Understanding Decentralization in Proof-of-Stake Blockchains: An Agent-Based Simulation Approach

Jungpil Hahn

National University of Singapore jungpil@nus.edu.sg

Joint work with Christoph Müller-Bloch, Jonas Valbjørn Andersen and Jason Spasovski

Joint work with Christoph Müller-Bloch, Jonas Valbjørn Andersen and Jason Spasovski (IT University of Copenhagen)

the rise of algorithmic operations

Amazon Scraps Secret Al Recruiting Engine that Showed Biases Against Women

Al Research scientists at <u>Amazon</u> uncovered biases against women on their recruiting <u>machine learning</u> engine

October 11, 2018 by <u>Roberto Iriondo</u>

Smart stories. New ideas. No ads. \$5/month.

 \times

algorithms are everywhere!

algorithms have real-world consequences that are materialized in practice

algorithms have real-world consequences that are materialized in practice

- unintended consequences
- opaque connection between process and outcome

how can we design more predictable algorithm-driven systems?

how can we design more predictable algorithm-driven systems?

& explainable how can we design more predictable algorithm-driven systems?

& explainable how can we design more predictable algorithm-driven systems?

designer's intention

is complete.

The new block is then added to the existing blockchain, in a way that is permanent and unalterable. Once verified, the transaction is combined with other transactions to create a new block of data for the ledger.

is complete.

The new block is then added to the existing blockchain, in a way that is permanent and unalterable. Once verified, the transaction is combined with other transactions to create a new block of data for the ledger.

is complete.

The new block is then added to the existing blockchain, in a way that is permanent and unalterable. Once verified, the transaction is combined with other transactions to create a new block of data for the ledger.

The requested transaction is broadcast to a peer-to-peer **network consisting of nodes.**

- central operator not needed
- validator node is selected

=> algorithmic governance via
consensus mechanism
(PoW, PoS, ...)

tamper-resistance

requires

decentralization of decision making power

decentralization of decision making power is the intended outcome of the consensus mechanism

(de)centralization of decision making power emerges from network of nodes + interactions

algorithms have real-world consequences that are materialized in practice

- unintended consequences
- opaque connection between process and outcome

Oct 15, 2018 | NOURIEL ROUBINI

Now that cryptocurrencies such as Bitcoin have plummeted from last year's

absurdly high valuations, the techno-utopic ledger technologies should be next. The "decentralization" was just a ruse to earned real money.

EW YORK – With the value of Bitcoin peak late last year, the mother of all generally, cryptocurrencies have en value of leading coins such as Ether over 80%, thousands of other digital currence rest have been exposed as outright frauds. N of five initial coin offerings (ICOs) were scan

$$\begin{array}{ll} \text{Gini(USA)} &= 0.41\\ \text{Gini(N. Korea)} &= 0.86\\ \text{Gini(Bitcoin)} &= 0.88 \end{array}$$

Faced with the public s have fled to the last ref "blockchain," the distrik

cryptocurrencies. Blockchain has been heralded as a potential panacea for everything from poverty and famine to cancer. In fact, it is the most overhyped – and least useful – technology in human history.

Complex Adaptive Systems (CAS) / Agent-based Modeling

Complex Adaptive Systems (CAS)

CAS Structure	CAS Component	CAS Component Elements	
Generative structure (unobserved)	Model Rule	The behavioral logic of the model specified at the model level	
Elemental structure (micro-level)	Agent	Identity	
		Attributes	
		Behavioral Rules	
	Interaction	Connection	
		Flow	
	Environment	Initial conditions, model parameters and settings	
Observed structure (macro-level)	Emergent Property	Output observations at the system level	

Blockchain as CAS

CAS Structure	CAS Component	CAS Component Elements	Equivalence in Blockchain Governance
Generative structure (unobserved)	Model Rule	The behavioral logic of the model specified at the model level	Consensus mechanism as an algorithm for choosing validator nodes
Elemental structure (micro-level)	Agent	Identity	A public address that identifies nodes
		Attributes	Currency stake
		Behavioral Rules	Make a transaction
	Interaction	Connection	Transactions on the blockchain, fee paid to winning validator nodes
		Flow	Amount and volume of transactions between agents
	Environment	Initial conditions, model parameters and settings	Number of available validator nodes, initial distribution of stakes
Observed structure (macro-level)	Emergent Property	Output observations at the system level	Distribution of decision making power, structure of the validation network

Complex Adaptive Systems (CAS) / Agent-based Modeling

Design Theorizing

Complex Adaptive Systems (CAS) / Agent-based Modeling

Design Theorizing

Agent-based model of PoS consensus mechanism

- Blockchain network consisting of A potential validator nodes
- Each agent *a* is assigned an initial currency balance *b*_a
- At each *t*, a random number V_t of transactions of size s_{at} (< b_a) between random pairs of nodes take places and a node is selected to be the validator; $s_{at} = 1$
- Likelihood of becoming the validator node depends on decision making power p_a which is proportional to b_{at}
- Validator node receives transaction fee F and is added to ba

degree of (de)centralization

Gini coefficient =
$$\frac{A}{A + B}$$

Gini = 0; no inequality; fully decentralized Gini = 1; full inequality; fully centralized

model validation

Simulation Experiments

	Parameter	Baseline	Experiments
Design Parameters	Initial Stake Distribution (<i>B</i>)	NXT Actual	N, Beta, Power-Law(2), U, Skewed
	Initial # of Validator Nodes (A_0)	73	
	Transaction Fee (<i>F</i>)	207	
Behavioral Parameters	Transaction Amount (<i>U</i>)	39,434	5, 10, 25, 50, 250, 500, 1000% of NXT Actual
	Transaction Volume (V)	2.54	
	Validator Network Growth (G)	0.0293	

Initial stake distribution (B)

Initial validator nodes (A₀)

Transaction fee amount (F)

Transaction amount (U)

Transaction volume (V)

Validator network growth (G)

Statistical Validation

Variable	Coefficient	SE	<i>t</i> -value	<i>p</i> -value	Significance
Intercept	1.0309	0.0080	128.31	0.000	***
Bimodal	0.0003	0.0030	0.10	0.919	
Normal	0.0025	0.0030	0.82	0.411	
PowerLaw-1	0.0030	0.0030	0.96	0.337	
PowerLaw-2	0.0015	0.0030	0.48	0.635	
Skewed	0.0394	0.0030	12.77	0.000	***
Uniform	-0.0019	0.0030	-0.61	0.544	
$ln(A_0)$	-0.0067	0.0006	-11.04	0.000	***
ln(F)	0.0015	0.0006	2.49	0.013	*
In(<i>U</i>)	-0.0244	0.0006	-40.28	0.000	***
ln(V)	-0.0082	0.0006	-13.52	0.000	***
ln(G)	0.0451	0.0025	18.23	0.000	***
$\ln(G)^2$	-0.0052	0.0003	-18.05	0.000	***

 $R^2 = 0.729$

Significance: *** *p*<0.001, ** *p*<0.01, * *p*<0.05

Notes: The dependent variable is the Gini coefficient, where higher values represent greater centralization and lower values represent greater decentralization. Therefore, coefficients that are negative are interpreted as increasing decentralization of decision-making power.

increasing decentralization of decision-making power.

Summary: A Design Theory of PoS Blockchains

Parameters	Greater decentralization with
Initial Stake Distribution (B)	No impact of initial distribution, except when skewed
Initial Network Size (A_0)	Larger initial networks
Transaction Fee (<i>F</i>)	Smaller transaction fees (marginal)
Transaction Amount (<i>U</i>)	Larger average transaction amounts
Transaction Volume (V)	Larger transaction volumes
Validator Network Growth (G)	Very slow or very fast growth rates

Scenario testing

maximal decentralization scenario

Conclusions / Contributions

• Well-intentioned designs of algorithmic governance may lead to unexpected (undesirable) outcomes

Conclusions / Contributions

- Well-intentioned designs of algorithmic governance may lead to unexpected (undesirable) outcomes
- Design theory of PoS consensus mechanism design for Blockchain networks
 - Identify model parameters (initial validator network, transaction fees) that are likely to lead to (un)desirable levels of decentralisation
 - Identify behavioural parameters (transaction volume, amount, validator nework growth) that are likely to lead to (un)desirable levels of decentralisation

The Blockchain Trilemma

Scalability

Decentralization

Conclusions / Contributions

- Well-intentioned designs of algorithmic governance may lead to unexpected (undesirable) outcomes
- Design theory of PoS consensus mechanism design for Blockchain networks
 - Identify model parameters (initial validator network, transaction fees) that are likely to lead to (un)desirable levels of decentralisation
 - Identify behavioural parameters (transaction volume, amount, validator nework growth) that are likely to lead to (un)desirable levels of decentralisation
- CAS and agent-based modeling as a useful design theory building tool for algorithm-mediated decision making

Limitations and Future Work

- What are "acceptable" and/or "critical" levels of (de)centralization
- Study interaction effects of model and behavioral parameters
- Other consensus mechanisms? (e.g., variants of PoS, PoW, PoA)
- Endogenize behaviors / parameters