Private vs Public Currency by Biais, Rochet, and Villeneuve

Discussion by Adrien d'Avernas (SSE)

What is the Value of Crypto?

- Crytpocurrencies are here to stay
 - \rightarrow \$1.3 Trillion market cap, \$1.5 Trillion traded per day
 - \rightarrow 16% of Americans have used, invested in, or traded crypto
- First paper (that I know of) that takes seriously the ethos of crypto
 → algorithmic currency immune from poor/corrupt monetary policy
- Plenty past and current examples of bad monetary policy

Early American Currency

- In 1775, Continental Congress issued paper money known as Continentals
- Continentals depreciated badly during the war, giving rise to the famous phrase "not worth a continental"
- Monetary policy was not coordinated between Congress and the states
- Congress and the states lacked the will or the means to retire the bills from circulation through taxation
- By May 1781, Continentals had become worthless
- Franklin noted that the depreciation had, in effect, acted as a tax to pay for the war

Findings

- Private money competes with public money
- Constraints gov't misbehavior and increases welfare
- ▷ This discussion: the "balance sheet" view

Benchmark

qk_t	e_t

$$egin{aligned} V(e_t) &= \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} \log(c_s) ds
ight] \ dk_t &= (\mu - \iota_t) k_t dt + \sigma k_t dB_t \ de_t &= ((\mu - \iota_t) qk_t + \Phi(\iota_t) k_t - c_t) dt + \sigma qk_t dB_t \end{aligned}$$

Benchmark

$$egin{aligned} V(e_t) &= \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} \log(c_s) ds
ight] \ dk_t &= (\mu - \iota_t) dt + \sigma k_t dB_t \ de_t &= ((\mu - \iota_t) q_t k_t + \iota_t k_t - c_t) dt + \sigma q_t k_t dB_t \ q_t &= 1 \ c_t &=
ho k_t = \iota_t k_t & \mathbb{E}_t [dk_t/k_t] = \mu -
ho \end{aligned}$$

• Investment function $\Phi(\iota)=\iota$ is such that $q_t=1$

Benchmark

|--|

$$egin{aligned} V(e_t) &= \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} \log(c_s) ds
ight] \ de_t &= (\mu k_t - c_t) dt + \sigma k_t dB_t \ k_t &= \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} rac{u'(c_{t+s})}{u'(c_t)} c_{t+s} ds
ight] = e_t \end{aligned}$$

• $q_t k_t = k_t$ is still equal to the discounted sum of future real dividends c_t

Risk-free Capital

• $k_t + b_t$ is still the discounted sum of future real dividends c_t

Risk-free Capital

b_t		$V(e_t) = \mathbb{E}_t \left[\int_t^\infty e^{- ho(s-t)} \log(c_s) ds ight]$
k_t	e_t	$egin{aligned} de_t &= (\mu k_t + r b_t - c_t) dt + \sigma k_t dB_t \ & rac{\mu - r}{\sigma} &= \sigma rac{k_t}{e_t} \ & r \geq \mu - \sigma^2: \ b_t \geq 0 \end{aligned}$

 $\bullet\,$ Real consumption good is allocated to risk-free capital if $r\geq \mu-\sigma^2$

Storage Technology

• Risk-free asset makes market complete and increases welfare \rightarrow even if there is no return on investment

What is Money?

$rac{m}{p_t}$	
k_t	e_t

$$egin{aligned} V(e_t) &= \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} \log(c_s) ds
ight] \ de_t &= \left(\mu k_t - \pi rac{m}{p_t} - c_t
ight) dt + \sigma k_t dB_t \ rac{\mu+\pi}{\sigma} &= \sigma rac{k_t}{e_t} \end{aligned}$$

• Money is not a storage technology!

What is Money?

$rac{m}{p_t}$		$V(e_t) = \mathbb{E}_t \left[\int_t^\infty e^{- ho(s-t)} \log(c_s) ds ight]$
k_t	e_t	$de_t = igg(\mu k_t - \pi rac{m}{p_t} - c_tigg) dt + \sigma k_t dB_t onumber \ rac{\mu + \pi}{\sigma} = \sigma rac{k_t}{e_t} onumber \ k_t = \mathbb{E}_t \left[\int_t^\infty e^{- ho(s-t)} rac{u'(c_{t+s})}{u'(c_t)} c_{t+s} ds ight] = e_t$

- Money is not a storage technology!
- Without OLG, another agent, or frictions, money cannot have value
 → Tirole (1982), Santos and Woodford (1997), Kamihigashi (2004)
 → Brunnermeier and Sannikov (2016): I-theory of Money

Government and Taxes

$$egin{aligned} &\max_{ au} \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} \left(lpha \log(c_s) + (1-lpha) \log(au e_s)
ight) ds
ight] \ &lpha = 1: \quad au^{opt} = au^\star = 0 \qquad lpha < 1: \quad 0 < au^{opt} < au^\star < 1 \end{aligned}$$

- Government uses taxes to extract ressources and consume \rightarrow redistributive technology
 - \rightarrow gov't does not steal everything \triangleright gov't cannot own capital

Money as a Liability

- Money can exist as a liability of the government
 - \rightarrow need that gov't buys back or pays interest in equilibrium path
 - ightarrow closer to central bank reserves than outside money
- Deflation can implement this equilibrium
 - \rightarrow gov't repurchases money with revenues from taxes
 - \rightarrow but in that case money could be netted out, no added value

Liquidity Premium

$$egin{aligned} &rac{m_t}{p_t} = \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} rac{u'(c_{t+s})}{u'(c_t)} oldsymbol{\zeta}_{t+s} ds
ight] \ & \ell_t = \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} rac{u'(c_{t+s})}{u'(c_t)} \pi rac{m_{t+s}}{p_{t+s}} ds
ight] \end{aligned}$$

- The government can impose that you need money to pay taxes \rightarrow cash-in-advance constraint not trivial in continuous time
- ▷ Inflation is now possible

Liquidity Premium

▷ Interest rate spread must contain a (liquidity) premium!

▷ The real value of money is pinned down in equilibrium → if not scarce enough, ζ_t is low and real value decreases → gov't can alter trade-off with inflation

Three Other (Quick) Comments

• Why would the gov't destroy immediately value of money?

- \rightarrow unclear that $p_t = \infty$ is optimal when $\alpha_t = 0$ (gov't can't store c_t)
- \rightarrow excessive inflation useful with nominal liabilities
- \rightarrow maybe $\alpha_t = 0$ implies loss of commitment
- Observability/feasibility: only capital and public money can be taxed
 → but if private money can pay taxes, why it cannot be taxed?
 → if private money cannot pay taxes, where its value comes from?
- Cryptocurrencies are used to dodge capital control and taxation
 - \rightarrow Graf von Luckner, Reinhart, and Rogoff (2023)
 - \rightarrow transfer real consumption to offshore storage technology

Conclusion

- ▷ All my comments can (easily) be fixed
- ▷ Elegant framework, key question
- Paper of first-order importance