

Chasing Market Growth and Matching Efficiency in Two-Sided Platforms: Evidence from the Lazy-Minting Policy in an NFT Marketplace

Speaker: Amit Mehra

With Hong Zhang, Hongchang Wang, and Eric Zheng

Platform Growth Strategy

- "Get Big Fast" Growth Strategy
 - ➢ Growing big quickly at all costs (Cennamo and Santalo 2013)
 - Amazon Third-party vendors (Chen and Guo 2022); Uber Subsidized pricing (Parker and Van Alstyne 2005)

- "Get Big Fast" Fallacy (Yang et al. 2021, Sterman et al. 2007)
 - Thickness/congestion (Li and Netessine 2020)
 - Low-quality offerings (Geva et al. 2019)

Deteriorated Matching Efficiency (Geva et al. 2019, Li and Netessine 2020)

AMA	ZON	I.COM
GET	BIG	FAST

Robert Spector

must read SUMMARIES

Market Growth with Matching Efficiency

• Gaps:

- Setting Participation Fees; Cost Borne by Users
 - Limiting Market Growth
- Quality Certification; Cost Borne by *Platforms*
 - To Ensure High Matching Efficiency
 - Costly to implement
- Control Quality by Online Reviews
 - Quality Misrepresentation (Pu et al. 2022); Cold Start (Burtch et al. 2021)
 - Not informative or feasible for unique and personalized products

Token Incentives to Grow Market

- Tradable Utility Token Issuance (Bakos and Halaburda 2022)
 - ➢ For capital-limited platforms to attract early adopters
 - ➢ Grant users access to future use of the platform
 - Share the increased value if platforms succeed
- Free Token Airdrop (Li et al. 2021)
 - Increase users' investment probability

Ethereum ERC-20 Token

- Platform Governance Token (Tsoukalas and Falk 2020, Gao and Leung 2022)
 - ➢ Users earn tokens by engaging with the platform
 - Example: *RARI Token* (earn tokens by buying and selling on the Rarible market);
 - Basic Attention Token (earn BAT by watching ads in browser)
- Drawbacks: Token issuance is costly

Lazy Minting in the Non-Fungible Token (NFT) Context

NFT Market

≻ Unique artworks, collectibles

Create NFTs, showcase inventory, and sell/purchase NFTs

- Ethereum Gas-Minting (Creation) Fee: \$50~\$200
- Rarible (An NFT market) Launched Lazy Minting
 Postpone upfront Ethereum gas fees to the first-sale time
 Remove the Entry Barrier:
 - The No. of NFT supplies skyrocketed 36 times
 Two Entry Options: Both gas and lazy minting

Gas Minting: Costly Entry

Two NFT Platforms

- **Treatment Platform:** Rarible (Introduce the lazy-minting policy)
- **Control Platform:** Foundation (Only gas minting)
- Closest NFT markets: Similar number of traders and trading volume, from Dappradar.com
- Remove multi-homing NFT creators

Empirical Context

 NFT Market: Two-sided market for NFT trading

> Matching between creators and buyers

Transparent trading history

NFT Market Data

- Each NFT's characteristics
 - e.g., lazy or gas minting, video or image
- Complete market activities
 - Minting, listing, bidding, buying, and selling activities

Empirical Model (DID)

NFT-level analysis: 1,355,640 NFTs created on the two platforms across 147 days (21 weeks)

NFT Matching Efficiency (Dependent Variable)

- Matching Likelihood (binary)
 - \blacktriangleright Y = 1 if *the first sale* occurs within 30 days of creation; Otherwise, Y = 0
- First-Sale Price in USD (log-transformed)

	Pre-Treatment		Post-Treatment		Post-Treatment	
Variable	Gas-Minted NFTs		Gas-Minted NFTs		Lazy-Minted NFTs	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Matching Likelihood	0.077	0.266	0.131	0.338	0.001	0.034
Ln(First-Sale Price)	6.144	1.867	7.548	1.793	5.513	2.412

Table 1. Summary Statistics

Main Result

- Matching Likelihood
- First Sale Price →

Matching Likelihood 1
First Sale Price 1

Table 2. The Treatment Effect of Lazy-Minting Policy on Matching Efficiency

Variable	Matching Likelihood First-Sale Price (ln)			Matching Likelihood	First-Sale Price (ln)
Sample	Entire Market			Gas-Mintin	ng Segment
$Post_t imes Treated_{ij}$	-0.035*** (0.009) -0.138 (0.140)			0.090***(0.012)	1.265***(0.157)

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the day level in parentheses.

Two Mechanisms

Market Thickness Effect

- > Supply side: Intensified price competition
- Demand side: Intensified search frictions
- > **Drives down** matching efficiency

Quality Signaling Effect by Gas Minting

- > A tiered market segmentation (gas minting vs. lazy minting):
 - Supply side: differentiated minting strategies
 - **Demand side**: differentiated valuations (bids)
 - Improves matching efficiency

Market Thickness Effect (Supply side)

Exponential Growth of Supply (36 times increase)

- Supply Side: Fiercer Competition
 - \succ Average lower asking price (WTA) \checkmark
 - Number of price adjustment
 - Higher occurrences of markdown prices
 - ➤ Longer time to find a match

Table 4. Intensified Competition on the Supply Side

Variable	Minimum	Adjust Asking	The Ratio of	Number of
	Asking Price	Price	Markdown	Days to
	(ln)	or Not	Adjustments	Match (ln)
Post _t	-1.290***	-0.238***	0.053***	0.251***
×Treated _{ij}	(0.049)	(0.011)	(0.012)	(0.066)

Market Thickness Effect (Demand side)

- Demand Side: Larger Search Frictions
 - Buyers place more bids per week
 - \blacktriangleright Need to place more bids in order to find a match \uparrow

Table 5. Larger Search Friction on the Demand Side

Variable	Number of Bids (ln)	Number of Bids Per
		Match (ln)
$Post_t imes Treated_{ij}$	0.082*** (0.003)	0.335*** (0.072)

Quality Signaling Effect (Supply Side)

- Supply Side: NFT Quality
 - Proxy: The average # of likes per day
 - Gas-minting •
 - Entire Market
- Supply Side: Posted Price
 - Gas-minting
 - Entire Market

Table 6. Supply-Side Self-Selection into Gas Minting

Variable	NFT Quality				
Sample	Entire Market	Gas-Minting Segment			
$Post_t imes Treated_{ij}$	-0.032*** (0.002)	0.050 * * * (0.008)			

Variable	Minimum Asking Price (ln)				
Sample	Entire Market	Gas-Minting Segment			
Post _t ×Treated _{ij}	-1.290*** (0.049)	0.063 (0.078)			

Quality Signaling Effect (Demand Side)

- Demand Side: Max Bidding Price
 - ➤ Gas-minting
 - Entire Market

Variable	Maximum Bidding Price (ln)				
Sample	Entire Market	Gas-Minting Segment			
$Post_t \times Treated_{ii}$	-0.093 (0.133)	1.981*** (0.252)			

Table 7. Demand-Side Appreciation of Gas Minting

Demand Side: Search Frictions

- ➤ Gas-minting
- Entire Market
- Similar pattern is also observed for number of bids per match

Variable	Number of Bids (ln)				
Sample	Entire Market	Gas-Minting Segment			
$Post_t imes Treated_{ij}$	0.082*** (0.003)	-0.032*** (0.006)			

Quality Signaling Effect: The Separating Equilibrium

Analysis Aim

- Prove that low-quality ones cannot mimic high quality by gas minting
- Low-quality vs. High-quality Creators
 - > By historical selling experience
 - Bottom 60% (never sell NFTs) vs.
 Top 25% (sell at least four NFTs)

Table 8. Heterogeneous Treatment Effectand Separating Equilibrium

Туре	Low-Quali	Low-Quality Creators			ality Creators	
Sample	Gas-min	Gas-minted NFTs		Gas-minted NF		
Variable	Matching	tching First-Sale		Matching Fir		
	Likelihood	Price (ln)	L	Likelihood	Price (ln)	
Post _t	0.013 (0.019)	0.161 (0.136	5)	0.145***	0.370**	
imesTreated _{ij}				(0.043)	(0.154)	

A tiered market structure with the separating equilibrium

Platform-Level Performance

Does the Rarible platform benefit as a whole? Yes!

Table 9. The Treatment Effect of Lazy-Minting Policy on Platform Performance

Variable	Matching Ratio	Total Number of Sales	Revenue (ln)
$Post_t \times Treated_j$	-0.038*** (0.009)	14.266*** (5.425)	0.488*** (0.178)

Robustness Checks

Identification

- Placebo Test
- Coarsened Exact Matching
- Doubly Robust DID
- Heterogeneity-Robust Estimator
- Random Shuffle Test

- Sensitivity Analysis
 - Alternative Time Windows of a Sale (14, 60 days, no restrictions)
 - Logit and Probit Model
 - First-Sale Price Adjusted by Gas Costs
 - Remove the last-month data of the pre-treatment period

Placebo Test: Rule Out Anticipatory Effects

- Three fake treatment before the treatment
- All insignificant treatment effects before the pre-treatment period
- No confounding events happened before lazy minting

Variable	Matching Likelihood	First-Sale	Matching	First-Sale Price	Matching	First-Sale Price
		Price (ln)	Likelihood	<i>(ln)</i>	Likelihood	(ln)
Fake Treatment	Five Weeks Before the Policy Change		Three Weeks Before the Policy Change		One Week Before the Policy Change	
$Post_t imes Treated_{ij}$	0.002 (0.014)	0.251	-0.024 (0.015)	0.219 (0.181)	-0.004 (0.021)	0.309
		(0.183)				(0.254)

Table 10.The Placebo Test

Conclusions

- Highlights:
- Realize market growth without compromising matching efficiency
- > Prove the presence of the *separating equilibrium* empirically
 - Mimicking behavior of low-quality creators does not work
- Practical Implications:
- Two-sided platforms: A new growth strategy when supply side choices are credibly transparent to the demand side

	X	
Platform		Quality
Growth		Signaling
Ou Marke	ur Wo	rk ckness

Thank you

SSRN:

https://papers.ssrn.com/sol3/paper s.cfm?abstract_id=4279215 Contact Information: amit.mehra@utdallas.edu

Rarible and Foundation: Similar Rankings

#		Market	Avg. price 🛇	Traders 💠	Volume 🛇
1	٨	OpenSea ♪ ♦ ಾ ≘	\$192.23 -14.62%	357,691 -4.45%	\$315.77M -16.73%
2	Ó	X2Y2 ♦ ETH	\$248.41 -2.97%	57,602 20.45%	\$72.39M 5.85%
3	2	Element ∧ ŵ ∳ ∾		9,653 -5.39%	
4		LooksRare ♦ ETH	\$1k -23.35%	6,583 1.48%	\$11.09M -35.6%
5	5	The Sandbox Marketplace ♦ ETH	\$14.04 -43.87%	3,764 -43.08%	\$90.25k -75.15%
6		Foundation ♦ ETH	\$530.69 12.69%	2,224 -13.87%	\$1.16M -7.56%
7	R	Rarible ♦ ETH • ७ ∓ezos	\$342.97 -23.49%	1,433 -10.83%	\$576.54k -21.82%

(a) NFT Marketplace Ranking by the Number of Traders

#		Market	Avg. price 🗘	Traders 🗘	Volume 🗘
1	٨	OpenSea ∧ ♦ ∞ ≡	\$192.23 -14.62%	357,691 -4.45%	\$315.77M -16.73%
2	Ø	X2Y2 ♦ ETH	\$248.41 -2.97%	57,602 20.45%	\$72.39M 5.85%
3		CryptoPunks ♦ ETH	\$147.69k 27.72%	169 49.56%	\$23.33M 92.2%
4		LooksRare ♦ ETH	\$1k -23.35%	6,583 1.48%	\$11.09M -35.6%
5	A0	Foundation ♦ ETH	\$530.69 12.69%	2,224 -13.87%	\$1.16M -7.56%
6	R	Rarible ♦ ETH • ts Tezos	\$342.97 -23.49%	1,433 -10.83%	\$576.54k -21.82%
7		Decentraland ♦ ETH • ♀ Polygon	\$5.88k -22.47%	107 -16.41%	\$518.07k -25.02%

(b) NFT Marketplace Ranking by Total Market Volume

Figure A1. NFT Marketplace Ranking from Dappradar.com

Parallel Trends

			••••••••••	
Variable	Matching	First-Sale Price	Matching	First-Sale Price
	Likelihood	(ln)	Likelihood	(ln)
Sample	Full NFT Sample	Sold NFT Sample	Gas-Minted NFT	Sold Gas-Minted
			Sample	NFT Sample
$Pre_t^{-6} \times Treated_{ij}$	0.006 (0.022)	-0.396 (0.260)	0.019 (0.022)	-0.411 (0.262)
$Pre_t^{-5} \times Treated_{ij}$	0.019 (0.022)	-0.041 (0.392)	0.025 (0.022)	-0.051 (0.396)
$Pre_t^{-4} \times Treated_{ij}$	-0.038 (0.025)	-0.272 (0.309)	-0.040 (0.024)	-0.277 (0.309)
$Pre_t^{-3} \times Treated_{ij}$	-0.014 (0.033)	-0.368 (0.364)	-0.013 (0.033)	-0.381 (0.365)
$Pre_t^{-2} \times Treated_{ij}$	-0.026 (0.026)	0.025 (0.318)	-0.032 (0.025)	0.021 (0.319)
$Pre_t^{-1} \times Treated_{ij}$		ba.	seline	
$Post_t^1 \times Treated_{ij}$	-0.062** (0.025)	-0.668* (0.393)	0.028 (0.023)	-0.338 (0.484)
$Post_t^2 \times Treated_{ij}$	-0.129*** (0.041)	-0.399 (0.353)	-0.062 (0.060)	0.684 (0.427)
$Post_t^3 \times Treated_{ij}$	-0.046 (0.029)	-0.666 (0.457)	0.051 (0.034)	-0.354 (0.943)
$Post_t^4 \times Treated_{ij}$	-0.056** (0.026)	-0.069 (0.399)	0.099*** (0.031)	0.928** (0.388)
$Post_t^5 \times Treated_{ij}$	-0.046** (0.022)	0.226 (0.414)	0.091** (0.042)	1.544*** (0.314)
$Post_t^6 \times Treated_{ij}$	-0.020 (0.021)	-0.474* (0.270)	0.121*** (0.023)	1.179*** (0.260)

Table 3. Parallel Trends: Relative Time model