Learning from DeFi: Would Automated Market Makers Improve Equity Trading?

- Katya Malinova and Andreas Park
- Warwick Business School Gillmore Centre Conference
- **DeFi & Digital Currencies**
- The Shard. London 27 & 28 October 2023

McMaster University

BRIGHTER WORLD

Preliminaries & Some Motivation

Basic Idea

- Blockchain: borderless general purpose value and resource management tool
- DeFi: financial applications that run on blockchains
- \Rightarrow brought new ideas and tools

Basic Idea

- Blockchain: borderless general purpose value and resource management tool
- DeFi: financial applications that run on blockchains
- \Rightarrow brought new ideas and tools
 - one new market institution: automated market makers

Liquidity Pool

Key Components

- Pooling of liquidity!
- Liquidity providers:
 - pro-rated
 - \circ trading fee income
 - \circ risk
 - use assets that they own to earn passive (fee) income
 - retain exposure to the asset
- Liquidity demanders:
 - predictable price
 - continuous trading
 - ample liquidity

Key Components

- Pooling of liquidity!
- Liquidity providers:
 - pro-rated
 - trading fee income risk

- Our question:
 - Can an economically viable AMM be designed for current equity markets?
 Would such an AMM improve current markets?
- use assets that they own to earn passive (fee) income
 - retain exposure to the asset
- Liquidity demanders:
 - predictable price
 - continuous trading
 - ample liquidity

Liquidity Supply and Demand in an Automated Market Maker

Liquidity providers: positional losses

- Deposit asset & cash when the asset price is *p*
- Withdraw at price $p' \neq p$
- → always positional loss relative to a "buy-and-hold"
- Why?
 - adverse selection losses
 - arbitrageurs trade to rebalance the pool

Liquidity providers: positional losses

- Deposit asset & cash when the asset price is *p*
- Withdraw at price $p' \neq p$
- → always positional loss relative to a "buy-and-hold"
- Why?
 - adverse selection losses
 - arbitrageurs trade to rebalance the pool

$$\int_{0}^{\infty} \left(\sqrt{R} - \frac{1}{2} \left(1 + R \right) + \frac{F}{2} |\sqrt{R} - 1| \right) \phi(R) dR + F \frac{V}{2a}$$

- *R* = asset return
- F = trading fee
- V = balanced volume
- a = size of the liquidity pool

Similar to Lehar and Parlour (2023), Barbon & Ranaldo (2022).

$$\int_{0}^{\infty} \left(\sqrt{R} - \frac{1}{2} \left(1 + R \right) + \frac{F}{2} |\sqrt{R} - 1| \right) \phi(R) dR + F \frac{V}{2a}$$

(incremental) adverse selection loss when the return is *R*

- *R* = asset return
- F = trading fee
- V = balanced volume
- a = size of the liquidity pool

Similar to Lehar and Parlour (2023), Barbon & Ranaldo (2022).

for reference:

- If the asset price drops by 10% the *incremental* loss for liquidity providers is 13 basis points on their deposit
 - \rightarrow total loss=-10.13%
- If the asset price rises by 10%, the liquidity provider gains 12 basis points less on the deposit
 - \rightarrow total gain = 9.88%

$$\int_{0}^{\infty} \left(\sqrt{R} - \frac{1}{2} \left(1 + R \right) + \frac{F}{2} \left| \sqrt{R} - 1 \right| \right) \phi(R) dR + F \frac{V}{2a}$$
(incremental) adverse selection loss when the return is *R*

- *R* = asset return
- F = trading fee
- V = balanced volume
- a = size of the liquidity pool

Similar to Lehar and Parlour (2023), Barbon & Ranaldo (2022).

$$\int_{0}^{\infty} \left(\sqrt{R} - \frac{1}{2} \left(1 + R \right) + \frac{F}{2} \left| \sqrt{R} - 1 \right| \right) \phi(R) dR + F \frac{V}{2a}$$
(incremental) adverse
selection loss when the
return is R
(incremental) adverse

- *R* = asset return
- F = trading fee
- V = balanced volume
- a = size of the liquidity pool

Similar to Lehar and Parlour (2023), Barbon & Ranaldo (2022).

$$\int_{0}^{\infty} \left(\sqrt{R} - \frac{1}{2} \left(1 + R \right) + \frac{F}{2} \left| \sqrt{R} - 1 \right| \right) \phi(R) dR + F \frac{V}{2a}$$

(incremental) adverse
selection loss when the fees earned
on informed on balanced flow

- *R* = asset return
- F = trading fee
- V = balanced volume
- a = size of the liquidity pool

return is R

Similar to Lehar and Parlour (2023), Barbon & Ranaldo (2022). For fixed balanced volume V & fee F:

- Larger pool size \rightarrow smaller shares of the fees
- \rightarrow LP expected return \searrow in pool size
- Competitive liquidty provision:
 - \rightarrow find the upper-bound on pool size above which LPs lose money
 - we characterize this by α

 fraction of the asset's market cap to be deposited to the pool

Liquidity Demander's Decision & (optimal) AMM Fees

• Better off with AMM relative to traditional market if $AMM price impact + AMM fee \leq bid-ask spread.$

Liquidity Demander's Decision & (optimal) AMM Fees

- Better off with AMM relative to traditional market if $AMM price impact + AMM fee \leq bid-ask spread.$
- Two opposing forces when fee $F \nearrow$

more liquidity provision

 → lower price impact

 more fees to pay

Similar to Lehar&Parlour (2023) and Hasbrouck, Riviera, Saleh (2023)

Liquidity Demander's Decision & (optimal) AMM Fees

- Better off with AMM relative to traditional market if $AMM price impact + AMM fee \leq bid-ask spread.$
 - Two opposing forces when fee $F \nearrow$

1. more liquidity provision \rightarrow lower price impact 2. more fees to pay Similar to Lehar&Parlour (2023) and Hasbrouck, Riviera, Saleh (2023)

Result:

competitive liq provision \rightarrow there exists an optimal (min trading costs) fee > 0

- \rightarrow derive closed form solution for competitive liquidity provision
- depends on return distribution, balanced volume, quantity demanded

- Have:
 - equilibrium choices for competitive liquidity provision
 - fee that minimizes liquidity demander AMM costs (> 0)
- Next:
 - Calibrate to stock markets
 - AMM Feasible?
 - AMM costs at the optimal fee < bid-ask spread?

How we think of the Implementation of an AMM for our Empirical Analysis

Approach: daily AMM deposits

1. AMMs close overnight.

2. Market: opening auction $ightarrow p_0$

3. Determine: optimal fee; submit liquidity a,cat ratio $p_0=c/a$ until break even $lpha=\overline{lpha}$

4. Liquidity locked for day

5. At EOD release deposits and fees

6. Back to 1.

Background on Data

All displayed data $\mathsf{CRSP}\cap\mathsf{WRDS}$

- CRSP for shares outstanding
- WRDS-computed statistics for
 - quoted spreads (results similar for effective)
 - volume
 - open-to-close returns
 - average trade sizes, VWAP
- Time horizon: 2014 March 2022
- Exclude "tick pilot" period (Oct 2016-Oct 2018)
- All common stocks (not ETFs) (~7550).
- Explicitly not cutting by price or size
- All "boundless" numbers are winsorized at 99%.

Background on Data

Special Consideration 1: What volume?

- some volume may be intermediated
- with AMMs: no need for intermediation
- ullet \rightarrow intermediated volume could disappear
- \rightarrow use volume/2
- Some caveats, e.g.
 - arbitrageur volumes
 - Iarger volume if AMM has lower trading costs

Special Consideration 2: What's q (the representative order size)?

- use average per day
- take long-run average + 2 std of daily averages
- (also avg $\times 2, \times 4$, depth)

Special Consideration 3: Where to get returns and volume?

- Approach 1: "ad hoc"
 - one-day-back" look
 - take yesterday's return and volume when deciding on liquidity provision in AMM
- Approach 2: estimate historical return distribution

AMMs based on historical returns

Sidebar: Capital Requirement

- Our approach: measure liquidity provision in % of market cap
- Share-based liquidity provision is not a problem: the shares are just sitting at brokerages.
- But: AMM requires an off-setting cash amount: $c = a \cdot p(0)$.
- Cash is not free:
 - at 6% annual rate, must pay 2bps per day.
 - Would need to add to fees
- But: do we need "all that cash"?
- No.

- (hand-waving argument)
- 2nd gen AMMs have liquidity provision "bands": specify price range for which one supplies liquidity
- Here: specify range for $R \in (\underline{R}, \overline{R})$
 - Outside range: don't trade.
 - Inside range: "full" liquidity with constant product formula.
- Implication: only need cash and shares to satisfy in-range liquidity demand.

- (hand-waving argument)
- 2nd gen AMMs have liquidity provision "bands": specify price range for which one supplies liquidity
- Here: specify range for $R \in (\underline{R}, \overline{R})$
 - Outside range: don't trade.
 - Inside range: "full" liquidity with constant product formula.
- Implication: only need cash and shares to satisfy in-range liquidity demand.

 ⇒ Need about 5% of the value of the shares deposited -- not 100%
 -- to cover up to a 10% return decline • Our question:

 Can an economically viable AMM be designed for current equity markets?
 Would such an AMM improve current markets?

• Our question:

 Can an economically viable AMM be designed for current equity markets?
 Would such an AMM improve current markets?

Answers:
1. Yes.
2. Massively.

Summary

- Source of Savings:
 - Liquidity providers ≠ Citadel!
 - \rightarrow no (overnight) inventory costs
 - \rightarrow use idle capital
 - \rightarrow + better risk sharing
 - Answers:
 1. Yes.
 2. Massively.

Summary
AMMs do not require a blockchain - just a concept
could be run in the existing world (though there are institutional and regulatory barriers)

- Source of Savings:
 - Liquidity providers ≠ Citadel!
 - \rightarrow no (overnight) inventory costs
 - \rightarrow use idle capital
 - \rightarrow + better risk sharing

Answers:
1. Yes.
2. Massively.

@katyamalinova

malinovk@mcmaster.ca

slides.com/kmalinova

https://sites.google.com/site/katyamalinova/

• For return *R*, the following number of shares change hands:

$$q=a\cdot(1-\sqrt{R^{-1}}).$$

• Fraction of share deposit used

$$\frac{q}{a} = 1 - \sqrt{R^{-1}}.$$

• Fraction of cash used

$$rac{\Delta c("R")}{c} = rac{1-\sqrt{R^{-1}}}{\sqrt{R^{-1}}}.$$

- Example for R = .9 (max allowed price drop = 10%) $\frac{\Delta c("R")}{c} = -5\%.$
- \Rightarrow "real" cash requirements \neq deposits

 ⇒ Need about 5% of the value of the shares deposited -- not 100%
 -- to cover up to a 10% return decline

