

AWER - A Framework for **A**utomated **W**orker Evaluation Based on Free-Text **R**esponses with No Ground Truth

Inbal Yahav

With Tomer Geva and Anat Goldstein

Coller Lab for Artificial Intelligence and Business Analytics

Settings and goals

M individuals answer N open questions. Ground truth is not available.

How do we grade (or rank) them? What is the correct answer?

Imagine ... automatic students grading

1.11

... or workers/ experts evaluation

... or even language models evaluation (Q&A)

... or generate data for language models training (Q&A)

Back to settings and goals

 $\langle \bigcirc \rangle$

M workers answer N open questions. Ground truth is not available.

					THE A	THE A	
	Worker #1	Worker #2	Worker #3				Worker #M
Question #1	Due to electricity issues	It will be too old as over 40	It won't have enough power left	Beyond reasonable repair	it will run out of electricity	A generator will stop working	As it will no longer have enough
Question #2	The viable atmosphere.	Environment atmosphere	Because the Weather conditions	Size and activity	Electric fields in the atmosphere	Weather and magnetic fields	Due to the Weather atmosphere,
Question #3	kitchen grade aluminium foil	Use of kitchen grade foil wrapped around t	Because of the Aluminium foil	Foil wrapped around wires.	Tin foil	Foil wrapped around wires.	Kitchen foil
Question #n	Because of elevation levels/difficulty	To make sure people train for them	Varies depending on the course	Depending on the course	it depends on the demands of the particular course	Depending on which course they take,	Dependant on the terrain/course

Back to settings and goals

 (1) automatically assign a score to each worker according to the average correctness of her responses.

(2) automatically extract the correct answer for each question.

Related literature

- Automatic workers evaluation w/g ground truth: focus on binary, numeric, or multi-category output (e.g., Geva & Saar Tsechansky, 2021; Wang et al., 2017; Yin et al., 2021)
- Automatic question evaluation w/g ground truth: single work, used as baseline (Roy et al., 2016)
- Automatic Short Answer Grading (ASAG): focus on grading, when ground truth exists (e.g., Burrows et al., 2015; Bonthu et al., 2021)

The AWER Framework

Part 1: "The wisdom of the crowd"

a multidimensional voting scheme

Part 2:

"The wisdom of the wise"

an iterative re-weighting algorithm (adapted Expectation Maximization-based solution)

Represent **each** response as a textual vector

Example:

Question: "Near which planets did Voyager 1 make a flyby?" Response: "Made a flyby next to Saturn and Jupiter."

k=1	k=2	k=3		k=K
Saturn flyby	Mars flyby	Jupiter flyby	•••••	Neptune flyby
1	0	1		0

Note

In practice, we represent responses as embedding vectors

Represent **multiple** responses for a given question in a matrix

Example:

Question: "Near which planets did Voyager 1 make a flyby?"

	k=1	k=2	k=3		k=K
	Saturn flyby	Mars flyby	Jupiter flyby	•••••	Neptune flyby
Response 1	1	0	1	•••••	0
Response 2	1	1	0	•••••	0
Response M	1	0	1		1

Compute majority vote

Example:

Question: "Near which planets did Voyager 1 make a flyby?"

	k=1	k=2	k=3		k=K
	Saturn flyby	Mars flyby	Jupiter flyby	•••••	Neptune flyby
Response 1	1	0	1		0
Response 2	1	1	0		0
	•••••	••••			•••••
Response M	1	0	1		1
Majority vote	1	0	1		0

Compute majority vote

Example:

Question: "Near which planets did Voyager 1 make a flyby?"

	k=1	k=2	k=3		k=K
	Saturn flyby	Mars flyby	Jupiter flyby	•••••	Neptune flyby
Response 1	1	0	1	••••	0
Response 2	1	1	0	••••	0
		•••••	•••••	•••••	•••••
Response M	1	Λ	1		1
	Synthetic Exemplary Answer (SEA)				

Why use a majority vote?

- Under the assumptions:
 - Workers are independent
 - Workers are **weak classifiers**, for each vector element k

 \rightarrow The number of correct votes for vector element k, V_k, follows a **binomial distribution**

$$\rightarrow \Pr\left(V_k > \frac{M}{2}\right) \rightarrow 1$$
 as M gets large

Compute the similarity between the worker's answer to the SEA, And set:

Correctness (single question) ~ similarity

Grade ~ average correctness across all questions

Iterative Re-Weighting

"Wisdom of the wise" – reweighing workers based on assessing their capabilities

Iteratively:

- for each question: update the voting weight of worker w_i according to the estimated workers' grade (from a previous iteration) [Initialize: weight_i = 1]
- Recompute SEA, correctness, and grades

High Quality Workers + Low Quality Workers + Correct Response × SEA

Illustration

Framework summary

0. Represent each response $R_{i,j}$ ($R_{i,j}$ is the response by worker W_i to question Q_j) as a vector, $\overrightarrow{text}_{i,j}$

1. For each question Q_j Obtain an initial estimate of $\overrightarrow{SEA_j}$ by applying an equally weighted voting mechanism on $\overrightarrow{text}_{i,j} \forall i$

Iterate steps 2-3 below until convergence:

2. For each $\overrightarrow{text}_{i,j}$ (representing $R_{i,j}$) compute $S_{i,j}$ - the similarity of $\overrightarrow{text}_{i,j}$ to the corresponding \overrightarrow{SEA}_j ; Set the corresponding $grade_i = f(\frac{1}{n} * \sum_{j=1}^n S_{i,j})$, where f is a normalization function across all workers' average scores.

3. For each question Q_j , apply a (re-)weighted voting mechanism on the numerical vectors representing the responses to generate a new *Synthetic Exemplary Answer* $(\overrightarrow{SEA_j})$ vector. Each worker's W_i voting *weight_i* is proportional to the worker's estimated *grade_i*.

4. Output $grade_i \forall W_i$

Modular Implementation

- Textual Representation (step 0) can be implemented using various methods such as Transformer-based embeddings, BOW, TF-IDF, etc.
- Similarity/distance (step 2): can be implemented using various measures such as Cosine similarity, Euclidian distance, or entailment

Empirical Evaluation

Three datasets:

- Computer Science course Q&A (Mohler et al., 2011): semi-synthetic simulation to define "workers"
- Purposely compiled datasets: online workers' responses to questions on Wikipedia articles (40 workers, 15 questions in each dataset). Workers recruited via Prolific.com.
- Pure numerical simulation: used to examine "special conditions"
- Baseline: Roy et al., 2016.

Main results

Semi-synthetic simulation (CS data)

Settings	Baseline	AWER	%Improvement: AWER vs. Baseline
2 quality groups; 10 workers per group	0.935	0.979	4.7%***
4 quality groups; 5 workers per group	0.941	0.978	4.0%***
10 quality groups; 2 workers per group	0.925	0.962	4.0%***

Pearson correlation values are between the model-based evaluation and the average score of two expert evaluators *** P value < .01

Purposely compiled datasets (Wikipedia data)

Dataset	Baseline	AWER	%Improvement: AWER vs. Baseline
Movies and History	0.779	0.915	17.5***
Science / Technology and Sports	0.850	0.950	11.8%***

Bootstrap P values *** P value < .01

Pearson correlation values are between the model-based evaluation and the average score of two expert evaluators

Numerical simulation

- Three levels of workers: high, medium, and low (weak learners)
- Two types of questions: standard (majority correct), and challenging (majority incorrect among medium and low-level workers)
- We vary:
 - The % correct answer per worker
 - The ratio of challenging questions

Results highlights

- AWER framework provides accurate evaluation even when in (up to) ~40% of the questions the majority of responders provide similar incorrect responses.
- AWER framework provides accurate evaluation even when the average worker correctness is only slightly above 50%.

Ablation Study

Impact of iterative re-weighting (CS data)

Settings	Wisdom of the crowd	Wisdom of the wise	%Improvement: AWER vs. Baseline
2 quality groups; 10 workers per group	0.965	0.979	1.4%***
4 quality groups; 5 workers per group	0.964	0.978	1.5%***
10 quality groups; 2 workers per group	0.943	0.962	2.0%***

Pearson correlation values are between the model-based evaluation and the average score of two expert evaluators *** P value < .01

Impact of iterative re-weighting (Wikipedia data)

Dataset	Wisdom of the crowd	Wisdom of the wise	%Improvement: AWER vs. Baseline
Movies and History	0.898	0.915	1.9%**
Science / Technology and Sports	0.939	0.950	1.2%***

Bootstrap P values *** P value < .01

Pearson correlation values are between the model-based evaluation and the average score of two expert evaluators

Impact of number of questions (CS data)

Additional tests

- Embeddings (RoBERTa, MPNet) vs. Bag of Words the former performed slightly better
- Cosine vs. Euclidean distance no significant difference

Bottom line

AWER utilizes the **wisdom of the crowd**, adjusted for textual entries, and benefits from learning **workers' capabilities**.

Still missing

- Extracting the best response
- Evaluating language models in the question-answering task

Thank you!

Check us out!

https://www.collerlab.com/

inbalyahav@tauex.tau.ac.il

Coller Lab for Artificial Intelligence and Business Analytics

Team Data and Tools Publications Mo

Unleashing the Potential of AI in Business Analytics Research

Our Vision

Our academic group is dedicated to advancing the fields of AI, machine learning, and NLP while focusing on real-world business problems. Our vision is to solve new and challenging business problems using cuttingedge research and end-to-end development of innovative methods and solutions that drive business outcomes. Our solutions have a business impact across diverse industries such as Healthcare, HR, Fintech, Social Media, Human-Al Interaction, Crowdsourcing, and Law.

Congratulations, Chen, on submitting your Master's thesis!

THE REPORT OF CARAGE AND A REPORT OF THE REP

Lab Chairs

Dr. Inbal Yahav is an accomplished expert in developing ML and NLP architectures with a background in CS and data mining. Her work is driven by a passion for interdisciplinary research, leading to exciting collaborations with the Department of Law and Middle East Studies. She als... Read more

Dr. Tomer Geva

Tomer Geva is an experienced machine learning and data science researcher with a focus on solving business problems and developing methods to improve predictive accuracy. He is a tenured senior lecturer at Tel-Aviv University and founder of its Business Data Science Program, Read more

Dr. Moshe Unger

Additional slides

Future Work

 Using automated question answering methodologies algorithms to generate "ground-truth". (Joint work with Shahar Meir and Inbal Yahav)

References:

- Bonthu, S., Rama Sree, S., & Krishna Prasad, M. H. M. (2021, August). Automated Short Answer Grading Using Deep Learning: A Survey. *In International Cross-Domain Conference for Machine Learning and Knowledge Extraction* (pp. 61-78). Springer, Cham.
- Burrows, S., Gurevych, I., & Stein, B. (2015). The eras and trends of automatic short answer grading. *International Journal of Artificial Intelligence in Education*, 25(1), 60–117.
- Geva, T., & Saar-Tsechansky. M. (2021). Who is a better decision maker? Data-driven expert ranking under unobserved quality. *Production and Operations Management*, *30*(1), 127–144.
- Mohler, M., Bunescu, R., & Mihalcea, R. (2011). Learning to grade short answer questions using semantic similarity measures and dependency graph alignments. *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies* (pp. 752–762).
- Roy, S., Dandapat, S., Nagesh, A., & Narahari, Y. (2016). Wisdom of students: A consistent automatic short answer grading technique. *Proceedings of the 13th International Conference on Natural Language Processing* (pp. 178–187).
- Wang, J., Ipeirotis, P. G., & Provost, F. (2017). Cost-effective quality assurance in crowd labeling. *Information Systems Research*, 28(1), 137–158.
- Yin, J., Luo, J., & Brown S. A. (2021). Learning from crowdsourced multi-labeling: A variational Bayesian approach. *Information Systems Research*, *32*(3), 752–773.

Numerical Simulation - details

- Three types of workers with different correctness levels Q: 85%, 75%, 65%. (33 workers in each group)
- Random binary vector for correct response (dim=1,024)
- Two types of questions:
 - Standard simulated responses are based on correct responses. Probability for inverting a response element is 1-Q
 - Challenging questions: if workers accuracy<85% then probability of a correct response element is 20%. Thus generating similar incorrect responses.
- Simulation varies the ratio of challenging questions
- Total number of question = 20.
- Number of simulation repetitions = 50.