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Settings and goals

@ M individuals answer N open questions.
Ground truth is not available.

How do we grade (or rank) them?
What is the correct answer?

®



Imagine ... automatic students grading
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... or workers/ experts evaluation
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... Or generate data for language models
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Back to settings and goals
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QUEStiOI‘I #1 Dueto electricity It will be too old as It won't have Beyond reasonable it will run out of A generator will  As it will no longer
issues over 40 enough power left repair electricity stop working have enough
. Due to the
QUEStIOﬂ H#2 The viable Environment Because the Electric fields in the Weather and Weather
atmosphere. atmosphere Weather conditionsSize and activity atmosphere magnetic fields atmosphere, ......

. Use of kitchen grade
Qu estion #3 «itchen grade foil wrapped around Because of the Foil wrapped around Foil wrapped around

M WO r ke rS a n Swe r aluminium foil t..... Aluminium foil wires. Tin foil wires. Kitchen foil
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Back to settings and goals

®

(1) automatically assign a score to each

worker according to the average
correctness of her responses.

(2) automatically extract the correct

®

answer for each question.



Related literature

» Automatic workers evaluation w/g ground truth: focus on binary, numeric,

or multi-category output (e.g., Geva & Saar Tsechansky, 2021; Wang et al.,
2017; Yin et al., 2021)

* Automatic question evaluation w/g ground truth: single work, used as
baseline (Roy et al., 2016)

e Automatic Short Answer Grading (ASAG): focus on grading, when ground
truth exists (e.g., Burrows et al., 2015 ; Bonthu et al., 2021)



The AWER Framework

Part 1:
“The wisdom of the crowd”

a multidimensional voting scheme

—-—p

Part 2:

“The wisdom of the wise”
an iterative re-weighting algorithm
(adapted Expectation
Maximization-based solution)

i



Multidimensional Voting

Represent each response as a textual vector

Example:
Question: “Near which planets did Voyager 1 make a flyby?“
Response: "Made a flyby next to Saturn and Jupiter."

k=1
Saturn flyby

k=2
Mars flyby

k=3
Jupiter flyby

k=K
Neptune flyby

1

0

1

0




In practice, we
represent responses as
embedding vectors




Multidimensional Voting

Represent multiple responses for a given question in a matrix

Example:

Question: “Near which planets did Voyager 1 make a flyby?“

k=1 k=2 k=3 k=K
Saturn flyby Mars flyby Jupiterflypby | 7 Neptune flyby
Response 1 1 0 1 0
Response 2 1 1 o | ... 0
Response M 1 0 1 1




Multidimensional Voting

Compute majority vote

Example:

Question: “Near which planets did Voyager 1 make a flyby?“

k=1 k=2 k=3 k=K
Saturn flyby Mars flyby Jupiterflypby | 7 Neptune flyby
Response 1 1 0 1 0
Response 2 1 1 o | ... 0
Response M 1 0 i 1
‘ Majority vote 1 0 1 0




Multidimensional Voting

Compute majority vote

Example:

Question: “Near which planets did Voyager 1 make a flyby?“

k=1 k=2 k=3 k=K
Saturn flyby Mars flyby Jupiterflypby | 7 Neptune flyby
Response 1 1 0 1 0
Response 2 1 1 o | ... 0
Response M .




Multidimensional Voting

Why use a majority vote?

* Under the assumptions:
* Workers are independent
* Workers are weak classifiers, for each vector element k

—> The number of correct votes for vector element k, I/, follows a
binomial distribution

- Pr (Vk > %) — 1 as M gets large



Multidimensional Voting

Compute the similarity between the worker’s answer to the SEA,

And set:

Correctness (single question) ~ similarity

Grade ~ average correctness across all questions

SEA

Response

k=1 k=2 k=3 | .. k=K
1 0 1 0
Cosine similarity I
k=1 k=2 k=3 | .. k=K

0

0

1




lterative Re-Weighting

wﬂﬁﬂ

“Wisdom of the wise” — reweighing workers based on assessing their
capabilities

Iteratively:

* for each question: update the voting weight of worker w;
according to the estimated workers’ grade (from a previous
iteration) [Initialize: weight. = 1]

 Recompute SEA, correctness, and grades




Before Iteration #1 [teration #5 Iteration #10
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@
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d1 d1 d1

® High Quality Workers < Low Quality Workers = Correct Response X SEA

Illustration



Framework summary

0. Represent each response R; ; (R;; Is the response by worker W; to question Q;) as a vector, text; ;

1. For each question @; Obtain an initial estimate of SEA; by applying an equally weighted voting
mechanism on text; ; Vi

Iterate steps 2-3 below until convergence:

2. For each text;; (representing R;;) compute S;; - the similarity of text;; to the

. . 1 .
corresponding SEA;; Set the corresponding grade; = f(;* Yi=1Sij), where f is a
normalization function across all workers’ average scores.

3. For each question Q;, apply a (re-)weighted voting mechanism on the numerical vectors

representing the responses to generate a new Synthetic Exemplary Answer (SEA;) vector.
Each worker’s W; voting weight; is proportional to the worker’s estimated grade;.

4. Output grade; YW;



Modular Implementation

» Textual Representation (step 0) can be implemented using various
methods such as Transformer-based embeddings, BOW, TF-IDF, etc.

* Similarity/distance (step 2): can be implemented using various
measures such as Cosine similarity, Euclidian distance, or entailment



Empirical Evaluation

Three datasets:

Computer Science course Q&A (Mohler et al., 2011): semi-synthetic
simulation to define “workers”

* Purposely compiled datasets: online workers’ responses to questions on
Wikipedia articles (40 workers, 15 questions in each dataset). Workers
recruited via Prolific.com.

* Pure numerical simulation: used to examine “special conditions”

Baseline: Roy et al., 2016.






Semi-synthetic simulation (CS data)

%lmprovement:

Settings Baseline AWER
2 quality groups;
I y 8Toup 0.935 0.979
10 workers per group
4 quality groups;
a y 8rotp 0.941 0.978
5 workers per group
10 quality groups;
d y 8rotp 0.925 0.962

2 workers per group

AWER vs. Baseline

4.7%***

4.0%***

4.0%***

Pearson correlation values are between the model-based evaluation and the average score of two expert evaluators

*** P value < .01



Purposely compiled datasets (Wikipedia data)

%lmprovement:

CENEUNE AWER _
AWER vs. Baseline
Movies and History 0.779 0.915 17.5%**
Science / Technology 0.850 0.950 11.8%***
and Sports

Bootstrap P values *** P value < .01
Pearson correlation values are between the model-based evaluation and the average score of two expert evaluators



Numerical simulation

* Three levels of workers: high, medium, and low (weak learners)

* Two types of questions: standard (majority correct), and
challenging (majority incorrect among medium and low-level

workers)
* We vary: o
* The % correct answer per worker (@‘7
* The ratio of challenging questions LVJ



Results highlights

* AWER framework provides accurate evaluation even when in (up
to) ~40% of the questions the majority of responders provide
similar incorrect responses.

* AWER framework provides accurate evaluation even when the
average worker correctness is only slightly above 50%.






Impact of iterative re-weighting (CS data)

Wisdom of Wisdom of %Improvement:

the crowd the wise  AWER vs. Baseline

2 quality groups; 0.965 0.979 1.4%%**
10 workers per group

4 quality groups; 0.964 0.978 1.59%**
5 workers per group

10 quality groups, 0.943 0.962 2 0% * * *
2 workers per group

Pearson correlation values are between the model-based evaluation and the average score of two expert evaluators
*** P value < .01



Impact of iterative re-weighting (Wikipedia data)

Wisdom of the Wisdom of %Improvement:

crowd the wise  AWER vs. Baseline
Movies and History 0.898 0.915 1.994% *
Science / Technology and 0.939 0.950 1 D0p***

Sports

Bootstrap P values *** P value < .01
Pearson correlation values are between the model-based evaluation and the average score of two expert evaluators



Impact of number .
of questions (CS
data)
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Additional tests

* Embeddings (ROBERTa, MPNet) vs. Bag of Words — the former
performed slightly better

* Cosine vs. Euclidean distance — no significant difference



Bottom line

AWER utilizes the wisdom of the crowd, adjusted for textual entries,
and benefits from learning workers’ capabilities.




Still missing

* Extracting the best response

e Evaluating language models in the question-answering task
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Future Work

* Using automated question answering methodologies algorithms to
generate “ground-truth”. (Joint work with Shahar Meir and Inbal
Yahav)



References:

» Bonthu, S., Rama Sree, S., & Krishna Prasad, M. H. M. (2021, August). Automated Short Answer Grading Using Deep Learning: A
Survey. In International Cross-Domain Conference for Machine Learning and Knowledge Extraction (pp. 61-78). Springer, Cham.

» Burrows, S., Gurevych, I., & Stein, B. (2015). The eras and trends of automatic short answer grading. International Journal of
Artificial Intelligence in Education, 25(1), 60-117.

» Geva, T., & Saar-Tsechansky. M. (2021). Who is a better decision maker? Data-driven expert ranking under unobserved quality.
Production and Operations Management, 30(1), 127-144.

* Mohler, M., Bunescu, R., & Mihalcea, R. (2011). Learning to grade short answer questions using semantic similarity measures and
dependency graph alignments. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies (pp. 752-762).

* Roy, S., Dandapat, S., Nagesh, A., & Narahari, Y. (2016). Wisdom of students: A consistent automatic short answer grading
technique. Proceedings of the 13th International Conference on Natural Language Processing (pp. 178-187).

« Wang, J., Ipeirotis, P. G., & Provost, F. (2017). Cost-effective quality assurance in crowd labeling. Information Systems Research,
28(1), 137-158.

* Yin,J, Luo, J.,, & Brown S. A. (2021). Learning from crowdsourced multi-labeling: A variational Bayesian approach. Information
Systems Research, 32(3), 752—773.



Numerical Simulation - details

* Three types of workers with different correctness levels Q: 85%, 75%, 65%.
(33 workers in each group)

 Random binary vector for correct response (dim=1,024)

* Two types of questions:

e Standard — simulated responses are based on correct responses. Probability for
inverting a response element is 1-Q

* Challenging questions: if workers accuracy<85% then probability of a correct
response element is 20%. Thus generating similar incorrect responses.

* Simulation varies the ratio of challenging questions
e Total number of question = 20.
* Number of simulation repetitions = 50.



