Discussion of "AMM Designs beyond Constant Functions"

by A Cartea, F Drissi, L Sanchez-Betancourt, D Siska and L Szpruch

Wenqian Huang (BIS) WBS Gillmore DeFi & Digital Currencies Conference, 27 Oct 2023

Disclaimer: The views expressed here are all mine and not necessarily of the Bank for International Settlements.

Summary

► An interesting paper on AMM trading mechanisms

- \blacktriangleright Key result: LP chooses impact functions \rightarrow marginal rate/price discovery
- Arithmetic liquidity pool (ALP) vs geometric liquidity pool (GLP)
 - ▶ ALP: Marginal rate and LP inventory are additive
 - ▶ GLP: Marginal rate and LP inventory are multiplicative
 - ▶ No round-trip arbitrages (front-running/sandwich attacks)
- Second result: LP's optimal strategy in ALP and GLP
- Last-but-not-least result: constant functions (CFM) are a special case of ALP in which LP's strategy is sub-optimal

► Key concepts:

- $\blacktriangleright \text{ Marginal rate } Z \implies \text{mid-quotes } m$
- ▶ Shifts around marginal rate $Z \pm \delta \Longrightarrow$ bid and ask prices p (ie $\delta \Longrightarrow$ half spread s)

- ► Key concepts:
 - $\blacktriangleright \text{ Marginal rate } Z \implies \text{mid-quotes } m$
 - Shifts around marginal rate $Z \pm \delta \Longrightarrow$ bid and ask prices p (ie $\delta \Longrightarrow$ half spread s)
 - $\blacktriangleright \text{ Trade quantity } \zeta \qquad \Longrightarrow \qquad \text{liquidity demand } d$
 - ▶ Number of orders filled $N \implies$ liquidity supply q

- ► Key concepts:
 - $\blacktriangleright \text{ Marginal rate } Z \implies \text{mid-quotes } m$
 - ▶ Shifts around marginal rate $Z \pm \delta \Longrightarrow$ bid and ask prices p (ie $\delta \Longrightarrow$ half spread s)
 - $\blacktriangleright \text{ Trade quantity } \zeta \qquad \Longrightarrow \qquad \text{liquidity demand } d$
 - ▶ Number of orders filled $N \implies$ liquidity supply q
 - ▶ Impact function $\eta(\cdot)$ \implies dealer supply function p(q)

- ► Key concepts:
 - $\blacktriangleright \text{ Marginal rate } Z \implies \text{mid-quotes } m$
 - ▶ Shifts around marginal rate $Z \pm \delta \Longrightarrow$ bid and ask prices p (ie $\delta \Longrightarrow$ half spread s)
 - $\blacktriangleright \text{ Trade quantity } \zeta \qquad \Longrightarrow \qquad \text{liquidity demand } d$
 - ▶ Number of orders filled $N \implies$ liquidity supply q
 - ▶ Impact function $\eta(\cdot)$ \implies dealer supply function p(q)
- ▶ Consider a two-period model: Z_0, x_0, y_0 , LT buys ζ unit of Y
 - ► Cartea et al: $dZ_t (= Z_1 Z_0) = \eta(\cdot), \quad dy_t = -\zeta, \quad dx_t = \zeta(Z_0 + \delta)$

- ► Key concepts:
 - $\blacktriangleright \text{ Marginal rate } Z \implies \text{mid-quotes } m$
 - Shifts around marginal rate $Z \pm \delta \Longrightarrow$ bid and ask prices p (ie $\delta \Longrightarrow$ half spread s)
 - $\blacktriangleright \text{ Trade quantity } \zeta \qquad \Longrightarrow \qquad \text{liquidity demand } d$
 - $\blacktriangleright \text{ Number of orders filled } N \Longrightarrow \qquad \text{liquidity supply } q$
 - ▶ Impact function $\eta(\cdot)$ \implies dealer supply function p(q)
- ▶ Consider a two-period model: Z_0, x_0, y_0 , LT buys ζ unit of Y
 - ► Cartea et al: $dZ_t (= Z_1 Z_0) = \eta(\cdot), \quad dy_t = -\zeta, \quad dx_t = \zeta(Z_0 + \delta)$
 - Translating to MM: $m_1 = m_0 + \eta(\cdot)$
 - ▶ Foucault, Pagano and Roell (2013) Chapter 3.5:

$$m_1 = m_0 + \underbrace{(\mu_1 - \mu_0)}_{\Delta \text{Expected value}} + \underbrace{
ho \sigma q}_{\text{Inv cost}}$$

CFMs as a special case

Cartea et al: level function $x = \varphi(y)$ and marginal rate $Z = -\varphi'(y)$

$$\blacktriangleright \Rightarrow \eta = \varphi'(y_0) - \varphi'(y_1) \text{ and } \delta = \varphi'(y_0) - \frac{\varphi(y_1) - \varphi(y_0)}{y_1 - y_0}$$

CFMs as a special case

Cartea et al: level function $x = \varphi(y)$ and marginal rate $Z = -\varphi'(y)$

$$\blacktriangleright \Rightarrow \eta = \varphi'(y_0) - \varphi'(y_1) \text{ and } \delta = \varphi'(y_0) - \frac{\varphi(y_1) - \varphi(y_0)}{y_1 - y_0}$$

► Translating to MM:
$$m_1 = m_0 + \underbrace{(\varphi'(y_0) - \varphi'(y_1))}_{\text{Change of } \frac{dx}{dy}}$$

• Compared to Foucault et al (2013): $m_1 = m_0 + (\mu_1 - \mu_0) + \rho \sigma q$

 ΔE xpected value Inv cost

CFM is not optimal!

▶ Optimal liquidity provision with price-sensitive LT

- LT arrival intensity λ decreases in the spread δ .
- ▶ LP maximizes expected wealth subject to inventory risk
- Optimal spread

 $\delta^* = \mathsf{Round}\mathsf{-trip}$ trade $\mathsf{profit} + \mathsf{adj}$ for $\mathsf{inv}\ \mathsf{cost} + \mathsf{impact}\ \mathsf{component}$

price impact ?

- What is η^* in $m_1 = m_0 + \eta$?
- ▶ What is the size of the round-trip trade?

Comment 2: Informed trading

- ▶ The impact function η aims to allow LP adjusting mid-quote, enhancing price discovery
- But η is still a function of y only (?)
- \blacktriangleright The no-round-trip-arbitrage is achieved by widening the spread δ ...
- ▶ ... which is possible because LT arrival intensity is deterministic?
- ▶ In addition, what if LT are informed? How adverse selection is addressed?

- ▶ Exposition: the current draft is pretty cryptic
 - Consider lightening up notation
- ▶ I find the result that CFM is not optimal very interesting and relevant
 - ► Consider more numerical exercises to highlight the inefficiency

Concluding remarks

- ▶ This paper provides a rigorous analysis on AMM trading mechanism
- ▶ It is more of a Math- or CS-oriented paper, with an application in Economics
- Overall the paper provides a lot of interesting findings
- Entrepreneurs interested in building DeFi apps should definitely read this paper
- Economists can also learn a lot from the paper