the pool on DEX j:

∆yfinal =
(1− τj)yj∆x

xj + (1− τj)∆x
(2)

The cross-DEX arbitrageur maximizes the difference between the final amount she re-
ceives (∆yfinal) and the amount she initiates through the series of trades (∆yinit). By
referring ∆yinit to as the initial capital, the gross arbitrage profit equals the difference
between the final and initial amount of numéraires:

Π = ∆yfinal −∆yinit (3)

∆yfinal can be expressed as a function of ∆yinit by substituting (1) into (2). After
replacing ∆yfinal in (3) with the former expression in the gross arbitrage profit function,
it becomes the function of the initial capital ∆yinit:

Π =
(1− τi)(1− τj)xjyi∆yinit

xiyj + (1− τj)
(
xi + (1− τi)xj

)
∆yinit︸ ︷︷ ︸

∆yfinal

−∆yinit (4)

The cross-DEX arbitrageur chooses the optimal initial capital in the numéraire ∆y∗init,
maximizing the gross arbitrage profit. The optimal ∆y∗init also determines the optimal
amount of tokens to be purchased in the first pool ∆x∗ and the optimal final amount of
numéraire ∆y∗final. For simplicity, assume that the trading fees are identical across pools,
i.e., τ1 = τ2 = τ . This is a realistic assumption, as on most DEXs, either there is only a
pre-specified flat trading fee (e.g., Uniswap V2) or there is a limited number of trading
fee tiers (e.g., Uniswap V3) that pools can charge. By plugging in ∆y∗init into the profit
equation, the maximal gross arbitrage profit can be expressed as the function of (i) the
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liquidity in the pools and (ii) the trading fee:

Π∗ =
xjyi + (1− τ)

(
(1− τ)xiyj − 2

√
xiyixjyj

)
(1− τ)

(
(1− τ)xi + xj

) (5)

3.4 Comparative statics of the maximal gross arbitrage profit

In this subsection, we show how the change of the trading fee and the liquidity in the
pools affects the maximal arbitrage gross profit. Throughout the calculations, we assume
that an arbitrage opportunity exists across the pools Π∗ > 0.

Trading fee. By differentiating (5) with respect to τ gives the expression for the
marginal change in the maximal gross arbitrage profit:

∂Π∗

∂τ
=

x2
jyi + (1− τ)xi

(
2(1− τ)

√
xiyixjyj − 2xjyi + (1− τ)xjyj

)
(1− τ)2

(
(1− τ)xi − xj

) (6)

Figure 5 plots the gross profit as a function of ∆yinit under different trading fees. The
trading fee tiers shown are the most common ones used by DEXs. Not surprisingly, the
maximal gross arbitrage profit increases as the trading fee decreases, and at the same
time, the initial capital required for the arbitrage increases. Consistent with Lehar and
Parlour (2024), the fixed spread that the cross-DEX arbitrageur has to pay increases with
the increase of the trading fee.

Liquidity. As the liquidity grows in the pool, the depth of the market increases, and
trades, on average, exert a lower price impact. The reserves of the tokens enter the profit
equation separately, so a derivative with respect to k = x ·y cannot be evaluated, but the
marginal effects can be studied numerically. First, we consider the case when the liquidity
in one pool increases by the multiples of 10, i.e., 10m · kinit, m ∈ {0, 1, 2}, while keeping
the liquidity in the other pool fixed. Second, we keep the size of the larger pool fixed and
increase the size of the other pool to a comparable level. Panel (a) and (b) in Figure 6
plot these two cases, respectively. Our numerical exercise shows that for a fixed ratio of
pool reserves, (i) the arbitrage profit increases in liquidity, and (ii) the size of the smaller
pool limits the maximal gross arbitrage profit. Intuitively, as one pool becomes larger, the
price impact of the buy trade reduces, thus the cross-DEX arbitrageur purchases more
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Figure 5: Comparative statics: trading fee. The figure shows the values of the
gross arbitrage profit as the function of the initial capital (∆yinit) under different
trading fees (τ) charged by liquidity pools. The liquidity parameters used for the
calculations are (150, 20) and (100, 20).

tokens. However, as a countervailing force, the price impact of the sell trade increases in
the smaller pool, where the liquidity is kept constant. Overall, the maximal achievable
profit increases but is limited due to these two counteracting effects. The dashed line on
Panel (a) indicates that whenever one of the pools is small, the maximal arbitrage profit
grows linearly with the price impact in the smaller pool. In Panel (b), the effect of the
price impact reduces as the small pool also grows in size and we observe an exponential
growth of the maximal achievable arbitrage profit.

3.5 Determining the optimal hypothetical transaction fee and the
maximal net profit from arbitrage

Transactions including trades, liquidity additions, or liquidity withdrawals, modify the
state of the pool. Thus, to avoid price slippage, the cross-DEX arbitrageur has to place
its transaction in front of the queue in the next block. Denote by qa the queue position
in the upcoming block where the cross-DEX arbitrageur aims to place the transaction.
We assume that no transactions modifying the state of the pool in front of the targeted
position in the block occur. By choosing a transaction fee that exceeds the transaction
fee of the transaction in the queue at position qm in the mempool (right before the block
is added), the cross-DEX arbitrageur guarantees that the transaction will be validated
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(a) Two initial small pools (b) One initial large and one initial small pool

Figure 6: Comparative statics: liquidity. The figure shows the values of the gross
arbitrage profit as the function of the initial capital (∆yinit) under different pool
liquidity values. On panel a) one pool remains relatively small in terms of liquidity
compared to the other. On panel b) one pool has an initial large size (the large pool
from Panel (a)) and the other smaller pool grows to a comparable size.

before the transaction at position qm.3 On the other hand, the cross-DEX arbitrageur
wants to maximize her net profit, so she chooses the lowest transaction fee that places
her in front of her intended queue position.4 The cross-DEX arbitrageur thus chooses a
transaction fee f maximizing the net profit, which is simply the difference between the
maximal gross arbitrage profit and the transaction fee:

max
f

π = max
f

(Π∗ − f) s.t. pexecution(f |qa > qm) = 1, (7)

where pexecution denotes the execution probability of the transaction given the distribution
of transaction fees in the mempool. The probability on the right-hand side is one, meaning
that the arbitrage transaction gets validated with certainty in the next block in front of the
’target’ position. Then, the optimal hypothetical transaction fee equals the transaction
fee that is attached to the transaction at the position qa−1 (or, in case there are multiple
m transactions waiting at the same transaction fee level, {qa − 1, . . . , qa − m}), i.e.,

3Transaction fees comprise of gas prices multiplied by the gas used. Gas in Ethereum is the unit
for measuring the computational effort required to execute a transaction. More complex transactions
consume more gas. For simplicity, we refer to transaction fees throughout. We control for differences in
gas usage in our empirical results.

4Our approach is mechanical because we assume that the cross-DEX arbitrageur a priori aims to
place the transaction before a certain position. In real practice, however, she might try to predict the
target position based on recent data.
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f ∗ = fqa−1.

3.6 Other costs

Smart contract based arbitrage alleviates the costs associated with arbitrage on CEXs.
There are three essential aspects. First, flash loans allow anyone to borrow and repay
tokens within one atomic transaction. Cross-DEX arbitrageurs can borrow even millions
of dollars, thus cross-DEX arbitrage does not require (substantial) initial capital. To
justify the assumption that interest rates on flash loans, rfl, are approximately zero,
we analyzed interest rates charged on every flash loan issued by the lending platforms
frequently used by arbitrageurs, namely Aave, dydx, and Bancor, until March 2024. Out
of 750, 000 flash loans, 200, 000 borrowers paid an interest of 0.02%, 300, 000 paid 0.05%,
and 250, 000 paid 0.09%. Given this evidence, the assumption of zero interest rates is
widely realistic. Otherwise, our calculations above need to be modified, with ∆yinit in
the gross arbitrage profit function replaced by (1 + rfl)∆yinit, where rfl is the interest
paid on the flash loan.

Second, the atomicity of transactions guarantees that trades are executed either in the
pre-specified order or fail completely, implying that the cross-DEX arbitrageur does not
face any costs associated with inventory risk. Third, by utilizing smart contract code, the
cross-DEX arbitrageur can impose a condition in the arbitrage transaction that reverts
the transaction if it generates a negative profit, eliminating execution risk.

3.7 The optimal strategy of the cross-DEX arbitrageur under
front-running risk

Up until now, we assumed that front-running is forbidden or impossible on the blockchain.
We relax this assumption, which means that the arbitrageur faces competition. This
alters the arbitrageur’s optimal choice for the transaction fee because she has to take into
account the actions of other market participants.

After a block is added to the blockchain, the cross-DEX arbitrageur faces a short time
period (on the Ethereum blockchain, around 13 seconds) to submit or even re-submit
the same arbitrage transaction with a different transaction fee to the mempool. Upon
submission of the transaction, its content becomes public information for other market
participants, who may try to front-run the transaction by copying and submitting it with
a higher transaction fee. Such bidding wars among cross-DEX arbitrageurs are discussed
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and empirically documented in the seminal paper by Daian et al. (2020).
What is the optimal transaction fee bidding strategy of the cross-DEX arbitrageur in

such a market setup and information structure? Easley and Tenorio (2004) and Daniel
and Hirshleifer (2018) analyze sequential bidding games with agents with distinct private
values of an item. Cross-DEX arbitrageurs in our market setup know the profit the
opportunity generates, so they value it equally. Under zero bidding costs c = 0, all market
participants follow the ”ratchet” strategy, i.e., they sequentially bid up the transaction
fee to the value of the arbitrage opportunity. The auction winner earns zero profit, and
the transactions of the other market participants revert.5 Hence, under front-running
risk the validator earns the arbitrage profit through transaction fees.

Suppose the cross-DEX arbitrageur deviates from the optimal strategy and – by hop-
ing to earn a positive profit – submits the transaction with a transaction fee less than the
arbitrage profit without updating it. Then, it is optimal for another market participant
to front-run the cross-DEX arbitrageur. As a result, the cross-DEX arbitrageur’s trans-
action reverts and yields a negative profit −r. Hence, the arbitrageur’s expected profit is
negative, so it is not optimal for cross-DEX arbitrageurs to submit arbitrage transactions
under front-running risk.

Note that an important ingredient of the argumentation above relies on the assump-
tion that the reversion fee is positive, i.e., r > 0. This assumption is easily justified since
it is impossible to design a (secure) blockchain with reversion fees being zero. In fact,
due to security reasons a positive reversion fee must be charged on reverting transactions,
otherwise, a hacker could perform a denial-of-service (DoS) attack, which would disrupt
the functioning of the blockchain. In case of a zero reversion fee, a hacker could submit
a transaction with a high transaction fee that consumes all the block space, which is
reverted before execution. This would prevent other transactions from being included in
the block, rendering it impractical for use.

5Under non-zero bidding costs c > 0, the cross-DEX arbitrageur submits the transaction with a
transaction fee Π∗ − c. With such a high initial bid, the cross-DEX arbitrageur avoids paying the
bidding costs once more and, at the same time, deters other market participants from front-running the
transaction as submitting the transaction with a higher transaction fee would result in a negative profit.
However, the cross-DEX arbitrageur still makes a zero profit.
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4. Data

4.1 Data sources

We utilize several data sources to conduct our empirical analysis. Below we briefly intro-
duce the datasets and corresponding variables used in the analysis.

Ethereum block and transaction data. We acquired block and transaction level
data via the Ethereum-etl tool. This dataset covers a large range of variables, where
from the block-level data we utilize the block number and the time when the block was
added to the blockchain. From the transaction level data, we obtain the hashes of every
transaction, the gas transactions consumed, and the gas price transactions paid.

DEX data. Moreover, we utilize trading and pool reserves data using Dune Analytics’
API.On Dune, the decoded blockchain data is available in a tabular format. We have
extracted Sync events, which is a function automatically called whenever a trade (swap),
a liquidity addition (mint), or liquidity withdrawal (burn) changes the token reserves in
the pool and posts the new reserves. Furthermore, we have data on Swap events that
include how much token X has been exchanged for token Y for every trade.

Arbitrage data. For our analysis, we use the Flashbots MEV dataset, which contains,
among others, the transaction hashes of identified arbitrage transactions. It is important
to note that, unlike on continuous-time markets, arbitrages across DEXs can be identified
with a higher precision as every transaction of a blockchain account can be inspected.
It means that when a cross-DEX arbitrageur submits a transaction, the money flow can
be precisely tracked as it moves through the two (or more) DEXs and finally returns to
the cross-DEX arbitrageur’s account. From this dataset, we use the hashes of identified
arbitrage transactions, the gross arbitrage profit, the net arbitrage profit, and the amount
paid to the validator.

Mempool data. We use the mempool data from Jochen Hoenicke’s website that re-
ports the number of pending transactions between certain gas price levels. The trans-
actions are categorized into 31 unevenly spaced bins based on gas prices, with updates
occurring roughly every 3 minutes. Data at this frequency allows us to capture aggregate
demand movements.
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Other. To express the value of the tokens in USD, we gathered minute-level data from
Coinpaprika. This allows us to convert any token value to USD at the actual price. In our
filtering process, we also utilize the transaction hashes of non-arbitrage transactions from
the Flashbots MEV dataset. These transactions, individually (or in combination) gener-
ate rents and are commonly classified as MEV (Maximal Extractable Value) transactions.
Furthermore, to identify blockchain-based trading algorithms, commonly referred to as
MEV bots, we collected addresses labeled as ’MEV Bot’ from Etherscan. We use an addi-
tional Flashbots dataset containing all the dark pool blocks and transaction information.
Although the Flashbots dark pool was the most popular option among users, to be able
to paint a full picture in our analysis we collected transaction-level data from another
significant dark pool service provider, Eden Network. Combined, these two providers
accounted for more than 90% of the dark pool transactions.

4.2 Descriptive statistics

Our sample covers the period from December 7, 2020, to August, 31, 2022. We consider
arbitrage across the pools of 3 DEXs that use CPMMs and account for 80 − 85% of
the trading volume on the Ethereum blockchain at the beginning of the sample period.
These DEXs are Uniswap V2, Sushiswap and Shibaswap. Shibaswap was created after
the starting date of our sample period and the liquidity was very low in its pools after the
deployment, therefore we exclude the observations of the first week from the Shibaswap
sample. Furthermore, we focus on arbitrage across the economically most significant
pools that trade the token pairs WETH-USDC, WETH-USDT, WETH-DAI, and WETH-
WBTC. USDC (USD Coin), USDT (Tether), and DAI are stablecoins, which are pegged
to the USD, while WETH (Wrapped Ethereum) and WBTC (Wrapped Bitcoin) are
non-stable ones.6 The trading fees in each pool are identical and equal to 0.3%. Table
1 reports the overall trading volume and shares of trading volume pools on the DEXs
within the sample period.

To identify two-legged arbitrage transactions, we merge the hashes of the arbitrage
transactions from the Flashbots MEV dataset with the trading data and select transac-
tions that contain only two trades across the pool pairs. Note that several large-scale
empirical arbitrage studies show that nearly half of the arbitrage transactions include
only two legs (e.g., Qin et al. (2022), McLaughlin et al. (2023)). This ratio increases even

6’Wrapping’ simply enables these tokens to be traded across DEXs, and they are worth the same as
ETH (Ethereum) and BTC (Bitcoin), respectively.
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more when within-DEX arbitrages (arbitrage across the pools of one DEX) are excluded.
Therefore, we restrict our analysis to two-legged arbitrage disregarding multi-legged ar-
bitrage transactions.

DEX WETH-USDT
pool

WETH-WBTC
pool

WETH-USDC
pool

WETH-DAI
pool

Overall trading volume
(billion USD)

Uniswap v2 9.12% 2.09% 9.96% 3.71% 425.10
Sushiswap 9.37% 6.23% 15.94% 8.47% 189.14
Shibaswap 7.08% 2.34% 6.41% 3.35% 13.85

Table 1: Trading volumes captured by the sample pools. The table reports the overall
trading volume captured by the DEXs during our sample period. The percentages show the share of
this volume attributed to each respective pool within the DEXs.

Table 2 and Table 3 report the daily aggregate statistics on trading and pool sizes.
Trading activity is the highest on Uniswap V2, where the number of trades is around
3 million for the WETH-USDT and WETH-USDC pools. The average daily trading
volumes are similar and the largest in these pools, which, compared to the respective
average pool sizes, imply a 25% daily turnover. The median and average pool sizes of
Uniswap V2 and Sushiwap are of comparable magnitudes, while Shibaswap pools are
significantly smaller.

5. Measuring price differences and transaction fees

5.1 Measuring price differences

As discussed in Section 3, we measure price differences and calculate arbitrage profits
after every block that modifies the state of the pools. By picking the last state of the
pool (pool reserves) from each block we calculate the maximal gross arbitrage profits
(Π∗), the optimal initial capital (∆y∗init) needed for the arbitrage transaction, the optimal
token purchase (∆x∗) and the optimal final amount received (∆y∗final). Measuring price
differences solely based on mid-prices across pools is misleading as price impacts and
trading fees would be neglected, meaning that mid-price differences might prevail across
pools because they are not profitable to be arbitraged away. Therefore, to calculate
the percent of the mid-price difference across pools that could have been arbitraged
away we derive a formula that is the function of the maximal gross (and net) arbitrage
profit, which value has already been corrected for trading fees and the price impact (and
the transaction fee). Accordingly, the problem can be reformulated as follows. After
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Pool
Median daily

trade size
(million USD)

Average daily
trade size

(million USD)

Std. of daily
trade size

(million USD)

Minimum daily
trade size

(million USD)

Maximum daily
trade size

(million USD)

Number of
trades

(thousand)

Uniswap v2
WETH-USDT 31.373 51.06 60.004 2.025 658.747 3166.107

Uniswap v2
WETH-WBTC 2.871 11.241 19.233 0.037 177.47 284.368

Uniswap v2
WETH-USDC 35.669 57.638 63.187 3.853 736.383 2948.681

Uniswap v2
WETH-DAI 6.817 19.897 34.766 0.432 351.062 833.628

Sushiswap
WETH-USDT 20.0 26.951 34.1 0.607 428.507 643.121

Sushiswap
WETH-WBTC 8.046 18.342 30.186 0.106 383.463 167.023

Sushiswap
WETH-USDC 33.8 46.46 65.969 0.546 967.448 874.604

Sushiswap
WETH-DAI 14.723 24.625 39.726 0.199 575.296 425.414

Shibaswap
WETH-USDT 1.249 2.323 3.556 0.056 34.261 90.212

Shibaswap
WETH-WBTC 0.357 0.771 1.208 0.001 9.367 11.405

Shibaswap
WETH-USDC 0.971 2.104 3.011 0.014 20.059 77.911

Shibaswap
WETH-DAI 0.697 1.098 1.322 0.015 11.02 32.222

Table 2: Summary statistics on trading activity

the cross-DEX arbitrageur calculates the optimal amounts of tokens to trade with, she
effectively buys ∆x∗ tokens at the effective price pe for ∆y∗init numéraire. Then she sells
∆x∗ tokens at the effective price 1/(pe − ∆pe) to acquire ∆y∗final numéraire. Formally,
the two arbitrage trades are:

∆x∗ = pe∆y∗init, (8)

∆y∗final =
1

pe −∆pe
∆x∗. (9)

Using equations (8) and (9), the effective price difference can be expressed as

∆pe = pe −
∆x∗

∆y∗final
=

∆x∗

∆y∗init
− ∆x∗

∆y∗final
= ∆x∗

( 1

∆y∗init
− 1

∆y∗final

)
. (10)

Furthermore, noting that the maximal gross arbitrage profit equals Π∗ = ∆y∗final−∆y∗init,
the effective price difference can be expressed as a function of the maximal gross arbitrage
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Pool
Median
pool size

(million USD)

Average
pool size

(million USD)

Std. of
pool size

(million USD)

Maximum
pool size

(million USD)

Uniswap v2
WETH-USDT 207.681 206.815 73.047 390.569

Uniswap v2
WETH-WBTC 223.007 232.596 106.586 449.685

Uniswap v2
WETH-USDC 237.174 237.598 75.282 462.069

Uniswap v2
WETH-DAI 126.194 121.456 55.870 232.383

Sushiswap
WETH-USDT 199.391 185.146 99.499 416.670

Sushiswap
WETH-WBTC 534.111 590.211 310.034 1475.027

Sushiswap
WETH-USDC 313.917 285.570 131.831 516.577

Sushiswap
WETH-DAI 209.194 199.305 102.155 461.507

Shibaswap
WETH-USDT 20.900 36.099 57.934 260.730

Shibaswap
WETH-WBTC 69.101 103.790 121.606 455.805

Shibaswap
WETH-USDC 24.205 50.215 73.629 277.141

Shibaswap
WETH-DAI 17.607 23.033 21.145 107.938

Table 3: Summary statistics on pool sizes

profit,

∆pe = ∆x∗
( Π∗

∆y∗init∆y∗final

)
. (11)

These price differences, however, do not account for the transaction fee that the cross-
DEX arbitrageur has to pay to guarantee the execution of the transaction. Using the
definition of the maximal net arbitrage profit from equation (7), the transaction fee-
corrected effective price difference is given by

∆pe,net = ∆x∗
( Π∗ − f ∗

∆y∗init∆y∗final

)
= ∆x∗

( π∗

∆y∗init∆y∗final

)
. (12)

The effective price differences in equations (11) and (12) are expressed in terms of
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tokens per numéraire.
To ensure comparability of the price differences across liquidity pools, we calculate the

percentage of the mid-price difference that could have been arbitraged away by dividing
the effective price difference by the mid-price difference,

∆pe,pct =
pe − (pe −∆pe)

max{pi, pj} −min{pi, pj}
=

∆pe
max{pi, pj} −min{pi, pj}

∈ [0, 1] (13)

Note that the effective prices at which the arbitrageur buys and sells are: pe − ∆pe ≥
min{pi, pj} and pe ≤ max{pi, pj}, which means that price improvement is bounded be-
tween zero and one. Furthermore, notice that a mid-price difference can be only com-
pletely arbitraged away in case the trading fees are zero (τ = 0) and the pools have
infinite liquidity (ki = kj = ∞), implying a zero fixed spread and no price impact for any
trade.

5.2 Measuring transaction fees

As discussed in Section 3, the optimal transaction fee is the lowest transaction fee that
guarantees a queue position in the next block such that the cross-DEX arbitrageur’s
transaction is executed before the states of the pools change. Empirically, we evaluate
three transaction fee levels corresponding to ’target’ positions to secure the arbitrage
transaction’s placement in the next block: (1) qa = 25 (before the 25th position), (2)
qa = 10 (before the 10th position), and (3) qa = 1 the first position.

On average, a block in our sample contains 190 transactions. To assess the robustness
of our transaction fee level choices, we compute how frequently transactions modify the
pool states before the queue positions 10 and 25. We find that within our sample period,
10% and 15% of the time pool states are modified within those queue positions. Further-
more, we check how many of those transactions generate rents. For this purpose, we use
the identified MEV transaction hashes from the Flashbots MEV summary dataset. We
find that around 25% of these transactions are indeed MEV transactions that pay a high
transaction fee due to front-running.

The transaction fee that has to be paid by the cross-DEX arbitrageur is determined by
the gas (the computational complexity of the transaction) times the gas price that is paid
after each unit of gas. The gas required for an arbitrage transaction is stable over time,
given that a two-legged arbitrage always entails the computational cost of two trades and
a flash loan. Based on historical arbitrage data, we find that the average gas cost of such
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a transaction is slightly less than 250, 000. Gas prices fluctuate with validation demand
and are selected based on the ’target’ positions. Thus, transaction fees are calculated as:

f ∗ = Gasarb × GasPrice∗ = Gasarb × GasPriceqa−1 = 250, 000× GasPriceqa−1,

where GasPrice∗ denotes the optimal gas price. Note that because the gas required for
arbitrage is the same over time, the optimal transaction fee effectively requires choosing
an optimal gas price. Figure 7 displays the one-day moving average of the USD value of
the transaction fees at the three levels.

Figure 7: Transaction fees required for a two-legged arbitrage (one-day moving
average). The figure presents the one-day moving average of optimal transaction fees of a two-legged
arbitrage transaction, that guarantees a place in the queue at positions: qa = 25 (before the 25th),
qa = 10 (before the 10th) and qa = 1 (the first position).
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6. Empirical results

6.1 Effective price differences and price improvements

Table 4 reports the averages of the price improvements and the arbitrageur’s share (from
which she earns a net profit) from the price improvements across the pool pairs. The
price improvements are calculated based on (13), which is the ratio of the effective price
difference that could have been closed by an arbitrage transaction and the mid-price dif-
ference. Whenever there is a positive effective price difference across pools, there is an
arbitrage opportunity, so the hypothetical price improvement is also positive. In the

Pool pair Average
price improvement

Average arbitrageur’s
share from

price improvement
(transaction placed
< 25th in the queue)

Average arbitrageur’s
share from

price improvement
(transaction placed
< 10th in the queue)

Average arbitrageur’s
share from

price improvement
(transaction placed
1st in the queue)

Share of blocks
with positive effective

price differences

Uniswap v2-Sushiswap
WETH-USDT 7.77 2.37 2.12 1.43 0.34

Uniswap v2-Shibaswap
WETH-USDT 10.09 0.26 0.18 0.07 2.58

Sushiswap-Shibaswap
WETH-USDT 10.98 0.42 0.30 0.14 3.61

Uniswap v2-Sushiswap
WETH-WBTC 7.88 2.60 2.30 1.57 0.39

Uniswap v2-Shibaswap
WETH-WBTC 9.87 0.73 0.59 0.24 1.58

Sushiswap-Shibaswap
WETH-WBTC 10.44 0.98 0.77 0.37 1.60

Uniswap v2-Sushiswap
WETH-USDC 8.28 3.45 3.15 2.24 0.24

Uniswap v2-Shibaswap
WETH-USDC 10.48 0.24 0.17 0.07 2.42

Sushiswap-Shibaswap
WETH-USDC 10.94 0.34 0.23 0.09 3.14

Uniswap v2-Sushiswap
WETH-DAI 9.35 2.49 2.20 1.36 0.71

Uniswap v2-Shibaswap
WETH-DAI 10.40 0.63 0.47 0.19 3.25

Sushiswap-Shibaswap
WETH-DAI 9.92 0.72 0.59 0.26 3.81

Table 4: Average price improvements and the arbitrageur’s share from the price
improvement (measured in percentage points). Average price improvement column reports the
average of the mid-price differences closed by arbitrage transactions across pool pairs in percentage
points. Average arbitrageur’s share from price improvement columns report the share of the price
improvement that generated a positive net profit for the arbitrageur (while the rest accrued to the
validator in the form of transaction fees). The parentheses under the column names contain the fee
levels corresponding to the ’target’ positions. The price improvements were calculated according to
equation (13). Share of blocks with positive effective price differences presents the percentage of blocks
that contain a positive price difference.

absence of front-running and without controlling for hypothetical transaction fees, the
mid-prices across pool pairs could have been moved closer to each other by 7.77% to
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10.98% (second column). These price improvements also translate into gross arbitrage
profits. However, the arbitrageur must pay a transaction fee that varies based on her
desired queue position in the next block. In columns three to six, we report the mag-
nitudes from the average price improvements that generate a profit for the arbitrageur.
These numbers show that in the absence of front-running risk, even after controlling for
relatively high (or even extreme) transaction fees, there are still hypothetical arbitrage
opportunities that can generate profits for the arbitrageur.

The rightmost column shows the share of blocks containing positive effective price
differences, where there is room for a price improvement across pools. The share is
calculated relative to the number of blocks including at least one transaction that caused
a change of any of the pool states. Positive effective price differences arise more frequently
when one of the pairs includes a Shibaswap pool. In low-liquidity Shibaswap pools, trades
create more pronounced shifts in token reserves, that cause more price discrepancies
across pairs of pools. However, we observe low average arbitrageur shares from the price
improvements after accounting for transaction fees for the same pool pairs. As discussed
in Section 3, the liquidity of the smaller pool limits the maximal gross arbitrage profit
attainable across pools. Consequently, when transaction fees are taken into account, they
consume a significant portion of the profit.

6.2 Arbitrage profits

We compute the hypothetical profits that could have been realized by performing ar-
bitrage to eliminate the price differences. Table 5 reports the actual and hypothetical
cumulative net profits in millions of USD for each pool pair over our sample period. The
second and third columns contain actual cumulative arbitrage net profits and cumula-
tive payments to validators, which combined are equal to the gross profit from arbitrage.
Columns four to six include the hypothetical net profit from arbitrage at various trans-
action fee levels. The parentheses in columns four to six indicate the percentage of the
actual net arbitrage profit foregone at various transaction fee levels.

We find that the majority of arbitrage opportunities remain unexploited due to front-
running risk, with 85% to 99% of the hypothetical net arbitrage profit not being realized.
We get these numbers by dividing the actual cumulative net profits by the hypothetical
cumulative net profits. There are two mechanisms in place: (1) due to front-running
risk arbitrageurs are not submitting transactions, but (2) even when they submit, due
to front-running they bid up the transaction fee and pay nearly the whole rent to the
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Actual arbitrage Hypothetical arbitrage

Pool pair

Cumulative
net profit

from actual
arbitrage transactions

Cumulative
payments to
validators

Cumulative
net profit

from hypothetical
arbitrage transactions

(transaction placed
< 25th in the queue)

Cumulative
net profit

from hypothetical
arbitrage transactions

(transaction placed
< 10th in the queue)

Cumulative
net profit

from hypothetical
arbitrage transactions

(transaction placed
1st in the queue)

Uniswap v2-Sushiswap
WETH-USDT 0.072 0.112 1.262

(94%)
1.246
(94%)

1.160
(94%)

Uniswap v2-Shibaswap
WETH-USDT 0.005 0.004 0.082

(94%)
0.077
(93%)

0.062
(92%)

Sushiswap-Shibaswap
WETH-USDT 0.007 0.006 0.136

(95%)
0.130
(95%)

0.112
(94%)

Uniswap v2-Sushiswap
WETH-WBTC 0.002 0.006 0.701

(99%)
0.697
(99%)

0.682
(99%)

Uniswap v2-Shibaswap
WETH-WBTC 0.001 <0.001 0.042

(98%)
0.041
(98%)

0.037
(98%)

Sushiswap-Shibaswap
WETH-WBTC <0.001 <0.001 0.011

(99%)
0.011
(99%)

0.007
(98%)

Uniswap v2-Sushiswap
WETH-USDC 0.041 0.110 1.343

(97%)
1.328
(97%)

1.239
(97%)

Uniswap v2-Shibaswap
WETH-USDC 0.001 0.003 0.107

(99%)
0.103
(99%)

0.085
(99%)

Uniswap v2-Shibaswap
WETH-USDC 0.004 0.003 0.113

(97%)
0.108
(96%)

0.093
(96%)

Uniswap v2-Sushiswap
WETH-DAI 0.059 0.111 0.723

(92%)
0.710
(92%)

0.638
(91%)

Uniswap v2-Shibaswap
WETH-DAI 0.004 0.002 0.067

(95%)
0.064
(94%)

0.053
(93%)

Sushiswap-Shibaswap
WETH-DAI 0.008 0.003 0.078

(90%)
0.074
(89%)

0.055
(85%)

Table 5: Hypothetical and actual arbitrage profits (in million USD). Cumulative net profit
from actual arbitrage transactions reports the net profit earned from actual arbitrage in USD.
Cumulative payments to validators presents the USD value of the payments received by validators either
in the form of fees or direct payments. Cumulative net profit from hypothetical arbitrage transactions
columns report the net profit, in USD, that arbitrageurs could have hypothetically earned at the three
transaction fee levels in a front-running risk-free market. The parentheses in columns four to six
indicate the percentage of the actual net arbitrage profit foregone at various transaction fee levels.

validator in the form of fees. On average, validators capture approximately 64% of the
profit from arbitrage, but to provide a more detailed picture of the shares claimed by
validators, we plot the distribution of these shares in Figure 8. The concentration of
validators’ shares on the right side of the distribution indicates that validators secure
over 90% of the profit in many instances.

6.3 Counterfactual analysis

Our results indicate that front-running risk impedes arbitrage activity, which in turn
affects price informativeness on DEXs. For instance, the updated price of a token fol-
lowing a large informed trade on Uniswap V2 should be mirrored by the token price on
Sushiswap. Compared to CEXs where quote updates are possible, price updates across
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Figure 8: The distribution of arbitrage profit shares claimed by validators

DEXs happen solely via arbitrage as liquidity providers are passive.
To quantify this effect, we conduct a counterfactual analysis, introducing an arbitrage

transaction at the beginning of the block whenever it results in a positive net profit.
Subsequently, we assess the mid-price differences across exchanges. Whenever we detect
an actual arbitrage transaction at the beginning of the subsequent block, we do not add a
hypothetical arbitrage transaction. Our objective is to evaluate differences between mid-
prices, that traders would face in the block after a hypothetical arbitrage transaction
takes place in the first position of the block. Hence, our analysis is performed under the
scenario where the cross-DEX arbitrageur’s ’target’ position is the first queue position
(qa = 1).

Table 6 presents the results of the counterfactual analysis. The second column con-
tains the difference between the hypothetical post-arbitrage mid-price difference across
pools (∆ppost−arb) and the original price differences (∆p), with t-statistics included in
parentheses. Our findings suggest that in an environment free of front-running, prices
encountered by traders would have been more closely aligned. Specifically, our analy-
sis indicates that price disparities across pool pairs could have been reduced by 95 to
300 basis points, a change that is statistically (except for the Uniswap V2-Shibaswap
WETH-WBTC pool pair) and economically significant.
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Pool pair
Actual

average mid-price
difference

Hypothetical
average mid-price

difference
(1st queue position)

Average difference of
mid-price differences
(1st queue position)

Number of
arbitrage transactions
(1st queue position)

Uniswap v2-Sushiswap
WETH-USDT 158.21 63.73 94.48

(17.395∗∗∗) 561

Uniswap v2-Shibaswap
WETH-USDT 265.61 165.38 100.23

(2.305∗∗) 141

Sushiswap-Shibaswap
WETH-USDT 285.03 141.31 143.72

(4.121∗∗∗) 149

Uniswap v2-Sushiswap
WETH-WBTC 192.17 64.59 127.58

(2.866∗∗∗) 154

Uniswap v2-Shibaswap
WETH-WBTC 487.16 74.76 412.40

(1.419) 23

Sushiswap-Shibaswap
WETH-WBTC 179.60 76.26 103.35

(5.425∗∗∗) 31

Uniswap v2-Sushiswap
WETH-DAI 164.09 64.89 99.21

(18.632∗∗∗) 520

Uniswap v2-Shibaswap
WETH-DAI 262.75 82.10 180.66

(7.577∗∗∗) 94

Sushiswap-Shibaswap
WETH-DAI 269.08 89.76 179.32

(10.277∗∗∗) 133

Uniswap v2-Sushiswap
WETH-USDC 148.27 62.29 85.98

(21.094∗∗∗) 621

Uniswap v2-Shibaswap
WETH-USDC 379.05 75.25 303.79

(5.343∗∗∗) 111

Sushiswap-Shibaswap
WETH-USDC 377.45 74.71 302.74

(4.802∗∗∗) 98

Table 6: Counterfactual analysis (price differences are reported in basis points). Actual
average mid-price difference is the average of the actual price differences prevailing across pools
without an arbitrage transaction. Hypothetical average mid-price difference shows the average
hypothetical mid-price differences after adding a hypothetical arbitrage transaction at the top of the
block. Average difference of price differences is the difference between the actual and the hypothetical
(or counterfactual) mid-price differences, which shows the hypothetical price improvement in a
front-running free market. Number of arbitrage transactions reports the number of hypothetical
arbitrage transactions executed across the pools. The cross-DEX arbitrageur’s ’target’ position is the
first queue position (qa = 1).

6.4 Infrastructure fees

Our findings indicate that front-running risk hampers arbitrage activity, and when ar-
bitrage transactions do occur, validators capture the rents. Our second finding aligns
with Capponi et al. (2023), who also find that conditional on an arbitrage transaction
being submitted, arbitrageurs and other market participants engage in front-running each
other’s transactions until their net profits become nearly zero. They calculate a revenue-
cost ratio, that represents the share of arbitrage profit accruing to the validators, and
find that its median value is approximately 97%. In the case of CEXs, Budish et al.
(2024) derive a theoretical model and show that given the current U.S. market structure
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(three CEXs and six high-frequency trading firms (TFs) being present on the market),
the share of stale quote sniping rents accruing to CEXs in the form of exchange-specific
speed-technology (ESST) fees is 30%.

DEX CEX
In the absence

of front-running risk
(transaction placed
1st queue position)

In the presence
of front-running risk

(Capponi et al., 2023)

Exchanges’ share
from sniping rents

(Budish et al., 2024)

Average
revenue-cost ratio (%) 41.1 83.3 30

Median
revenue-cost ratio (%) 36.1 96.6 30

Table 7: Infrastructure fees The table presents the share of the arbitrage/sniping rents earned by
validators/exchanges depending on their market type. The second column shows the share of the rent
the validator would earn without front-running risk. We also calculate this share for the other
transaction fee levels and find that the average and median are always around 40%. The third column
shows the shares under front-running risk calculated by Capponi et al. (2023) i.e. when market
participants are front-running each other. The fourth column shows the share of the arbitrage rent
earned by CEXs based on the theoretical model of Budish et al. (2024), where they assume that there
are 3 centralized exchanges (CEXs) and 6 trading firms (TFs) on the market. The former numbers are
based on the actual US market structure.

To investigate the potential revenue-cost ratio in the absence of front-running, we
calculate its hypothetical value under each hypothetical fee level. The second column of
Table 7 presents the average and median revenue-cost ratios under the most conservative
hypothetical fee level. We also calculate these values under the less conservative hypo-
thetical fee levels and find that, in the absence of front-running risk, the revenue-cost
ratio remains stable around 40%. According to the formula in Proposition 3.2 of Budish
et al. (2024), this value corresponds to the scenario where either two CEXs and six TFs
or six CEXs and four TFs are present in the market. This revenue-cost ratio would only
increase in either scenario if the market for CEXs or the market for TFs became more
concentrated. This implies that, even in the absence of front-running risk, validators
could, on average, expropriate a higher share of arbitrage rents than CEXs do in the
current U.S. market. However, this does not imply that a CEX-based market is always
preferable for arbitrage activity. A DEX-based market, free of front-running and char-
acterized by generally low transaction fees, could result in a more favorable revenue-cost
ratio, making it more attractive for arbitrage than the existing CEX-based U.S. market
structure.
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7. Deviations from pure DeFi arbitrage

We show that front-running discourages cross-DEX arbitrageurs from initiating atomic
arbitrage transactions. However, empirically, we do not observe persistent price diver-
gences across DEXs, contrary to what might be anticipated in an environment lacking
arbitrage activity. In this section we provide evidence that shows how arbitrageurs devi-
ating toward arbitrage practices that help them circumvent the front-running risk either
by (1) not revealing the arbitrage transaction before it is validated in the next block
(limited pre-trade transparency) or (2) splitting the arbitrage transaction into separate
buy and sell transactions (reintroduction of costs).

7.1 Arbitrage activity in private pools

The introduction of trusted centralized entities called private relays or private pools
by Flashbots in early 2021 enabled users (including arbitrageurs) to propagate their
transactions directly to validators on a private channel without revealing their content
to other market participants, similar to dark pools in centralized markets. The operators
of private pools typically enforce specific rules to prevent validators from engaging in
certain practices and violating these rules could result in the banning of validators from
the private pool.7 Furthermore, transactions sent to private pools are held under their
custody until a validator within their service decides to include them in an upcoming
block. Since these transactions do not land on-chain, i.e., in the public mempool, users
do not have to pay a fee in the case of reversion.

During our sample period, the largest private pool was operated by Flashbots along-
side with a smaller but still significant private pool operated by Eden Network. We use
transaction-level data from Flashbots and gather similar data from the Eden Network
website. During our sample period, these two private pool providers held a market share
of over 90%. We label arbitrage transactions based on the venue to which they were
propagated, designating Flashbots and Eden Network private pools as dark venues and
the public mempool as the lit venue. Figure 9 shows the weekly number of arbitrage
transactions by venue type. The Flashbots relay was adopted by validators on a larger
scale starting in April 2021; before that, almost all arbitrage transactions were sent to

7For instance, Flashbots Fair Market Principles (https://hackmd.io/@flashbots/fair-market-
principles) states that ’in the event of a breach of these principles by one of the block producers, the
Flashbots core devs may act on behalf of stakeholders in disabling the access to the Flashbots network
until the breach is rectified.’
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the lit public mempool. As the figure shows, after their introduction, dark venues were
favored over the lit venue, though arbitrageurs did not completely stop propagating their
transactions to the public mempool.

Figure 9: Weekly number of arbitrage transactions submitted to lit (public
mempool) and dark (Flashbots and Eden Network private pools) venues

The reason dark venues might limit pre-trade transparency is that some market par-
ticipants, such as other arbitrageurs, no longer see the arbitrage transaction in the public
mempool. However, the validator of the next block who has access to the incoming pri-
vate order flow can still screen the transactions. Validators can threaten the arbitrageur
with front-running or leak information to other market participants, thus forcing the ar-
bitrageur to pay the validator the value of the opportunity. It is important to emphasize
that this type of front-running differs from situations where a validator front-runs or sand-
wiches8 a transaction that includes trades, such as a large informed trade (see Capponi
et al. (2023)). Monitoring front-running or sandwiching activity is a challenging task for
private pool providers. For instance, Heimbach et al. (2023) finds that sandwich transac-
tions have been validated in the blocks of private pool providers who explicitly claim to
ban such transactions. Tracking arbitrage transactions that are being front-run is even
challenging, given that it is hard to determine whether the same arbitrage transaction
submitted to the private pool is the result of front-running or simply another arbitrageur
submitting the same opportunity with a higher transaction fee. A key distinction from
the lit market case is that, because the transaction is not directly sent to the mempool,

8Sandwich attacks involve front-running and back-running a large trade that moves the price in a
liquidity pool, resulting in earning the rent within a block.
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the reversion fee is zero (r = 0). This means that the expected net profit of the arbitrage
opportunity for the arbitrageur is no longer negative.

Dark (Flashbots) Dark (Eden Network) Dark (combined) Lit (public mempool)
Number of

arbitrage transactions 209 83 292 394

Average
validator share (%) 75 59 70 63

Std. dev. of
validator share (%) 26 34 30 43

Table 8: Arbitrage transactions by venue. The firs row contains the number of actual arbitrage
transactions by venue type. The second row shows the average share of the arbitrage (gross) profit paid
to the validators in percentages, and the third row contains the standard deviation of the validator
shares also in percentages. The second and third columns show separately the statistics for the dark
pool. The last two columns contain the aggregate statistics for the dark and lit venues.

Table 8 shows the number of actual arbitrage transactions by venue and the average
share of arbitrage rent captured by validators (including its standard deviation) in per-
centages. The average validator share is 7 percentage points higher in dark venues9 than
in the lit venue. This indicates that, even though the arbitrage transaction is only visi-
ble to the validator before execution, arbitrageurs, on average, still pay a transaction fee
roughly equal to the value of the arbitrage opportunity due to the threat of front-running.

The Proposer-Builder Separation (PBS) implemented on the Ethereum blockchain
takes this concept further. In PBS, block building is done by builders, whose job is
to assemble blocks and then compete with other builders to propose the highest value
block to the validator (Buterin, 2021). During this process, builders can receive private
order flow directly from users, including arbitrageurs, as well as access transactions in
the public mempool. Essentially, under PBS, arbitrageurs have the same two options for
submitting transactions as before: directly submitting to a builder, which corresponds to
submitting to a private pool pre-PBS, or submitting to the public mempool, i.e., the lit
venue. Capponi et al. (2024) shows that builders are incentivized to maximize the rent
from transactions, as this determines whether they win the block proposal competition
against other builders, even referring to the current scheme for Ethereum as ’Proof-of-
MEV’.

9The average validator share in the dark pool operated by Eden Network is lower than in the lit
market. However, Eden Network also offered a ’subscription’ to their users (stakers), providing them
with a priority spot in their blocks. Some arbitrageurs had this type of ’subscription’, so the transaction
fees might not always reflect the full cost of the arbitrage.

31



7.2 Statistical arbitrage activity

Cross-DEX arbitrageurs can circumvent front-running risk by splitting their arbitrage
transaction into a buy- and sell-transaction. Nonetheless, this reintroduces other costs
associated with arbitrage (e.g., Gromb and Vayanos (2010)). On the one hand, the cross-
DEX arbitrageur cannot leverage flash loans to cover the capital needs of arbitrage, thus
she must hold sufficient capital reserves. Second, the possibility of transactions landing
between the buy- and sell-transactions and modifying the price exposes the cross-DEX
arbitrageur to inventory risk. Statistical (or non-atomic) arbitrage can be implemented
across DEXs on the same blockchain, across different blockchains (cross-chain arbitrage),
or between a DEX and a CEX (DEX-CEX arbitrage). Recent literature has mainly
focused on DEX-CEX arbitrage and has shown that arbitrageurs can profitably trade
against liquidity pools employing CPMMs (Milionis et al., 2022, 2024), similar to those
within our sample.

To investigate statistical arbitrage activity, we inspect the activities of blockchain-
based trading algorithms, often referred to as MEV bots. We use similar heuristics as
Heimbach et al. (2024) to identify statistical arbitrage activity. We use the addresses from
the Etherscan label database to identify MEV bots and filter for their trading activity
across the pools in our sample. Therefore in contrast to Heimbach et al. (2024) we do not
require the transaction to be first propagated to a dark pool, as trading algorithms make
all transactions. We use the hashes of MEV transactions to exclude atomic arbitrage
transactions and sandwich transactions from the trading dataset. While sandwich trans-
actions may appear similar to statistical arbitrage due to the presence of transactions
containing a buy or a sell trade in the front of the block, they are always followed by
another transaction that makes a trade in the opposite direction in the same pool at a
lower position of the same block or in the next block. The transactions remaining are
all submitted by MEV bots and consist solely of a single trade (identified as transactions
using less than 250,000 gas), each of which would typically be identified as one of the
legs of a statistical arbitrage. In line with our approach throughout the paper, we focus
on transactions that change the pool states first within the block. Furthermore, we ex-
amine the inventory holdings of MEV bots, which serves as another indicative marker of
their involvement in statistical arbitrage. The most active MEV bots possess inventories
worth millions of dollars in various tokens, further suggesting their engagement in such
arbitrage strategies.

We investigate whether arbitrageurs split their transactions by inspecting whether
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Figure 10: The weekly number of atomic (blue) and (potential) statistical
(orange) arbitrage transactions.

they submit two consecutive single trade transactions, but we find no evidence of that.
Any linking between blockchain addresses and CEX accounts is vague. Therefore, we
cannot claim with certainty that a transaction observed on the blockchain represents
one leg of an arbitrage transaction. It is also possible that MEV bots are implementing
strategies that involve single trade transactions, which may not be related to statistical
arbitrage. However, we are confident that our filtering process reasonably accurately
identifies the components of statistical arbitrage transactions.

In Figure 10, we plot the weekly number of atomic and potential statistical arbitrage
transactions observed in our sample pools. The time series plot shows that by the end of
our sample period, the number of statistical arbitrage transactions greatly exceeded the
number of atomic arbitrage transactions. This anecdotal evidence suggests that, despite
the costs associated with statistical arbitrage, it remains a viable and profitable option
compared to atomic arbitrage in the presence of front-running risk. Our results align
with the large-scale study by Heimbach et al. (2024) who documents that DEX-CEX
arbitrage might account for as much as one-fourth of the trading volume on the five
largest exchanges on the Ethereum blockchain.
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8. Conclusions

Many market participants believe that blockchain technologies have the potential to rad-
ically transform the transfer of financial assets. This paper questions whether Decen-
tralized Finance (DeFi) can sustain itself. DeFi relies on blockchain-based settlement.
We show that blockchain-based settlement implies a fundamental dilemma that causes
market inefficiencies for any DeFi application. The dilemma is simple: Without pre-trade
transparency of transactions waiting for verification, validators cannot reliably cooperate
to verify transaction validity. However, without offering transaction fees to validators,
there is no incentive for them to collude with the aim of blockchain-based settlement:
establish consensus about transaction histories without a trusted third party.

Combining these two fundamental pillars of blockchain-based settlement – pre-trade
transparency and transaction fees – however, triggers front-running feasible. This practice
exploits that public information (such as transactions waiting for verification) is available
in advance. For good reasons, such practices are considered illegal in traditional financial
markets. Front-running risk renders, for example, arbitrage activities prohibitively costly
as it triggers a wasteful arms race for validation services. The result is devastating:
markets fail to work because it is not worthwhile to act on informational advantages
anymore. We provide evidence for this pattern based on the novel, granular data for
cross-decentralized exchange trading. Our analysis shows that price differences remain
large, unexploited by arbitrageurs due to front-running risks.

The dilemma for DeFi unfolds as follows: The only way to overcome pre-trade trans-
parency and transaction fees is by undermining the DeFi ideal, which sets off to render
trusted intermediaries obsolete. Our paper shows that front-running risk renders DeFi
applications inefficient without trusted intermediation. Reinstalling trusted third parties
mitigates the problem.
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