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Abstract

As two-sided platforms, decentralized finance (DeFi) applications face a key chal-

lenge: they need to attract participants on both market sides to function. Most

DeFi-platforms rely on an innovative bootstrapping approach called “liquidity min-

ing”, which involves participation rewards with protocol tokens to both market sides.

We assess the efficacy of liquidity mining on the largest DeFi lending protocols Aave

and Compound. Our findings indicate that while liquidity mining attracts deposits

and borrowers, its discontinuation prompts withdrawals. Using account-level data, we

identify a peculiar strategy that shapes the overall effect: a small subset of users de-

posits and simultaneously re-borrows tokens to capture rewards on both market sides,

creating substantial “phantom” liquidity, a phenomenon similar to wash trading. These

strategies account for 18% of deposits and 31% of loans, with peaks above 80%. Ad-

ditionally, up to 25% of total deposits constitute phantom liquidity. We show that on

balance such opportunistic behavior does not impose negative externalities but rather

contributes positively to overall welfare.
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The fundamental premise of Decentralized Finance (DeFi) platforms is to eliminate inter-

mediaries and directly connect producers and consumers of financial services. However, this

approach introduces a notable obstacle: peer-to-peer trading requires willing participants,

options and futures necessitate contractual counterparts, and borrowing is contingent upon

available lenders. DeFi platforms, facing constrained capital and fierce competition, grapple

with a critical question: how can they attract both liquidity suppliers and demanders?

This paper examines the incentive strategies of two leading DeFi lending platforms, Com-

pound and Aave. In contrast to cash incentives prevalent in traditional intermediated plat-

forms, DeFi protocols primarily rely on protocol-native tokens that grant their holders a

variety of rights. We analyze the unique challenges, DeFi-specific solutions, and blockchain-

related peculiarities intrinsic to these innovative models. An common behavior that we

observe in the context of these “liquidity mining programs” is that a group of market par-

ticipants deposits and immediately borrows back the same crypto-asset; these deposits are

therefore never accessible to the broader market — instead, they are “phantom liquidity.”

We tackle four key empirical questions: first, do liquidity mining programs attract liq-

uidity? Second, is the generated liquidity of a long- or short-term nature? Third, does

the reward distribution to both consumers and producers lead to phantom liquidity? And

fourth, most importantly, if phantom liquidity exists, does it benefit or harm other users?

Traditional platforms are organized by an intermediary that either funds incentives di-

rectly or sets fees that incentivize one market side at the expense of the other. For instance,

in card-based payment systems, card issuers act as intermediaries. To thrive, issuers require

both merchant acceptance and consumer adoption. Merchants are captive and accommo-

date to their consumers’ payment preferences, allowing card issuers to incentivize users with

perks such as cashback (financed by merchant fees). Uber provides another example of the

challenges in platform adoption: as drivers need to allocate time and passengers need to

request rides, Uber often provides discounts to both sides that they pay “out-of-pocket.”

DeFi platforms are different. First, by cutting out the intermediary that earns the spread

between user payments and producer income, there is no one left to directly subsidize or
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redistribute benefits from the captive to the non-captive market side. Second, the customary

distinction between producers and consumers blurs as individuals can and often do fulfill both

roles within a protocol. Third, there is an external effect in DeFi: individual users often

outsource the capital allocation to algorithmic asset managers, called “yield aggregators.”

While frictions and limited attention decelerate capital movements in traditional deposit

markets, automated yield aggregators swiftly distribute capital to the platforms with the

best risk-adjusted returns, as we document here. Overall, these institutional differences

create new, unexplored challenges for DeFi protocols in bootstrapping their marketplaces.

Most DeFi applications approach the bootstrapping problem by distributing protocol-

native tokens to both market sides on their platform. These tokens comprise several func-

tions, such as voting rights in periodic decisions about platform parameters, and they can

also be considered implicit claims on future revenues generated by the protocol.1 Ideally,

these tokens promote a self-reinforcing cycle of growth: early adopters benefit from the pro-

tocol’s success as effective incentives lead to higher fee income, raising the tokens’ value as

claims on that revenue. Known as liquidity mining, such incentive programs are a central

strategy of many protocols to attract capital and activity.

The DeFi ecosystem spans thousands of applications across multiple blockchains, and

many have offered incentive schemes. Our study focuses on lending and borrowing markets,

as these are the largest category within DeFi, accounting for about 40% of total deposits.

Token-based incentives in two-sided markets with externalities are considerably more

complex than cash-based schemes. We thus split our investigation: First, we study the

impact of liquidity mining on deposits, loans and related volume parameters at the protocol

level. Second, we utilize account-level data to identify and quantify behavior motivated

solely by these incentives, and then evaluate its impact on other protocol users.

A key insight of our study arises from opportunistic users who act as both borrowers

and lenders of the same asset. Specifically, depositors may benefit from borrowing back a

1Most protocols build “rainy day” or “reserve” pools out of fee payments, resembling the protocol’s equity.
Token holders vote on the reserve specifics and, in principle, could allocate these funds to themselves.
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portion of their funds to simultaneously earn both lending and borrowing incentives. The

amount they borrow is never genuinely accessible to other users within the protocol which

is why we dub it as “phantom liquidity.” Moreover, as the interest rate level is dynamically

tied to demand, phantom liquidity alters interest payments for others users. This situation

is analogous to an Uber driver who profitably drives themselves around as a passenger

(phantom supply/demand), but whose activities inflate the prices for users interested in the

service (price externality). In the context of financial applications it resembles wash trading

except that, arguably, phantom liquidity is transparent and not driven by nefarious motives

such as price or behavior manipulation.

Our data covers the Ethereum implementations of Aave and Compound, the two largest

lending protocols on the leading smart contract platform. We examine all activities from their

respective launches in 2019 and 2020 until early 2023. Combined, these platforms represent

85% of historical deposits in Ethereum-based lending markets. Both Aave and Compound

have implemented various incentive programs and adjusted numerous parameters, providing

us with multiple events to study behavioral changes. Across both platforms, there were 39

distinct tokens available for borrowing, and for these we identify a total of 135 platform-token

incentive changes that occur on 12 different dates.

We examine ±two-week event windows around the introduction/adjustments of incentive

programs based on a token-day-protocol panel constructed directly from blockchain trans-

actions. The results for our first two questions are clear: First, the introduction or increase

of rewards prompts users to deposit more and borrow larger amounts. We further note an

mild expansion of platform activity through a rise in the ratio of loans to deposits, called

“utilization,” which leads to an increase in lending and borrowing interest rates. Second,

the liquidity is not sticky: Reductions or terminations in incentives lead to fund outflows,

decreased borrowing, and a lower utilization. The latter effect implies that borrowers pay

(and lenders receive) less interest. This finding is somewhat concerning for platforms, as

they cannot provide incentives indefinitely, and ideally, platform activity should be robust

enough to sustain activities when incentives are phased out.
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Our main focus is to understand the incentive dynamics at the account level. Suspecting

that automated fund management plays a major role in DeFi, we collect data from the ac-

count addresses of the top 10 yield aggregator services and match them with accounts that

interact with the two lending protocols. We observe that many yield aggregators systemati-

cally deposit assets into a lending pool and borrow them back immediately. One explanation

for this behavior is that they establish a leveraged position. However, we find that it is par-

ticularly prevalent for stablecoins. Building a leveraged stablecoin (aka cash) position makes

little economic sense, except that it enables users to collect liquidity incentives on both

deposits and borrowings. Yield aggregators are not the only addresses using a deposit-

and-borrow-back strategy: we identify all accounts employing such stablecoin-to-stablecoin

strategies and, along with recognized yield aggregators, classify them as “yield-seekers.”

Yield-seeking strategies dominate DeFi lending protocols. On average, yield-seekers con-

tribute 18% of deposits and 31% of loans with peak rates of above 80%. Their activities

concentrate in a few accounts: in February 2023, Compound’s top ten yield-seeking addresses

hold 98% of yield-seekers’ funds, representing 43% and 23% of the protocol’s loans and de-

posits, respectively. Across platforms, 85% of liquidity rewards are allocated to stablecoin

pools to which yield-seekers directed 92% of their funds. We can then answer our third

question: weighted by investment, yield-seekers re-borrowed 69% of their deposits, thereby

creating phantom liquidity equal to 25% of the pool’s total liquidity. Our findings generally

show that deposits (“total value locked (TVL)”), which is often touted as a success metric

by DeFi lending platforms, needs to be absorbed with a grain of salt.

Unlike “sticky” bank deposits, algorithmic strategies swiftly reallocate funds when in-

centives change. For instance, when Aave launched its incentive program in April 2021,

yield-seekers increased deposits from $39M to $1.22B within ten days, elevating their proto-

col share from 0.2% to 30%. Aave’s incentive reductions prompted an immediate 18% decline

in deposits and a 19% decline in borrowing by yield-seekers. We present further evidence on

the impact of liquidity incentives on yield-seeker exposure through several regression analyses

using an event-study design, comparing the treatment to its main competitor.
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This leads us to our final question: do lending markets benefit or suffer from the en-

gagement of yield-seekers? Their strategy of lending and promptly borrowing funds back

modifies lending conditions for all users; thus, their presence creates an externality. Collat-

eral constraints in the lending design mandate that yield-seekers cannot borrow back their

entire deposits. Hence, they always generate a liquidity surplus even if they absorb most

of the deposits they provide. However, yield-seekers also escalate the borrowing demand,

which raises borrowing costs. The net effect, as we show formally, is theoretically not obvious

and depends on the relative contributions of total deposits to loans. Consequently, whether

liquidity mining is overall harmful or beneficial in practice requires empirical investigation.

To empirically quantify the effect, we exploit the granularity of blockchain data to com-

pute borrowing and lending rates in a hypothetical scenario where yield-seekers would be

absent. We find that yield-seekers lower the utilization rate by 3.7 and 2 percentage points

on Compound and Aave, respectively, leading to reduced borrowing and lending rates. Based

on these hypothetical rates, we calculate the cash value of the interest that other users would

have paid or received in the counterfactual scenario. In dollar terms, depositors lost $602M

in interest, but borrowers saved $649M in interest payments compared to the counterfactual

scenario. Therefore, the answer to our fourth question is that for our observation period,

yield-seekers created a net positive externality of $47M, corresponding to about 7% of the

total cash value of the liquidity incentives paid out in the programs.

Our research, though focused on two platforms, provides broader insights into the incen-

tive mechanism of DeFi: We show that while liquidity mining programs effectively attract

activity, much of it is phantom, arising from users capitalizing on rewards from both sides of

the market. Any platform that subsidizes both market sides faces this challenge, especially

when yield-seeking algorithms start to structurally exploit rewards. In our sample, the gen-

uine liquidity generated was sufficient to create a positive externality. However, our theory

shows that the direction of this externality can vary. Finally, we document that liquidity

mining markedly distorts platform activities and parameters, implying that empirical studies

in DeFi should control for such programs in their data.
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Related Literature. This article contributes to three streams of literature.

First, we contribute to the growing literature exploring the mechanisms and economic

implications of decentralized finance. Harvey et al. (2021), John et al. (2023), and Makarov

and Schoar (2022) provide overviews and feature various elements of DeFi. One strand of

literature focuses on decentralized trading markets (e.g., Capponi & Jia, 2021; Lehar &

Parlour, 2023; Park, 2023). Decentralized exchanges and credit markets often compete for

the same liquidity. In addition, various applications in the DeFi ecosystem complement

services by interacting with trading and lending protocols.

Another strand of literature studies the performance and architecture of yield aggregators

and decentralized asset managers (e.g., Augustin et al., 2022; Cousaert et al., 2022). Yield

aggregators often build leveraged positions using lending protocols. As we show in this

paper, a yield-seeking strategy can also target the lending platforms’ incentives and affect

key market variables such as interest rates and consequently market outcomes.

Several contributions delve into decentralized lending markets. Rivera et al. (2023) pro-

pose an equilibrium interest rate model revealing a welfare loss in DeFi protocols due to

inelastic rates at full utilization, leading to inefficient capital allocation. They propose

a step-wise rising function that sharply increases near full utilization. Chaudhary et al.

(2023) examine interest rate determinants, suggesting a weak link between rates and future

premiums on the underlying cryptocurrencies. They argue that lending markets predomi-

nantly serve to assemble speculative positions. Carre and Gabriel (2023) develop welfare-

maximizing pricing rules of DeFi lending platforms operating in Proof-of-Stake blockchains.

Cornelli et al. (2023) study why individuals use Aave and argue that depositors seek an

investment return while borrowers speculate and seek participation in platform governance.

As we show, liquidity mining renders borrowers’ and lenders’ motives to be two sides of the

same coin, at least for yield-seekers. Heimbach and Huang (2023) examine leverage in Aave

and Compound, finding that users do not fully exploit their leverage potential. Chiu et al.

(2022), Lehar and Parlour (2022), and Qin et al. (2021) address the inherent robustness

of the lending and liquidation process. While we do not feature liquidations in this paper,
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the liquidity extent in a pool influences risks related to borrowing/lending. Yield seekers’

stablecoin-to-stablecoin activities resemble wash trading, as identified by Cong et al. (2023)

on centralized crypto exchanges, albeit wash-lending arguably has no manipulative intent.

Liquidity mining programs are interesting beyond the narrow lens of finance and lend-

ing protocols. A lending protocol essentially resembles a decentralized two-sided platform

that needs to attract producers and consumers to its market. The input (capital) for the

produced good (liquidity) is scarce, prompting the platform to provide a native token linked

to its success (transaction volume) as a production and usage incentive. Liquidity provi-

sion involves a positive externality and generates network effects. Attracting a critical mass

of participants poses a major challenge, which has been studied in various industries (e.g.,

Cabral (2011), Evans and Schmalensee (2010), and Rysman (2009)). In this context, liquidity

mining has emerged as an instrument with distinctive advantages for competing platforms.

Moreover, several papers study externalities in markets facilitated by digital platform firms

(e.g., Kamepalli et al., 2019; Liu et al., 2021; Reisinger et al., 2009).

Finally, there is a significant literature that studies the general role of tokens in platform

finance; Canidio et al. (2021) and Li and Mann (2021) provide overviews. Recent contri-

butions that study the financing of blockchain-native projects, taking into account specific

features such as platform building are Chod et al. (2022), Gan et al. (2021), Catalini and

Gans (2018), Shakhnov and Zaccaria (2021), Lee and Parlour (2022) (for crowdfunding),

Malinova and Park (2023), Gryglewicz et al. (2021), and Goldstein et al. (2022). While we

do not test questions regarding specific optimal token design, we offer novel empirical insights

into the application of tokens as an incentive tool and the consequences for the platforms.

1 Fundamentals of DeFi Lending

Overview. Decentralized lending uses a number of concepts and terms that may not be

familiar to most readers. We provide a detailed description in the Appendix; in this section

we highlight the main components that are relevant for our analysis of liquidity mining.
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Decentralized lending encompasses two primary application types: liquidity pool-based

and minting protocols. Our focus is on liquidity pool-based applications because these, in

contrast to minting protocols (such as Maker), rely on third-party liquidity.

In pool-based lending platforms (henceforth: LPs), depositors contribute crypto-assets

to a non-custodial liquidity pool on the public blockchain, which earn them passive interest

income when somebody borrows from the pool. Deposits (and loans) can include multiple

assets. Interest income accounting is tied to the transferable token that depositors receive

in return for their pool contribution.

Borrowing and the Role of Collateral. Because blockchain interactions are by design

pseudo-anonymous, there is no credit as such. Instead, borrowers must provide collateral

that exceeds the value of the loan.2 If the collateral value falls below a certain threshold,

any third party can repay the loan and trigger the liquidation of the collateral.

Procedurally, prospective borrowers initiate the lending process by depositing funds into

a lending pool. Borrowing becomes available once they designate a portion of their deposit

as collateral. The protocol assigns a collateral factor via the governance process to each

asset that is accepted as collateral. This factor determines the maximum outstanding debt

relative to the collateral. For instance, a collateral factor of 0.8 allows a depositor to borrow

up to 80 cents for every dollar of collateral.

Borrowers receive the borrowed asset into their wallet from the general pool, and the

protocol continually tracks their loan balance and interest. Loan repayment is facilitated by

submitting the total amount borrowed plus interest to the lending pool.

Determination of Interest Rates Interest accrues per block, and the interest rate for all

loans adjusts continuously. For a given liquidity pool, rates are determined programmatically

based on the utilization rate, defined as the ratio of outstanding debt to supplied deposits.

2An exception are so-called “flash loans,” which are riskless by design. Flash loans, as offered on Aave,
necessitate borrowing and repayment execution within a single block, eliminating any counterparty and
liquidity risks (see, e.g., Lehar & Parlour, 2022). We do not feature flash loans in our analysis.
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Let Bit denote the amount borrowed and Dit the supplied deposits in liquidity pool i at

day t. The key input for the determination of borrowing and lending rates is the utilization

rate, defined as the ratio of open borrowings to deposits

Uit =
Bit

Dit

. (1)

The interest rates are deterministic, increasing functions of the prevailing utilization

rate and can be backed out for any block from the available data. We delegate a detailed

description of the interest rate determination to Subsection 8.4 in the Appendix.

Each user interaction with a pool changes the utilization rate. In our subsequent analysis,

we identify users that deposit and also borrow from the same pool at the same time. Since

loans must be over-collateralized, one might suspect that such a trader would nevertheless

reduce utilization because they must borrow less than what they contribute. The details,

however, are more subtle. We show the following Lemma.

Lemma A pool user who borrows and lends in the same pool increases pool utilization if

their relative contribution to borrowing exceeds their relative contribution to deposits.

Proof. Ignoring time subscript t and pool subscript i, suppose user a deposits Da and

borrows Ba. The subsequent utilization U is:

U =
B +Ba

D +Da

⇐⇒ U =
B

D

(
1 + Ba

B

1 + Da

D

)
. (2)

It follows that a pool user increases pool utilization if and only if their relative contribution

to borrowing exceeds their relative contribution to deposits, Ba

B
> Da

D
.

The utilization shift hinges on the user’s relative contributions to both borrowing and

deposits: A new position decreases (amplifies) utilization if the relative borrowing proportion

requested is less (more) than the relative deposit provided. It is therefore an empirical

question whether a user’s platform engagement increases or decreases utilization.
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2 Liquidity Mining and User Behavior

2.1 Liquidity Mining

Attracting ample liquidity is essential for the loan mechanics of LPs and benefits users for

several reasons. Liquid pools are less susceptible to illiquidity risks, enabling frictionless

lending even in peak demand periods. Moreover, large individual loans or deposit with-

drawals are less disruptive, akin to a highly liquid traditional bank. Thus, high liquidity

typically guarantees lower and less volatile lending rates with protocols often advertising

their aggregate TVL, knowing that users gravitate towards the most liquid pools.

Capital is scarce and the growth of DeFi has sparked fierce competition among protocols

for liquidity. In traditional finance, banks usually compete for funding by providing higher

deposit or reduced borrowing rates. As banks serve as intermediaries for both loans and

deposits, such incentives are typically financed by the institution’s profits with the bank

accepting a smaller spread between rates.

A decentralized platform neither intermediates nor captures the spread, making it chal-

lenging to apply a similar mechanism. To address this problem, most platforms imple-

ment liquidity mining programs that incentivize liquidity provision by rewarding users with

platform-specific tokens, which may posses several features. Most commonly, the token al-

lows its owner to vote on platform policies and parameters, such as the properties of the

interest rate function, use of the reserve, and even fee payments to token holders.

In the typical liquidity mining process, a LP generates a fixed quantity of new native

tokens and distributes them to protocol users over a fixed time horizon. Details of the

schemes differ, but in most cases, users receive rewards on a block-by-block basis for as long

as they keep their positions (deposits and/or loans) open.

There are different models for obtaining these tokens: one is to update the wallet balance

of depositors and/or borrowers. Another is to require that users deposit (or “stake”) the

receipt token in a smart contract that accounts for the rewards over time. Using platform

tokens is often touted as a mechanism to align the interests of token holders with those of
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the platform and, in particular, to entice them to keep their funds in the protocol even after

rewards run out due to their “skin in the game.” However, as is well-known from contract

theory, such incentives may not work well if the claims are trade-able (i.e., no skin in the

game) or if the user is a minor player; see Bakos and Halaburda (2019). Whether these

tokens serve their intended purpose is one of the empirical questions that we address here.

2.2 Yield Aggregators and Yield Farming

Yield Farming is the process of allocating capital to the DeFi protocols that provide the

largest rewards — a fundamental attribute of capitalism. Although users can deploy their

assets themselves in any way they choose, in practice, the process of “farming” is usually

facilitated by delegating the task to decentralized asset managers known as yield aggregators ;

Yearn Finance is a prominent example.

These tools are usually computer algorithms that organize and execute the strategic

allocation of agents’ assets to the protocols that provide the highest rewards based on a

pre-specified set of features. A yield-aggregation service collects users’ funds in smart-

contract-based pools, which are then invested by the protocol according to a predefined

yield-generating strategy. Investment strategies can range from simple re-balancing to cap-

turing liquidity mining rewards to complex sequences involving leveraged (sometimes referred

to as “spiral”) borrowing-lending.

Yield aggregators are decentralized organizations: strategies submitted by contributors

are reviewed by the community and eventually approved through a decentralized voting

process. Once the strategy script is formalized in a smart contract, users can allocate funds

and the protocol executes the strategy autonomously (Cousaert et al., 2022).

2.3 Compound’s and Aave’s Liquidity Mining Programs

Aave’s and Compound’s liquidity mining programs were initiated by the community and

were triggered by the votes of the respective tokenholders of Decentralized Autonomous Or-
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ganizations (DAOs). Both protocols ran liquidity mining programs with several adjustments

during our observation period from May 2019 to February 2023.

Compound launched its governance token COMP in June 2020 and used it in an extensive

liquidity mining program. At its initiation, the program deposited 4.23M COMP tokens

in a reserve contract to be allocated over four years. Subsequently, the contract started

distributing 0.5 tokens per Ethereum block, which was gradually reduced to currently 0.17

COMP/block. Rewards are split among qualifying pools, and within most pools, 50% of

the tokens are distributed to borrowers and lenders, respectively. For instance, in February

2023, the protocol distributed ≈ 1300 COMP per day, corresponding to USD 71,500. Which

pools qualify is determined based on the community votes of the COMP holders.

Compound publishes its incentive allocation scheme and votes relating to it on its gov-

ernance website. Prior to a vote on December 26, 2020, liquidity incentives were allocated

proportionally to the interest accrued in a respective pool (see CIP 7). Subsequently, the

incentive distribution was linked to a fixed ratio — subject to modification through com-

munity voting. Most rewards go to stablecoin pools: in early 2023, about 97% of COMP

tokens. To date, Compound has changed the pool distribution 12 times, and its liquidity

mining program is active at the time of writing.

The AAVE protocol token was established in September 2020 through a migration from

the LEND token — the protocol’s original native coin in its first launch under the name

“ETHLend” (see AIP 1). Aave allocated 3M of the total 16M AAVE tokens to an ecosystem

reserve for future protocol development. The protocol’s liquidity mining program, similar to

Compound, was financed with these tokens. This program started on April 26, 2021.

Initially, the Aave liquidity mining program distributed 2200 stkAAVE per day from

the ecosystem reserve in proportion to the borrowing activity in supported pools.3 A fixed

distribution scheme was established on August 24, 2021, with roughly 85% of coins allocated

to stablecoin pools thereafter. There were three reductions as decided by the community

on August 24, 2021, November 22, 2021, and February 21, 2022. Additionally, the pool

3stkAAVE is a staked version of the AAVE token with a vesting period of 7 days upon withdrawal.
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distribution was adjusted five times. The program concluded on May 21, 2022. On its last

active day, 1078 AAVE tokens were shared among protocol users, representing a value of

USD ≈ 97,000. Overall, 680,282 AAVE tokens were distributed over the program’s lifespan.

Table 1 provides the programs’ most important dates and parameter adjustments. Tokens

of Compound and Aave include no explicit rights on revenue but through governance votes

users have the implicit ability to determine the use of the reserve pools.

Overall, including the start and end, Aave adjusted rewards five times, and Compound

four times. The adjustments, however, do not always involve an across-the-board-reduction.

Rather, rewards for specific pools are sometimes increased, decreased, newly established, or

entirely eliminated. Our analysis focuses on identifying significant structural shifts in reward

schemes per protocol and coin, defining a shift as a change exceeding ±10% that lasts, on

average, for two weeks.

During the first two weeks after its launch, Compound adjusted its program several times

affecting various pools between June 15, 2020 and July 3, 2020. These changes would not

lend themselves to sufficiently long event windows, and we therefore do not study these

separately. Rather, we assess the start of Compound’s liquidity mining program by studying

the 14 days prior to June 15 and the 14 days after July 3, 2020.

Furthermore, we drop three tokens from consideration. First, we ignore changes to the

pools involving the lending protocols’ native tokens AAVE and COMP. Second, we exclude

the AMPL token, which exhibits negligible deposits and token rewards but highly volatile

utilization rates. As a result, this token’s interest rates fluctuate between 0 and several

hundred percent numerous times, creating its own (dis-)incentive scheme.

In summary, we identify 135 protocol-token changes to rewards, which lead to 12 distinct

28-day event intervals.
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2.4 Yield-Seekers’ Behavior

From their respective launches until February 2023, Compound and Aave disbursed total

rewards of USD 445M and USD 193M. Unsurprisingly, some users systematically “farm”

these rewards using (or mimicking) automated yield aggregation strategies. A key objective

of our investigation is to comprehend the impact of these activities. We exploit a peculiar

pattern in the behavior of some users to identify these strategies in the data.

Specifically, there is a type of user that deposits and promptly borrows back the same

token. For volatile tokens, such behaviour can create a leveraged position. However, we

observe that this phenomenon is most prevalent in stablecoins, where users deposit and

borrow digital USD. It is difficult to see an economic rationale in depositing and borrowing

the same stablecoin: there is no price appreciation to speculate on, users pay more interest

for borrowing than they receive on their collateral, and because the position must be over-

collateralized, they have less disposable income. We thus argue that this observation is

driven by the desire to receive liquidity rewards for lending and borrowing. This view is not

merely our opinion — some yield aggregators directly advertise this strategy with attractive

historical returns (e.g., Yearn Dai). Henceforth, we refer to the accounts that exclusively

hold stablecoin-to-stablecoin positions as yield-seekers.

To illustrate our argumentation, consider the borrowing and lending activities on Com-

pound during the liquidity mining program. On February 1, 2023, a total of 8,957 addresses

collectively borrowed USD 721M, utilizing collateral worth USD 1.17B. Of these borrowings,

96.3% were made in the three stablecoins USDC, DAI, and USDT. A small subset of borrower

accounts (7%) exclusively borrowed and deposited the same stablecoin. This small fraction

of addresses accounted for 44% of the total loan volume. The top 10 addresses within the

subset covered 97% of the borrowed amount. In our view, liquidity rewards drive the stable-

to-stable borrowing. These rewards distort the economics of borrowing and lending, as they

overcompensate for the interest rate spread. Yield-seekers capitalize on these incentives and

— as 97% of rewards are granted to stablecoin pools — allocate funds accordingly.
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A large-scale example for a yield-seeking strategy is the Yearn DAI vault. In February

2023, its smart-contract held USD 54M in funds and deployed this capital to repeatedly

deposit and borrow stablecoins. This created the largest single position on Compound,

accounting for 15.5% (or USD 111M) of borrowing volume. More generally, seven out of the

top ten loan positions in our data belong to yield-seekers holding stablecoin pairs.

Since yield-seekers are a driving force behind Compound’s TVL, their behaviour may

significantly affect the protocol: their deposits add liquidity, their borrowing extracts it.

Whether the net impact is positive is an empirical question that we address in Section 6.

3 Data and Summary Statistics

3.1 Data

We examine the two largest lending protocols, Compound and Aave V2, on the Ethereum

network, the largest smart contract blockchain by total value.4 Since their inception on May

07, 2019, and December 01, 2020, the smart contracts of these protocols have collectively

managed a time-weighted average of USD 14.9B in deposits and USD 5.64B in loans. Al-

though these numbers are significant, the protocols would rank outside of the top 100 U.S.

banks, many of which are small, by total deposits.5 Within the Ethereum-based lending

markets, Aave V2 and Compound represent 85% of the historical TVL.

The Ethereum blockchain records all transactions transparently so that we can observe

every call to the smart contract functions of the lending protocols. We construct three data

panels for our analysis from these records. The first is based on scraped raw transaction

data and includes user addresses, timestamps, and token prices for our sample protocols

Compound and Aave since they went live until February 1, 2023. This data stems directly

4Ethereum’s market value accounts for 69% of total market capitalization of smart contract networks
at the time of writing; see https://coinmarketcap.com/view/smart-contracts/. Ethereum is also the most
attractive network for lending protocol deployment: Out of the 70 listed blockchains on DeFi-Llama, 48.5%
of the TVL in lending protocols is derived from Ethereum-based protocols.

5See the Dec 2022 data from the FDIC.
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from the Ethereum blockchain and we scraped it using The Graph.6

During our sample period, Aave and Compound hosted pools for 37 and 19 tokens,

respectively, encompassing a total of 39 distinct tokens. Table 7 lists all tokens. In broad

terms, there are two categories of token pools: USD-linked stablecoins and volatile assets.

Stablecoins are digital representations of the US dollar and can be classified into three

distinct types: the fiat-backed coins USDT, USDC, USDP, TUSD issued by Tether, Circle,

Paxos, and TrueUSD; the crypto-backed coins DAI and FEI; and the algorithmic stablecoin

UST from Terra. The second group of assets are volatile tokens, including well-known

cryptocurrencies, such as ETH and Bitcoin. Additionally, this category includes tokens from

major DeFi protocols, such as UniSwap’s UNI token. As described above, we omit the AAVE

and COMP tokens from our sample as well as the token AMPL.

The dataset covers all 3.4M interactions with the relevant pools of the protocols. We

aggregate this data to the daily level based on Universal Standard Time by account, pool, and

protocol. This step requires us to aggregate deposits, borrowings, repayments, withdrawals,

and liquidations and to calculate the interest incurred. As a result, we can compute the

inflows, outflows and balances for each account per day. In the process, we identify 474,274

unique addresses; 17,237 of these are active on both platforms.

Our second key dataset is the hand-collected historical information on the liquidity mining

rewards for the two platforms. We collect information on liquidity mining programs from a

review of all 322 governance decisions (154 for Compound and 168 for Aave), related forum

discussions, and on-chain data.7 From this information, we obtain the start, change, and end

dates, the reward allocation structure per protocol and pool, and the depositor-to-borrower

distribution weight of all liquidity mining programs since the protocols went live. This

data allows us to reconstruct the comprehensive time series of token and USD-denominated

rewards on Aave and Compound.

The third dataset concerns yield aggregation services. We collect the blockchain address

6See https://thegraph.com/explorer for the indexed protocols, methodology, and documentation.
7See https://app.aave.com/governance/ and https://compound.finance/governance for the documenta-

tion of governance proposals, the related forum posts, and vote distributions.
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information for ten yield aggregator services.8 As of February 2023, this sample consti-

tutes 95% of the total volume of Ethereum-based aggregators, according to DeFi-Llama.9

Our dataset covers 4,138 Ethereum addresses associated with the yield aggregator protocols.

We obtained the data by retrieving vault and strategy addresses from the protocols’ respec-

tive websites and from a smart contract search on Etherscan. Of these 4,138 addresses, we

identify the 177 addresses that accessed Aave V2 and Compound during our sample period.

Finally, we compile data for several time series and cross-sectional control variables from

public sources: we gather USD prices and circulating supply data for each sample token

from Coinmarketcap.10 This data allows us to compute a normalized variable for TVL: pool

deposits as a fraction of total outstanding coins. For wrapped coins, such as WBTC, we em-

ploy the circulating supply of the underlying native crypto-asset. Due to the unavailability

of reliable circulating supply data for DAI, KNC, RENFIL, STETH, UST, and XSUSHI, we

exclude them when analyzing changes in the share of deposits to circulating supply. More-

over, we calculate daily returns for the largest crypto-asset, BTC, as a time series control.

We collect the daily number of processed blocks and the average Ethereum transaction fee

per day from Etherscan and BitInfocharts.11 To measure volatility in the crypto market,

we use COTI’s Crypto Volatility Index (CVI), which tracks the 30-day implied volatility of

Bitcoin and Ethereum-based options backed by prices from the Deribit exchange.12

3.2 Identifying Yield-Seekers

We are interested in yield aggregators in general and we are also particularly interested in

accounts that deposit and borrow the same stablecoin at the same time; we dub the latter

“stable-to-stable” users. We identify the smart contract addresses for yield aggregators

(sometimes referred as “vaults”) as outlined above. Many of these yield-aggregators are

8These are: Yearn Finance, Beefy Finance, Flamincome, Badger DAO, Idle Finance, Vesper, Origin
Dollar, Chicken Bond, Harvest Finance, and Sommelier.

9See https://defillama.com/protocols/yield%20aggregator/Ethereum
10See https://coinmarketcap.com/api/ for the API documentation.
11See https://etherscan.io/chart/blocks and https://bitinfocharts.com/ethereum-transactionfees.html.
12The documentation and calculation process is described on https://docs.cvi.finance/cvi-index/cvi-index.
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stable-to-stable user, but there are others: We identify all “stable-to-stable” users directly

from our data as addresses that exclusively deposit and borrow stablecoin pairs in DAI,

USDC, or USDT. For the purposes of our analysis, we qualify an account as a yield-seeker

if it is either a stable-to-stable user or a yield aggregator.

3.3 Summary Statistics

Protocols and Pools. Figure 1 depicts historical statistics on deposits, borrowings, in-

terest rates, and fees at the protocol level for Compound and Aave. The total combined

deposits and borrowed amounts peak at USD 39.6B and 17.6B in mid-September 2021.

The subsequent decline is driven by both a drop in activity and by a decline in token

values. Stablecoin pools, such as DAI, saw an 80-90% decrease in token balances across

protocols. USD balances for the volatile assets decreased mostly because of the price declines;

some pools’ token balances even increased. Fees from interest payments and penalties from

liquidations are closely correlated with deposit/borrow levels. The cumulative historical

fee revenues on Aave and Compound until February 2023 amounted to USD 556.8M and

USD 460.3M, respectively. The largest pools are Aave’s ETH pool with peak deposits of up

to $9.3B, and Aave’s USDC pool with a borrowing volume of to $5.8B. We note, however,

that ETH pools received only a small amount of the total liquidity mining rewards.

Utilization Rates of our sample pools are 30% for Aave and 24% for Compound, on

average. Stablecoin pools exhibit higher utilization rates in comparison to volatile tokens,

with borrowing primarily occurring in stablecoin assets. Furthermore, while there are various

stablecoins (see Table 7), activity concentrates predominantly in USDC, DAI, and USDT.

These three coins account for 92.5% and 82% of the cumulative historical borrowing volume

on Compound and Aave, respectively. Table 2 presents descriptive statistics on the volumes

and collateralization ratios of the lending pools in our sample.
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Interest Rates are a function of utilization levels. The cross-sectional, TVL-weighted

average deposit rates on Aave and Compound platforms for the sample horizon are 1.5%

and 1.8%. The average borrow rates are 5.6% and 5.8%. Notably, smaller pools exhibit high

rates during periods of surging utilization. As an illustration, on December 31st, 2020, the

CRV pool in the Aave protocol contained yokens worth USD 5.7M. Due to a sudden surge in

utilization, both deposit and borrowing rates escalated to 306.1% and 306.4%, respectively.

However, such extreme rates are confined to small pools and rarely persist for more than a

day. We carefully examined our data and can confirm that such surges did not arise during

the event windows of our analysis.

In the absence of arbitrage, borrowing rates on one protocol must exceed lending rates

on the other. Borrowing and lending rates for the same tokens across protocols therefore co-

move. No arbitrage holds almost always, except for a brief episode from September 9 to 12,

2022, when the weighted deposit rates on Aave exceeded the borrowing rates on Compound

by an average of 1.8 percentage points.13

Structure of the Subsequent Analysis. We split our empirical analysis into three parts.

First, in Section 4 we present evidence from a series of panel regression models at the

pool-protocol-day level from Aave and Compound. We study the aggregate impact of the

starts, adjustments, ends, as well as all increases and decrease events for liquidity mining

programs on deposits, borrowings, utilization, and token flows.

Second, in Section 5 we study account-level and in particular yield-seekers’ behavior,

based on a panel analysis at the at the pool-protocol-day-accounttype level.

Third, Section 6 presents our analysis of externalities created by yield-seekers.

13Comparing average monthly rates on Aave and Compound with the three-month LIBOR shows that
lending rates in decentralized credit markets are uncorrelated with interest rates in traditional finance.
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4 Empirical Analysis and Results at the Pool Level

Our first analysis comprises four types of events: the start of the program, reductions and

increases of incentives, and the end of incentives. As rewards adjustment occur at different

times for different tokens within a protocol, we study four-week, non-overlapping panel event

windows (±14 days). We perform analyses for (1) each event individually and (2) pooled

starts and increases, as well as decreases and ends. We note that Aave V2 did not exist at

the time when Compound introduced its liquidity mining program.

We consider five variables of interest: (1) The logarithm of dollar-deposits or total value

locked in the pool; (2) the logarithm of the total USD amounts borrowed; (3) the deposits as

a fraction of the circulating supply of the respective token; (4) the utilization rate (the ratio

of borrowed to deposited tokens); and (5) the daily netflows, measured as the difference of the

logarithm of the inflow and the logarithms of the outflows in USD. To ensure comparability

across events and considering the significant growth and decline of the DeFi ecosystem

between 2020 to 2023, we normalize our variables of interest to the beginning of each event

window by subtracting a benchmark value from all observations. As the benchmark, we use

the value of the day before the event window (−15 days).

We need to consider the economic mechanisms that may lead to changes in our variables

of interest. We rely on first principles. All DeFi protocols require liquidity: automated

market makers, derivatives exchanges, and even proof-of-stake protocols only work if some

users make their capital available. Constrained liquidity providers shift funds to the most

attractive protocol. Since protocols are aware of the competitive environment, we hypothe-

size that they set up a program that is attractive and therefore the start of a liquidity mining

program should lead to inflows. Since protocols also incentivize lending, we hypothesize that

there should also be an increase in borrowings.

Liquidity mining programs aim to either “prime the pump” to initiate activity, or they

may be simply an attempt to keep up with competitors. One way or another, these programs

subsidize activity and thus their premise is to be temporary. In an ideal world for the
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platforms, demand becomes self-sustaining and liquidity incentives are no longer necessary.

In other words, when incentives decrease or are removed, the platform should outperform the

alternatives to prevent outflows. Since a no-change is not testable, we test for the opposite.

Hypothesis 1 (Level Changes) The introduction of incentives leads to level inflows of

funds and increased borrowing (H1a), reductions and terminations lead to outflows and de-

creases in borrowing (H1b).

Predicting changes in rates is more complex because they reflect alterations in the deriva-

tive, not the levels. We test as follows

Hypothesis 2 (Rates of Flows) The introduction of incentives increases the rate of in-

flows of funds (H2a), reductions and terminations depress the rate of inflows (H2b).

Finally, as argued in Section 1, the impact of liquidity mining on utilization is indeter-

minate: ceteris paribus, new deposits lower utilization and thus borrowing rates, making

borrowing more attractive. Token rewards however, also distort borrowing costs. The re-

sulting net effect is an empirical question (H3).

Hypothesis 3 (Utilization) We predict that utilization is unchanged (H3).

In an ideal world, to ascertain the causal effect of changes in mining programs, we would

require a DeFi protocol that meets the exclusion restrictions and serves as a benchmark in a

difference-in-differences analysis. However, liquidity can go to any protocol and all protocols

compete. Thus, the introduction of liquidity rewards for one protocol influences all others. It

is conceptually plausible that the effects of one network should go in the opposite direction

of a competitor. For example, if the treated protocol experiences an inflow, competitors

should experience an outflow of funds. The same argument can even be applied to different,

conceptually fungible tokens (e.g., USDT vs. TUSD)

Our estimation technique, strictly an event study, compares the treatment per affected

token-protocol relative to all protocol-token combinations that experience no reward change.
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Note that the number of observations for, e.g., a pooled decrease/end event is not the sum of

the decrease and end events because of overlapping controls. Our approach is similar to the

DiD designs with staggered adoption of treatments as established by Borusyak et al. (2023).

Each panel contains the coin-protocol combinations that saw a start/increase/decrease/end,

respectively, over the relevant event window as well as token-protocol combinations that saw

no change at all during the event window. Overall, we identify 135 protocol-token changes

to rewards, which lead to 12 distinct 28-day event intervals. The variable of interest is the

treatment effect for the events as well as the pooled rewards up (start/increase) and down

(decrease/end) events. Formally, for each of the variables of interest, we estimate

DVjit = β0 + β1 · LM changejt × treatedjt +β2 · LM changejt + β3 · treatedjt

+ time series controlst + ϵjit,

(3)

for pool i and protocol j at time t; DVjit are the log of the normalized dollar-deposits and

dollar-borrowings, the fraction of deposits of coins outstanding, the utilization, and the log-

netflows; LM startjt is a dummy equal to 1 for the 14 days following an liquidity mining

change in protocol j; treatedjt is a dummy equal to 1 for the 28 day event window around

a protocol’s change date; time-series controls are the log of Ethereum gas fees in USD, the

volatility index CVI, and the daily bitcoin return. Inference for all regressions is based on

time-clustered standard errors, using token fixed effects.14 The main variable of interest is

β1, the treatment effect, computed over the six different specifications.

Results. Figure 3 plots the variables of interest averaged over all pools for the treated

and untreated protocols for the 28-day event window for reward-up (start and increase) and

reward-down (decrease and end) pooled panels. The plots on the left are for up-events,

the plots on the right are for down-events; depicting deposits, loans, deposits as a fraction

of coins outstanding, utilization, and netflows. The figure suggests that a reward up is

14In untabulated regressions we also include protocol fixed effects as well as no fixed effects at all; the
conclusions are quantitatively and qualitatively the same.
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associated with a significant increase in deposits and loans, and a moderate relative increase

in utilization. The effects for down-events are more muted with a relative decline in loans,

deposits, and utilization. Net flows show little change for either series.

The estimation results for the four week event window are presented in Table 3. We

focus on the pooled by up/down description. The regression analysis confirms the visual

inspection of the data, indicating that the introduction of the liquidity mining program

resulted in a significant increase in deposits, loans, and utilization, albeit the latter at low

statistical significance. Conversely, a reduction in incentives is associated with a decrease in

deposits, loans, and utilization. There is no indication of a change in net flows.

5 Empirical Analysis and Results at the Account Level

5.1 Yield-Seekers and Liquidity

In Section 3.2, we introduced three account subgroups: yield aggregators, stable-to-stable

accounts (holding positions exclusively in the same stablecoin), and others. In our analysis,

we combine yield aggregators and stable-to-stable accounts to form the group of yield-seekers.

Figure 5 plots the time series detailing the deposit/borrowing contributions of these

groups to each protocol. Panels A and B display absolute values while panels C and D

show percentages. Overall, yield-seekers make up a sizable proportion at the protocol level.

During periods with active liquidity rewards, yield-seekers are responsible for a time-weighted

average of 19% of deposits and 29% of borrowings on Compound. These shares peak on

June 24, 2021, reaching 44% and 69% for deposits and borrowings, respectively. Similarly,

on Aave, yield-seekers account for 17% of deposits and 33% of borrowings on average, with

peaks of 32% and 57% observed on May 24, 2021. On average, yield-seekers contribute to

Compound and Aave deposits of USD 1.8B and USD 2.5B, as well as loans of USD 1.2B and

USD 1.9B, respectively. Since loans are immediately absorbed from the provided liquidity,

yield-seekers borrowings correspond to the amount of “phantom” liquidity in the protocols.
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Their engagement outside of periods with liquidity rewards is negligible, with average deposit

shares of only 3% on Compound and 1% on Aave.

At the pool level, yield-seekers direct most of their investments to stablecoin pools, with

87% on Compound and 96% on Aave. They account for extensive fractions of activity

in these pools: On Compound, yield-seekers contribute on average 45% and 41% of total

stablecoin deposits, and take out 43% and 41% of loans in the largest stablecoin pools, DAI

and USDC, respectively. Meanwhile, on Aave, yield-seekers account for 60% and 31% of all

deposits and 61% and 33% of all loans in the DAI and USDC pools, respectively.

Yield-seekers commonly supply to and borrow from the same pool to receive both in-

centives. In the Compound protocol, yield-seekers borrow and lend simultaneously in 5 out

of the 7 pools that have rewards. The TVL-weighted ratio of loans to deposits in all pools

where yield-seekers actively borrow is 62%. On Aave, yield-seekers borrow from 6 of the 8

with-reward pools and their weighted loan-to-deposit ratio is 74%.15 When examining sta-

blecoin pools during periods with active rewards, we find that 22% and 29% of total deposits

on average are attributable to phantom liquidity on Compound and Aave, respectively. The

highest observed values are 64% and 62%, respectively, both occurring in the DAI pool.

We find a strong positive correlation between yield-seekers engagement and the amount of

liquidity mining rewards allocated per pool (Pearson’s ρComp = 0.98 and ρAave = 0.91). Post

January 2021, Compound primarily allocated rewards to stablecoin pools and we observe

a contemporaneous increase in users establishing stable-to-stable positions. Looking at the

subset of yield aggregator contracts, the proportion of stablecoins steadily increased from

January 2021, nearing 100% by February 2023. On Aave, the reward percentage distributed

in stablecoin pools increased to ≈80% from November 22, 2021. Subsequently, we observe a

similar reaction from aggregator services (see panel A of Figure 6).

Yield aggregators executed 22,187 transactions from 113 distinct addresses on Compound,

and 4,062 transactions from 64 addresses on Aave. Figure 6 shows that interactions are linked

to the USD rewards and TVL of the reward program. Yield aggregators exhibit high activity

15We exclude pools with yield-seekers average investment volume below 0.1%, as described below.
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on both platforms: The median yield aggregator address conducted 35 on Compound and

21 on Aave over the sample period. For comparison, the median user conducts only 1

transaction on Compound and 2 transactions on Aave. Transaction count and volume of

yield aggregators are concentrated, with the top 10 addresses accounting for 66% and 58%

of transactions, and 65% and 83% of the flow volume on Aave and Compound, respectively.

5.2 Yield-seekers’ Engagement with Liquidity Mining

Table 4 summarizes yield-seekers’ activities within the±14-day windows surrounding rewards

adjustments, with separate sections for reward-up and reward-down events.

Note that the different observation periods affect the levels: most reward-up events took

place early in the sample when DeFi markets were still in their infancy, whereas down-event

occurred when markets where more developed, with larger aggregate deposits.

Notwithstanding the different periods, the summary statistics yield a few important ob-

servations: First, yield seekers mostly engage in stablecoin pools; although our identification

of these types of actors is somewhat biased towards stablecoins, we note that yield seekers

include all yield aggregators, not just those depositing stablecoins.

Second, it is immediately visible from the data that yield-seekers considerably boost the

liquidity pools in absolute terms and in relative contributions. Additionally, they play a

significant role in influencing borrowing and lending volumes. On Aave, for example, during

decrease events in the middle of the sample period, yield-seekers account for 74% of deposits

and they borrow back 57% of all deposits (and 77% of their own deposits).

Third, when rewards are reduced, yield seekers remove their funds rapidly and at scale:

they remove 21% of their deposits and 23% of their borrowings from Compound and 18%

and 19% from Aave, respectively. Notably, (which is not apparent from this specification),

yield-seekers had already curtailed their deposits by almost 85% by the time Aave closed its

liquidity mining program.

Additionally, we perform a formal regression analysis for the pre/post period to control
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for external factors and coin-specific covariates. Since yield seekers are predominantly active

we focus our analysis on stablecoins only.16 The analysis employs the same specifications as

in (3), except that we partition the data into observations for yield-seekers and everyone else,

and thus interact the treatment effect variable with a yield seeker indicator. Our variable of

interest is the treatment effect for yield-seekers.

Table 5 exhibits the regression results for the ±14 day event window. We discuss here

the pooled reward up/down findings. The estimates confirm our observations from the

summary statistics: yield-seekers significantly increase their deposits and borrowing at the

extensive and intensive margin, i.e., both in terms of the absolute levels, and their fractions

of deposits and borrowing. They further significantly decrease their deposits and borrowing

when incentives are lowered. The findings on borrowings following increases in funds are

sometimes conflicting. Here, we cannot exclude that despite the higher incentives, increases

in utilization triggered by other traders make borrowing less attractive.

Looking at reward termination events only (the fourth row), we observe that dollar de-

posits and borrowings display no significant effect. However, it is important to note that the

estimated coefficient gauges the relative impact on yield-seekers. As evident from the sum-

mary statistics, they decrease their activities, but the magnitude of the reduction appears

to align with the withdrawals of other participants. Namely, almost all of the yield-seekers’

deposits and borrowings consists of USDC tokens (67% and 68%, respectively), and they re-

duced their USDC holdings by $180M and $130M, respectively, on average post-termination.

The DAI token, the second most popular token among yield-seekers (representing 25% and

26% for deposits and loans, respectively), saw inflows of $55M and $21M.

In summary, the statistics clearly illustrate the crucial role that yield-seekers play in

stablecoin activities and their sensitivity to changes in liquidity mining incentives.

16In untabulated regressions, we performed the analysis from Section 4 for stablecoins only. Our findings
are robust for this subset.
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6 The Yield-Seeker Externality

The results indicate that when rewards increase or are introduced, utilization in the affected

pools rises, and when rewards decrease or disappear, utilization declines. Higher utilization

implies higher interest payments. The variable utilization is an increasing function of bor-

rowing and a decreasing function of deposits. Therefore, the findings suggest that incentive

programs attract a disproportionate amount of borrowing activity.

Our account-level analysis reveals that yield-seekers, engaging in both depositing and bor-

rowing, exhibit a abrupt reaction to incentive changes. The heightened utilization translates

directly into increased borrowing and lending rates, with a stronger impact on borrowing

rates due to the reserve pool wedge. In essence, the data suggest that an increase in in-

centives leads to higher borrowing costs, and our regression results imply that yield-seekers

and their “phantom liquidity” may be the driving force behind this phenomenon. Therefore,

yield seekers and their phantom liquidity appear to impose a negative externality on other

users.

In this section, our objective is to offer a conclusive assessment of their impact. By

equation (2), the utilization shift from a position is conditional on the relative share of

borrowings to deposits. Thus, yield-seekers may increase or decrease the utilization. Consider

two anecdotal examples:

• On February 1, 2021, yield-seekers held 61% of deposits and 50% of borrowings in

Compound’s DAI pool. If we would exclude their deposits and borrowings from the

pool, all else equal, utilization would be 16 percentage points higher.

• Conversely, on February 1, 2023, yield-seekers accounted for 72% of borrowings and

51% of deposits. If yield-seekers were not present, utilization would be 21 percentage

points lower.

We gauge the net effect of yield-seekers by computing the total dollar transfers from

borrowers to lenders resulting from their presence. A larger transfer induced by yield-seekers

is interpreted as a negative externality to the ecosystem.
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A key advantage of our collected data is that we can almost directly quantify this external-

ity.17 Using knowledge of yield-seekers’ aggregate positions, we compute the counterfactual

utilization and APY rates for each pool that would pertain in their absence.18 We then derive

the hypothetical interest rates for each pool where yield-seekers allocated more than 0.1%

of total investments19 and compute the total payments and receipts of interest. We note

the caveat that this counterfactual approach is ceteris paribus and cannot capture general

equilibrium effects, i.e., we do not know how the other borrowers and lenders would have

acted had yield-seekers not been there.

Figure 7 presents the transfers between borrowers and lenders with and without the

funds supplied and borrowed by yield-seekers. Panels (A) and (B) show the TVL-weighted

borrowing and deposit rates and the difference between the subgroups; these rates are based

the utilization rate and in Panel (C), we display the 20-day moving average utilization rate

across pools. Table 6 provides pool-level statistics.

Our results demonstrate that yield-seekers strongly affect the borrowing and deposit

rates. The average utilization spread between the two scenarios amounts to 3.8 percentage

points on Compound and 2 percentage points on Aave. Specifically, on Compound, deposit

and lending rates are 1.5 percentage points and 1.7 percentage points lower because of the

presence of yield-seekers. Meanwhile, on Aave the deposit and lending rates are on average

spreads 2 and 2.4 percentage points lower.20

Their impact is particularly pronounced in the biggest pools, DAI and USDC, consistent

with their significant presence in these markets (see Table 6 for details). Therefore, in terms

of the rates, depositors get paid less and borrowers pay less, but the benefit for borrowers is

17As is common practice in empirical work, we compute daily aggregate account balances and daily interest
rates. We note, however, that the protocols compound interest rates per block, and that discrepancy can
lead to minor account balance differences. In our data, these differences are smaller than 0.5% of the total.

18Removing yield-seekers’ funds in the counterfactual scenario may sometimes result in hypothetical
utilization rates above 100%. Since pool-based utilization has a natural maximum, we cap U at 1.

19Pools with negligible yield-seeker exposure on Compound are AAVE, BAT, COMP, FEI, REP, SUSHI,
TUSD, UNI, YFI, and ZRX. On Aave, this set includes 1INCH, AAVE, AMPL, BAL, BAT, CRV, CVX,
ENJ, ENS, GUSD, KNC, MANA, MKR, PAX, REN, SNX, UNI, XSUSHI, and ZRX.

20Stable borrow rates, offered on Aave, are on average 3.6 percentage points lower due to the presence of
yield-seekers.
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larger than the loss for lenders.

To quantify the cumulative dollar transfers over the sample, we compute the cash value

of the yield-seeker presence. The two panels D in Figure 7 illustrate the results. Red lines

represent the hypothetical, additional deposit interest that lenders would have earned, while

blue lines indicate additional borrowing interest borrowers would have paid in the absence

of yield-seekers. Compound depositors received USD 214M less in interest, but borrowers

paid USD 223M less in borrowing interest. For Aave, these amounts are USD −388M for

lenders and USD +425M for borrowers, respectively.

To conclude, although yield-seekers borrow back a substantial portion of their deposits

and thereby create phantom liquidity, they still generate a surplus of liquidity that benefits

the market as a whole: other users saved about USD 46.2M net interest across both protocols.

7 Summary and Conclusion

Decentralized finance is a genuinely clever idea with a simple workflow: at the core are

decentralized applications, pieces of code that have been registered on a public blockchain

and that are operated by the network, or, rather, the community of validators. These apps

run (almost) autonomously, based on a transparent set of rules. A decentralized application

can be accessed in two ways: one is by direct function calls to the blockchain smart contract.

The other, more consumer-friendly approach is via a website. Notably, there is no exclusivity

— anyone can create a new website to access the same or multiple functions, and multiple

parties can collaborate or jointly use the network and all its applications.

If decentralized finance has a future, however, it is critical to understand the specific

economic challenges for platforms that are intrinsic to blockchains. Our paper provides

important, novel insights into these challenges for a core application: decentralized lending.

There are two distinct features of the defi eco-system that make it economically and not

just functionally different from traditional finance. First, decentralized lending applications

are two-sided, intermediary-less, and undercapitalized platforms that need to bootstrap their
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market by attracting both borrowers and lenders. Second, they operate in an environment

where automated algorithms act as de-facto intermediaries by collecting capital and then

moving it swiftly to exploit at scale any incentives offered.

We make three important observations: first, platform incentives work, but they do

not create stickiness, in part because automated intermediaries move to greener pastures.

Second, liquidity mining rewards incentivize automated intermediaries to create phantom

liquidity. It is a phenomenon similar to wash trading, where the automated intermediary

deposits funds and borrows most of them back immediately, creating the illusion of liquidity

that is never accessible to the general public. Third, it is theoretically possible that this

behavior creates a negative externality by creating inefficient wealth transfers between bor-

rowers and lenders. However, we show that this is not the case, that is, phantom liquidity

is ultimately welfare-improving for the protocol users, at the rate of about 7% of the total

distributed liquidity incentives of USD 638M.

A question for future work that requires a theoretical analysis is whether phantom liquid-

ity is an unintended (albeit welcome) consequence or a deliberate design feature of two-sided

platform incentives, and whether it may emerge naturally over time as yield-seeking token

holders steer incentives via DAO votes to attract phantom liquidity.
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Appendix

8 Additional Institutional Details

8.1 Overview

This appendix reviews the institutional details of lending protocols that do not feature

prominently in our analysis. The last subsection features and example of a loan, with

borrowing and lending rates, and a liquidation.

8.2 Detailed Token Accounting

LPs use pool-specific synthetic, tradable tokens to track user balances and interest, created

when users deposit cryptocurrencies and burned upon withdrawal. There are two main
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token accounting systems. The first continuously updates the wallet balance of synthetic

token holders. This type of accounting system is used, for instance, by Aave. Specifically,

a user who supplies Q0 units of an A-token to the Aave pool obtains Q0 aA-token. While

the user holds the token, the balance updates continuously. To withdraw her deposit with

any accrued interest after holding the token for T blocks, the user sends her QT aA-tokens

to the contract, where

QT = Q0

T∏
t=1

(1 + rt), (4)

with time t measured in blocks and rt as the interest allocated per block t. The returned

aA-tokens are “burned” by the contract, meaning that they are sent to an address that is

not controlled by a private key.

The second type of interest accounting system provides users with a fixed number of

synthetic tokens that represent fractional ownership of the pool at the time of the deposit.

When they withdraw, their claim will have grown by the interest paid. Specifically, suppose

a user deposits q0 units of the A-token into a pool that contains Q0 of A-tokens and assume

there are Qc
0 units of the cA-tokens outstanding at the time of the deposit. Then the user

obtains a number qc tokens such that

qc

Qc
0 + qc

=
q0

Q0 + q0
. (5)

We define zt =
Qt

Qc
t
as the exchange rate of A to cA-tokens. Over time, interest accrues on

the lend-out portion of the liquidity pool, with the result that the pool contains QT > Qt

of the A token after time T , all else equal. When withdrawing their funds, users send qc

tokens to the contract and receive qT > q0 of the A-token at exchange rate zt > z0, where

qT = Qc × zT ; see Leshner and Hayes (2018).
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8.3 Borrowing, Collateral, and Liquidations

Since all blockchain activities are based on pseudo-anonmymous addresses and since users can

create arbitrarily many representations, reputation effects or institutional sanction mecha-

nisms known from traditional lending have no bite in the blockchain world. To prevent moral

hazard problems, all loans in the DeFi protocols that we consider are over-collateralizated.

Each permissible asset i ∈ I is associated with a collateral factor CFi ∈ [0, 1].21 This factor

determines a user’s borrowing capacity : a prospective borrower a ∈ A who has made deposits

Da1, . . . , DaI in assets i ∈ I, has borrowing capacity BCa defined as

BCa =
I∑

i=1

Dai × CFai. (6)

Value fluctuations of the token underlying the collateral/loan may lead to a situation where

a position approaches under-collateralization. LPs include a process known as a liquidation

event to maintain the system’s stability and security. A position qualifies for liquidation

once the collateral value falls below a minimum threshold relative to the outstanding debt.

Specifically, in terms of the numeraire, liquidation becomes eligible when the collateral mul-

tiplied by the asset’s liquidation threshold LTi ∈ [0, 1] declines below the outstanding debt.

The liquidation threshold corresponds to the percentage at which a position is defined as

undercollateralized. Akin to the collateral factor, the LT reflects liquidity and volatility risks

associated with the underlying asset and can be interpreted as a risk buffer. For instance, the

Aave protocol specifies LTBTC = 0.75, resulting in a minimum over-collateralization of BTC-

secured lending of 133%. More formally, the liquidation risk of agent a with outstanding

debt (
∑I

i=1Dai > 0) at time t is given by the the health factor HFat ∈ R+:

HFat =

∑I
i=1 Dait × LTit∑I

i=1Bait

(7)

The health factor summarizes the risk exposure of a position: If the value of the col-

21In the Aave protocol, the collateral factor is applied to the loan-to-value ratio (LTV).

35



lateral remains high relative to the borrowed funds (HFa > 1), the health factor will be

high, indicating that the position is secure. In contrast, positions with inadequate collateral

coverage (HFa < 1) can be liquidated by any agent (referred to as liquidators) willing to

invoke the smart-contract function and perform the liquidation. Note that an insufficient

HFa can result from both decreasing collateral value or increasing debt value. In the liq-

uidation process, the liquidator settles the outstanding debt (including interest) and seizes

the collateral at a discounted rate.

The collateral share C l
i the liquidator is allowed to seize against payment of defaulted

debt is equal to C l
i = Dl

i × (1 + LBi), where Dl
i corresponds to the debt repaid by the

liquidator and LBi to the liquidation bonus (or penalty from the borrower’s perspective) of

5-15%. The liquidation bonus is intended as an incentive for agents to act as liquidators

and keep the system healthy.22 As documented by Qin et al. (2021) and Lehar and Parlour

(2022), specialized bots (i.e., automated scripts) primarily perform liquidations. While the

fixed-spread liquidation model provides a deterministic and transparent financial incentive,

liquidators must account for transaction fees on the Ethereum network when calculating

liquidation profits. Bots typically execute atomic liquidation scripts to limit risks, including

a flash loan for the amount repaid upon liquidation and a currency swap on a decentralized

exchange to adjust the seized collateral.

8.4 Detailed Interest Rate Determination

Interest rates in decentralized lending pools are a linear function of utilization U — the ratio

of outstanding loans to provided deposits. When pool i approaches full utilization, Ui → 1,

liquidity risks arise because deposits can no longer be withdrawn seamlessly. The two-stage

linear interest function is designed to mitigate these risks; see (AAVE, 2020). For low values

of Ui, the slope is relatively small, but it increases sharply when utilization exceeds the

22Some LPs limit the proportion of debt that can be repaid in a single liquidation event to a maximum
percentage share determined by the close factor. For instance, the close factor on Aave is set to 50%.
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pool-specific optimal threshold U∗
i . Formally, the borrow interest rate Rb

it is defined as:

Rb
it =


Ri0 +

Uit

U∗
i
Ri1 if Uit ≤ U∗

i

Ri0 +Ri1 +
Uit−U∗

i

1−U∗
i
Ri2, if Uit > U∗

i ,

(8)

where R0 denotes the base interest for Uit = 0 (typically 0), Ri1 the (modest) interest

increase per unit of relative utilization below the pool’s optimal utilization, and Ri2 the

(sharp) increase when Uit exceeds the target and liquidity risks become urgent (50-300%).

Some LPs offer debt at stable borrow rates Rs
it, allowing agents to predict interest pay-

ments. Stables rates are higher than variable rates Rv
it, and their availability is limited by

certain constraints. Aave, for example, deterministically increases the stable rate when both

pool utilization exceeds Uit > 95% and the weighted average borrow rate across all pools

R̄b is below 25%, R̄b
t < 25%. Conversely, the stable rate of an open position Rs

i in asset i

declines if the rate surpasses the current stable rate of new debt by 20%, i.e, Rs
i > Rs

it × 1.2.

The deposit rates Rd
it follow from (8): interest payments from borrowers are channeled

to depositors with a deduction allocated to the pool’s reserve. The reserve is an impor-

tant feature of lending pools to provide users with additional insurance against default. As

discussed by Qin et al. (2021), technical issues, high market volatility, and other frictions

may prevent an under-collateralized position from being liquidated, thereby leaving the pool

under-capitalized. The reserve acts as a backstop by accumulating funds over time by re-

taining a fraction of interest payments. Eventually, depositors receive all borrower interest

payments Rbsv
it net of payment to the pool’s reserve, determined by the reserve factor RFi

(typically 5-20% of the interest payment). Let Vit and Sit denote the fractions of variable

and stable borrowers in i; the deposit interest Rd
it is

Rd
it =


Uit(VitR

bv
it + SitR

bs
it )(1−RFi) if stable debt is offered,

UitR
b
it(1−RFi) otherwise.

(9)
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8.5 An Example from the Ethereum Blockchain

This example is based on ETH address ”0x1514c5928534db6bcd97458515afc715c3a5b554”.

On April 17, 2021, the user deposited ETH 0.6=USD 1421, into the Aave V2 ETH lending

pool. Eleven days later, on April 28, the user borrowed USDC 1000 from the Aave USDC

pool, using her provided deposit as collateral. The key statistics are as follows:

• The pool’s total liquidity was USDC 1.73B and its outstanding debt USDC 1.58B

implying a utilization rate of UUSDC = 89.8%.

• The pool’s target utilization is U∗
USDC = 90%.

• The interest slope before the breakpoint U∗ is RUSDC,1 = 4%, implying a variable

borrowing rate of Rd
USDC = 3.99% for the user.

• The liquidation threshold for this asset was 82.5%.

• Therefore, the user’s position had a health factor of 1.35.

Between April 28 and late July, the ETH price dropped by more than 30%, causing the

user’s health factor to drop below 1 on July 22. The following happened

• A liquidator repaid USDC 761.1 of the loan and seized ETH 0.42 collateral, earning a

liquidation bonus of 5% or USD 38.05 before fees.

• The user then repaid the outstanding debt of USDC 252.19, collected the remaining

collateral of ETH 0.17, including ETH 0.00015 interest, and withdrew all funds from

the Aave protocol.
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Figure 1
Evolution of Aave and Compound (May 2019 to February 2023)

This figure shows the daily trajectory of important protocol parameters: Panel A and B show the total
deposits and borrows. Panel C highlights daily fees from interest and liquidation penalties (solid line, left-
axis), and the cumulative historical fee revenue generated by the protocols (dashed line, right-axis). Panel D
reflects the TVL-weighted deposit (solid) and borrow rate (dashed), denoted as the 30-day moving average.
Fee data is obtained from https://tokenterminal.com/docs/api/.
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Figure 2
Liquidity Mining Rewards on

Compound and AAVE (June 2020 to February 2023)

This graph plots the evolution of liquidity rewards distributed on Compound and Aave. The upper panel
shows the daily USD rewards calculated by multiplying the number of distributed tokens per protocol with
the respective USD native coin price (lower panel). USD rewards relative to the total number of deposits
and loans, which serve as an indicator of competitiveness for rewards, are shown in the middle panel. Dashed
vertical lines indicate adjustments in the number of reward tokens allocated per day.
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Figure 3
Effect of Liquidity Mining Programs

This plot illustrates the changes in essential variables throughout the beginning, reduction, and termination
phases of liquidity mining programs on Compound and Aave. All observations are standardized and centered
for a period of ±14 days around each event. The left column depicts increases in rewards (starts and improved
rewards); the right column depict reductions or ends of rewards. The first and second rows represent the
extensive margin (the dollar amounts of deposits and loans), the third row captures the fraction of marketcap
of a token that’s been deposited in a protocol, the fourth row displays the utilization rate, and the last row
shows the net token flows (inflows minus outflows). 41



Aave (January 2021 to February 2023)

Compound (January 2020 to February 2023)

Figure 5
Activity of Yield-Seekers

This plot illustrates the total deposits and loans (panels A and B) and the percentage of total pool TVL
and loans (panels C and D) contributed by liquidity miners and stable-to-stable addresses on Aave and
Compound. Red-dotted lines indicate adjustments of the liquidity rewards. The data is aggregated from
daily user balances and includes 113 and 64 addresses associated with yield aggregation services on Compound
and Aave, respectively, as well as all observed stable-to-stable addresses.
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Aave (March 2021 to February 2023)
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Figure 6
Stablecoins Share of Yield Aggregator Funds (Panel A).

LM Rewards and Number of Yield Aggregator Interactions (Panel B)

Panel A illustrates the monthly mean proportion and standard deviation of stablecoins (including USDC,
DAI, and USDT) in the total investment of yield aggregator services. Panel B displays the yearly USD re-
wards allocated in the liquidity incentive program on the left-axis, and the number of protocol interactions of
yield aggregators on the right-axis. Protocol interactions refer to deposits, borrows, repays and withdrawals.
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Aave (January 2021 to February 2023)

Compound (May 2020 to February 2023)

Figure 7
Effect of Yield-Seekers on Utilization and Lending Rates

Panels A and B highlight the TVL-weighted average borrow and deposit rates, both with and without yield-
seeking accounts, as defined in Subsection 2.4. Counterfactual rates are calculated by excluding the deposit
and borrow balances of yield-seekers. Stable rates on Aave are depicted as dashed lines. Panel C presents
the utilization rate for both scenarios. Panel D depicts the USD value of interest saved/lost by other users,
resulting from the influence of yield-seekers on interest rates. All figures are standardized using the 20-day
rolling mean. The red-dotted line indicate the commence and end of liquidity mining programs.
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Table 1
Coverage of Liquidity Mining Programs and important Modifications.

This table shows the essential start, adjustment, and end dates of liquidity incentive programs implemented on Compound and Aave, together with
the volume of payouts. The data are based on the evaluation of 322 governance decisions (154 for Compound and 168 for Aave). The ”Proposal” row
contains the link to the corresponding community vote. Within the protocols, several smaller modifications of inter- and intra-pool distributions were
made, which we capture in our data; however, for the sake of brevity, they are not included in this table.

Date Protocol Program
Amount/day
(in native token)

Proposal

June 15, 2020 COMP Start of the LM (4 years) 3250 COMP CIP 7
June 27, 2020 COMP Adjustment of LM (-12%) 2880 COMP CIP 10
August 31, 2020 COMP Adjustment of LM (-20%) 2140 COMP CIP 21
April 26,2021 AAVE V2 Start LM 2200 stkAAVE AIP 11
August 24, 2021 AAVE V2 Adjustment of LM (-9%) 2000 stkAAVE AIP 28
November 22, 2021 AAVE V2 Adjustment of LM (-23%) 1540 stkAAVE AIP 47
February 21, 2022 AAVE V2 Adjustment of LM (-30%) 1078 stkAAVE AIP 60
March 27, 2022 COMP Adjustment of LM (-50%) 1163 COMP CIP 92
May 20, 2022 AAVE V2 End of LM - -
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Table 2
Pool-level Summary Statistics on Daily Data for Aave and Compound.

This table provides summary statistics on daily values for 38 and 19 lending pools on Aave and Compound, respectively. The observation period spans
from May 2019 to February 2023 for Compound, and December 2020 to February 2023 for Aave. USDC is the largest pool in both protocols regarding
deposits and borrowings. Note that we removed the minimum values from this table, since they are zero for all variables and groups.

Aave

Statistic Mean Median St. Dev. Pctl(25) Pctl(75) Max

Deposits (USD, M) 305.3 16.9 842.5 5.3 115.5 9,316.9
Borrows (USD, M) 108.6 2.2 447.1 0.3 15.9 5,832.4
Deposit Rate (%) 4.8 0.5 39.3 0.04 2.1 677.7
Borrow Rate (%) 7.5 2.3 44.8 0.7 3.8 753.0
Utilization (%) 30.2 18.6 29.8 3.7 53.2 100.0
Liquidation threshold (%) 50.9 65.0 32.3 0.0 75.0 90.0
Share circulating supply (%) 5.7 1.9 9.2 0.5 5.7 97.5

Compound

Statistic Mean Median St. Dev. Pctl(25) Pctl(75) Max

Deposits (USD, M) 438.7 36.7 984.6 1.9 262.4 6,417.2
Borrows (USD, M) 182.8 2.8 580.4 0.1 36.6 4,233.7
Deposit Rate (%) 1.2 0.3 2.3 0.04 1.4 70.2
Borrow Rate (%) 4.8 3.7 3.6 2.6 5.7 94.8
Utilization (%) 23.8 10.8 26.8 3.8 39.1 100.0
Liquidation threshold (%) 50.8 65.0 30.4 35.0 75.0 85.5
Share circulating supply (%) 5.1 0.8 11.4 0.1 6.8 99.9
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Table 3
Regression Table for the Impact of Liquidity Mining Programs

This presents our results on the impact of the introduction and changes to liquidity mining program on
five key variables: the log of the dollar equivalent of deposited assets; the log of the dollar equivalent of
borrowed assets; the fraction of the token’s market capitalization that has been deposited in the lending
pool; the utilization rate measured as the ratio of borrowed to deposited capital; and the net flows measured
as the difference in the logs of daily inflows and outflows in USD. All dependent variables are normalized
to the day before the event window. The data is an unbalanced panel by day, token, and protocol for the
14 days before and after a change to the liquidity mining protocol. There were a total of 135 changes in
liquidity pools on 12 separate days. Each column represents a panel regression on the subset of the sample
including protocol-tokens combinations that experience a fee change and those that experienced no change.
An observation is “affected” if the change happened for the date-coin observation for the respective protocol.
We use the following times series controls: the log of the token’s price, the token’s market capitalization,
the crypto volatility index CVI, the return for the crypto-currency ETH, and the logarithm of the daily
average Ethereum gas fee. The underlying regressions include token fixed effects, and standard errors are
clustered by calendar date. *, **, *** indicate significance at the 10%, 5%, and 1% levels; the table shows
the standard errors.

Panel A: log(USD deposits)

start 1.25***
(0.22)

increase 0.01
(0.08)

decrease -0.04
(0.12)

end -0.19**
(0.08)

rewards up 0.74***
(0.17)

rewards down -0.14*
(0.07)

Observations 4,618 3,208 5,888 4,630 6,717 7,624
R-squared 0.425 0.683 0.246 0.339 0.328 0.169

Panel B: log(USD borrows)

start 1.22***
(0.25)

increase 0.26***
(0.07)

decrease -0.09
(0.12)

end -0.28***
(0.09)

rewards up 0.84***
(0.18)

rewards down -0.21***
(0.07)

Observations 4,618 3,208 5,888 4,630 6,717 7,624
R-squared 0.453 0.429 0.257 0.299 0.322 0.166
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Table 3
Regression Table for the Impact of Liquidity Mining Programs (cont’d)

This table is identical to Table 3 except that it presents our regressions for a 14 days before/after change to
the liquidity mining protocol event windows.

Panel C: % deposits of total marketcap

start 0.03***
(0.00)

increase 0.01***
(0.00)

decrease -0.00
(0.00)

end -0.01***
(0.00)

rewards up 0.02***
(0.00)

rewards down -0.01***
(0.00)

Observations 3,962 2,848 5,029 3,997 5,858 6,541
R-squared 0.190 0.174 0.109 0.284 0.141 0.116

Panel D: utilization

start 0.02*
(0.01)

increase 0.00
(0.02)

decrease -0.01**
(0.01)

end -0.03***
(0.01)

rewards up 0.02*
(0.01)

rewards down -0.02***
(0.01)

Observations 4,596 3,163 5,795 4,540 6,672 7,513
R-squared 0.268 0.171 0.223 0.280 0.173 0.169

Panel E: log(netflows)

start 0.13
(0.31)

increase -0.13
(0.37)

decrease -0.67*
(0.36)

end 0.18
(0.42)

rewards up -0.07
(0.26)

rewards down -0.33
(0.28)

Observations 4,623 3,208 5,891 4,630 6,722 7,627
R-squared 0.117 0.187 0.067 0.115 0.110 0.055
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Table 4
Summary Statistics for Deposits and Borrowing of Yield-Seekers

This table summarizes the deposits and borrowing of yield-seeking accounts. A yield-seeking account is
defined as either the address of a yield aggregator vault or as an address that simultaneously borrows and
lends in stablecoins. The data is based on the Aave and Compound protocol; the time horizon is ±14 days
from the starting day of the liquidity mining program/reductions in mining incentives. Stablescoins are DAI
and FEI (crypto-collateral backed), USDT, USDC, USDP (fiat-backed, issued by Tether, Circle and Paxos
respectively), and TUSD (the ultimately collapsed algorithmic stablecoin from Terra). The largest volatile
assets are ETH and BTC. We note that most start and increase events happen early in the sample when
the market was at its infancy whereas reduction events occurred later in the sample when the market had
grown substantially.

Rewards up (start or increase) Rewards down (decrease or end)

deposit borrow deposit borrow
before after before after before after before after

Panel A: Stablecoins on Compound

in million USD 2.5 249.8 0.6 180.8 1,514.1 1,189.0 1,027.8 796.1
%TVL 3.1 37.1 0.8 26.8 55.6 47.4 37.7 31.7
%of borrowing 1.0 37.2 51.9 41.3
%own funds borrowed 25.3 72.4 67.9 67.0

Panel B: Volatile Assets on Compound

in million USD 6.9 6.5 0.7 0.6 15.8 12.1 2.8 0.5
%TVL 1.5 1.3 0.2 0.1 1.1 0.8 0.2 0.0
%of borrowing 3.6 1.4 4.6 0.8
%own funds borrowed 10.0 10.0 17.6 4.1

Panel C: Stablecoins on Aave

in million USD 541.0 984.8 400.0 731.1 4,143.7 3,401.0 3,197.6 2,603.1
%TVL 55.7 56.6 41.2 42.0 73.9 64.5 57.1 49.4
%of borrowing 50.8 49.3 72.9 64.8
%own funds borrowed 73.9 74.2 77.2 76.5

Panel D: Volatile Assets on Aave

in million USD 65.0 51.9 13.1 8.5 47.9 44.6 0.9 1.7
%TVL 4.7 3.7 1.0 0.6 3.0 3.4 0.1 0.1
%of borrowing 17.6 12.0 0.8 2.0
%own funds borrowed 20.2 16.4 1.9 3.8
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Table 5
Regression Table for the Impact of Liquidity Mining Programs on Yield-Seeker Activity

This table presents the regression results analyzing the effect of the introduction and modifications to liquidity mining programs on yield-seekers’ activities.
We define yield-seekers as per the criteria detailed in Subsection 3.2. Dependent variables in the analysis comprise the log-USD deposits and log-USD
borrowings, the fraction of the total TVL that yield-seekers deposit, the fraction of the total TVL that yield-seekers borrow back, and the fraction of
total borrowings that pertain to yield seekers. All dependent variables are normalized to the beginning of the event window. The data set exclusively
focuses on the stablecoin pools, partitioning funds provided by yield-seekers and others as indicated by the yield-seeker dummy variable. The definitions
for incentive changes and the cross-sectional control variables specifications align with those in (3). For better readability, the table only represents only
the treatment effect and omits all estimates for the other dummy and control variables. The underlying regressions include token fixed effects where
indicated, and standard errors are clustered by date. *, **, *** indicate significance at the 10%, 5%, and 1% levels.

Panel A: log(USD deposits) Panel B: log(USD borrows)

start 5.15*** 6.79***
(0.33) (0.32)

increase 0.59*** -2.12***
(0.21) (0.37)

decrease -0.61*** -0.06
(0.10) (0.14)

end -0.19 0.11
(0.12) (0.17)

rewards up 3.48*** 3.40***
(0.41) (0.64)

rewards down -0.48*** -0.07
(0.10) (0.11)

Observations 2,898 1,942 4,054 2,842 4,168 4,950 2,898 1,942 4,054 2,842 4,168 4,950
R-squared 0.303 0.246 0.159 0.292 0.206 0.082 0.269 0.220 0.089 0.225 0.129 0.068

Panel C: % deposits of TVL Panel D: % of TVL borrowed

start 0.16*** 0.14***
(0.01) (0.01)

increase 0.01 -0.05***
(0.01) (0.01)

decrease -0.15*** -0.09***
(0.02) (0.02)

end -0.12*** -0.05**
(0.02) (0.02)

rewards up 0.11*** 0.07***
(0.01) (0.01)

rewards down -0.15*** -0.08***
(0.02) (0.02)

Observations 2,898 1,902 4,014 2,842 4,128 4,910 2,898 1,902 4,014 2,842 4,128 4,910
R-squared 0.161 0.103 0.145 0.170 0.112 0.127 0.142 0.091 0.053 0.069 0.094 0.047
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Table 5
(Continued from previous page)

Panel E: % of total borrow

start 0.54***
(0.06)

increase -0.05***
(0.01)

decrease -0.16***
(0.02)

end -0.18***
(0.02)

rewards up 0.33***
(0.05)

rewards down -0.17***
(0.02)

Observations 2,896 1,840 3,948 2,840 4,064 4,844
R-squared 0.074 0.150 0.140 0.198 0.050 0.109
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Table 6
Daily Average Balances of Yield-Seekers and Impact on Market Parameters.

This table presents metrics on the positions of yield-seeking accounts by pool and their impact on market parameters. Data is based on 177 yield-seeking
accounts and the aggregated balances from 3.4 million protocol interactions between June 15, 2020 and February 1, 2023 on Compound and Aave. The
shortcut ”YS” refers to the sum of yield-seeking accounts, defined as either the address of a yield aggregator vault or an address that simultaneously
lends and borrows the same stablecoin. Total investment and total borrows relate yield-seekers’ volume in a given pool to the average total across all
pools of YS-accounts. The spread variables in the table describe the percentage change (∆%) from the observed market value to the counterfactual
value excluding the volumes of YS. The deposit loss metric encompasses the USD amount of deposit interest that regular users would have earned if
yield-seekers were not active in the market. Likewise, the borrowing gain metric reflects the interest saved by users. The net gain/loss represents the
residual between the two figures.

Compound Aave

USDC DAI ETH WBTC LINK USDT Total USDC DAI USDT WBTC UNI WETH YFI Total

Av.YS investment (USD, M) 766.3 669.5 66.7 61.6 17.9 16.8 1598.8 714.3 498.8 27.0 25.1 9.2 3.3 2.6 1281.6
% of total pool TVL 45.2 41.1 3.7 7.1 37.3 3.9 23 30.9 59.4 3.9 2.4 23.9 0.1 7.1 17.2
% of YS total investment 47.9 41.9 4.2 3.9 1.1 1.1 100 55.7 38.9 2.1 2.0 0.7 0.3 0.2 100
Av.YS borrowing (USD, M) 540.7 452.8 1.3 4.5 0.3 1.7 1001.3 558.6 376.0 14.6 1.1 0.0 0.0 1.6 953
% of total pool borrowing 42.8 41.3 1.5 8.2 4.9 0.6 16.6 32.6 61.1 2.7 2.0 0.0 0.0 31.2 17.8
% of YS total borrowing 54.0 45.2 0.1 0.4 0.0 0.2 100 58.6 39.4 1.5 0.1 0.0 0.0 0.2 100
% YS loans to deposit 70.6 67.6 2.0 7.2 1.6 10.3 26.6 78.2 75.4 54.0 4.5 0.0 0.0 62.5 44.9
% Utilization spread 6.3 6.4 0.1 0.5 6.0 3.1 3.7 2.9 5.4 1.4 0.1 0.1 0.0 0.1 1.4
% Deposit interest spread 2.6 4.4 0.0 0.0 0.7 1.3 1.5 7.4 6.9 1.3 0.0 0.0 0.0 0.0 2.1
% Var. Borrow interest spread 3.0 4.3 0.0 0.1 1.5 1.4 1.7 8.3 8.3 1.5 0.0 0.0 0.0 0.0 2.4
% St. Borrow interest spread - - - - - - - 8.3 8.2 1.5 0.0 - 0.0 - 3.6
Cum. deposit loss (USD, M) -80.4 -119.6 -0.1 0.8 -0.3 -14.4 -214 -306.0 -56.1 -26.3 0.0 0.0 -0.1 0.0 -388.7
Cum. borrow gain (USD, M) 87.7 121.4 0.0 -0.2 0.2 14.1 223.2 335.6 61.2 28.6 0.0 0.0 0.1 0.0 425.7
Cum. net gain/loss (USD, M) 7.3 1.9 -0.1 0.6 -0.1 -0.3 9.3 29.6 5.0 2.3 0.0 0.0 0.0 0.0 36.9
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Table 7
List of Token Pools offered on Aave and Compound

This table lists the lending pools operated by Aave and Compound. Percentage values show the positions
as of February 2023. “Frozen” or “deprecated” pools are either temporarily or permanently unavailable.
“UTI”, “STA”, and “CRY” refer to utility (often governance) tokens, stablecoins, and cryptocurrencies.

Aave

Pool Name Symbol Obs. N. (days) % of TVL % of borrowing Type Category

1 1INCH Token 1INCH 187 0.10 0.00 Volatile UTI
2 Aave Token (omitted from sample) AAVE 793 2.60 0.00 Volatile UTI
3 Ampleforth (omitted from sample) AMPL 558 0.20 0.00 Volatile STA
4 Balancer (frozen) BAL 730 0.00 0.00 Volatile UTI
5 Basic Attention Token (frozen) BAT 793 0.10 0.00 Volatile UTI
6 Binance USD (frozen) BUSD 793 0.50 0.80 Volatile STA
7 Curve DAO Token CRV 767 1.50 2.00 Volatile UTI
8 Convex Token (frozen) CVX 234 0.00 0.00 Volatile UTI
9 Dai Stablecoin DAI 793 2.60 2.90 Stable STA
10 DefiPulse Index (frozen) DPI 530 0.10 0.00 Volatile UTI
11 Enjin Coin (frozen) ENJ 793 0.00 0.00 Volatile UTI
12 Ethereum Name Service ENS 332 0.00 0.00 Volatile UTI
13 Fei USD (frozen) FEI 500 0.00 0.00 Stable STA
14 Frax FRAX 509 0.30 0.70 Stable STA
15 Gemini dollar GUSD 761 0.00 0.10 Stable STA
16 Kyber Network Crystal (frozen) KNC 793 0.00 0.00 Volatile UTI
17 ChainLink Token LINK 793 1.80 0.80 Volatile UTI
18 LUSD Stablecoin LUSD 157 0.00 0.00 Stable STA
19 Decentraland MANA (frozen) MANA 793 0.10 0.00 Volatile UTI
20 Maker MKR 793 0.40 0.00 Volatile UTI
21 Rai Reflex Index (frozen) RAI 593 0.00 0.00 Volatile UTI
22 Republic Token (frozen) REN 793 0.00 0.00 Volatile UTI
23 renFIL (frozen) RENFIL 649 0.00 0.00 Volatile UTI
24 Synthetix Network Token SNX 793 0.10 0.30 Volatile UTI
25 Liquid staked Ether 2.0 STETH 340 27.20 0.00 Volatile CRY
26 Synth sUSD SUSD 793 0.00 0.00 Stable STA
27 TrueUSD TUSD 793 0.20 0.20 Stable STA
28 Uniswap UNI 794 0.30 0.10 Volatile UTI
29 USD Coin USDC 793 17.80 26.80 Stable STA
30 Pax USD USDP 557 0.00 0.00 Stable STA
31 Tether USD USDT 794 7.30 17.00 Stable STA
32 UST (Wormhole) (frozen) UST 397 0.00 0.00 Stable STA
33 Wrapped BTC WBTC 794 12.50 5.90 Volatile CRY
34 Wrapped Ether WETH 794 23.40 43.10 Volatile CRY
35 SushiBar (frozen) XSUSHI 718 0.20 0.00 Volatile UTI
36 yearn.finance (frozen) YFI 794 0.10 0.10 Volatile UTI
37 0x Token (frozen) ZRX 794 0.20 0.00 Volatile UTI

Compound

Pool Name Symbol Obs.N. (daily) % of TVL % of borrowing Type Category

1 Aave Token (omitted from sample) AAVE 547 0.10 0.10 Volatile UTI
2 Basic Attention Token BAT 1366 1.30 0.00 Volatile UTI
3 Collateral (omitted from sample) COMP 838 1.10 0.10 Volatile UTI
4 Dai DAI 1162 21.80 32.80 Stable STA
5 Single DAI (deprecated) DAI 1366 0.10 0.00 Stable STA
6 Ether ETH 1366 20.40 3.60 Volatile CRY
7 Fei USD (deprecated) FEI 357 0.00 0.00 Stable STA
8 ChainLink Token LINK 621 0.20 0.00 Volatile UTI
9 Augur (deprecated) REP 1366 0.00 0.00 Volatile UTI
10 Sushi Token SUSHI 547 0.10 0.10 Volatile UTI
11 TrueUSD TUSD 622 0.40 0.90 Stable STA
12 Uniswap UNI 852 1.10 0.40 Volatile UTI
13 USD Coin USDC 1366 28.30 41.10 Stable STA
14 Pax Dollar USDP 409 0.00 0.00 Stable STA
15 USDT USDT 1007 11.30 19.70 Stable STA
16 Wrapped BTC WBTC 685 13.50 1.10 Volatile CRY
17 Wrapped BTC (deprecated) WBTC 1297 0.10 0.00 Volatile CRY
18 yearn.finance YFI 547 0.00 0.00 Volatile UTI
19 0x ZRX 1366 0.10 0.00 Volatile UTI
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