# The Macroeconomics of Central Bank Issued Digital Currencies

John Barrdear, Bank of England

Michael Kumhof, Bank of England

\_\_\_\_\_

# Symposium on CBDC at Warwick University May 7, 2021

# Disclaimer

The views expressed herein are those of the authors, and should not be attributed to the Bank of England or the Reserve Bank of Australia.

#### 1 Introduction

- The emergence of the distributed ledger technology (DLT) and of Bitcoin was a watershed moment in the history of 'e-monies'.
- It may, for the first time, be <u>technically feasible</u> for central banks to offer universal access to their balance sheet.
  - Existing centralized RTGS systems: Not robust for universal access.
  - New decentralized DLT systems: Can potentially solve this problem.
- Question: Is universal access economically desirable?

# 2 What is a Digital Currency?

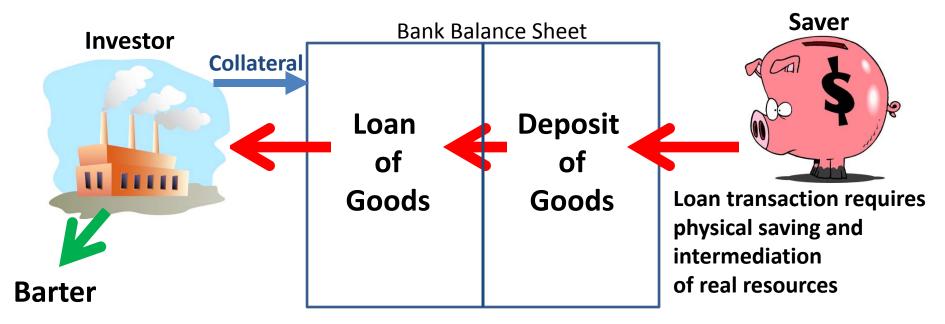
- Traditional Electronic Payment Systems **Tiered** Ledgers:
  - Payments routed through and must be verified by specific third parties.
  - Third parties arranged in a hierarchical network.
- Digital Currencies **Distributed** Ledgers:
  - Payments are peer-to-peer and can be verified by multiple verifiers.
  - Verifiers arranged in a peer-to-peer network.

# 3 What is a Central-Bank Digital Currency (CBDC)?

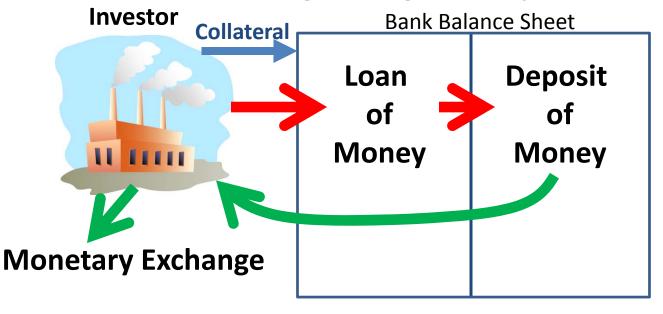
- Access to the central bank's balance sheet.
- Availability: 24/7.
- Universal: Banks, firms and households.
- Electronic: For resiliency reasons, probably using DLT.
- National-currency denominated: 1:1 exchange rate.
- Issued only through spending or against eligible assets: Government bonds.
- Interest-bearing:
  - To equate demand and supply at 1:1 exchange rate.
  - Second tool of countercyclical monetary policy.
- Coexisting with the present banking system.

#### 4 The Model

#### 4.1 Overview


- Based on Benes and Kumhof (2012) and Jakab and Kumhof (2015, 2018).
- The non-monetary model elements are standard.
- Households:
  - Deposits: Created by banks.
  - CBDC: Created by central bank.
  - Deposits and CBDC jointly serve as medium of exchange.
- Banks: Create new deposits by making new loans.
- Government:
  - Fiscal policy.
  - Traditional monetary policy.
  - CBDC monetary policy.

#### 4.2 Endogenous Deposits and Exogenous CBDC


- Monetary models of the 1980s/1990s:
  - 1. Representative household with a demand for money.
  - 2. Government money (3% of all money) is the **only** money.
- The main problem is 2, not 1. Therefore, in our model:
  - We keep the representative household assumption.
  - Bank deposits (97% of all money) enter into TA cost technology.
  - Government money (3% of all money) is omitted entirely.
- CBDC puts exogenous government money back into the model. But:
  - 1. CBDC is universally accessible (unlike reserves).
  - 2. CBDC is interest-bearing (unlike cash).

# Intermediation of Loanable Funds (ILF) versus Financing Through Money Creation (FMC)

#### **Intermediation of Loanable Funds Model**



#### **Financing Through Money Creation Model**



Loan transaction requires only digital ledger entries and no intermediation

We will insert CBDC into this model, not a loanable funds model. This matters a lot!

#### 4.3 Banks

- Loans: Bernanke, Gertler and Gilchrist (1999)
  - Costly state verification.
  - Difference: Pre-committed lending rates.
- Deposits: Schmitt-Grohé and Uribe (2004)
  - Transactions cost technology.
  - Difference: "Money" = bank deposits + CBDC.
  - Monetary Distortion = Liquidity Taxes:

$$\tau_t^{\ell iq} = 1 + s_t + s_t' v_t$$

- Equivalent to consumption taxes and capital income taxes.
- Banks' effect on the real economy:
  - \* Through these taxes.
  - \* Not through intermediation of "loanable funds".

## 4.4 The Liquidity-Generating Function (LGF)

- Deposits: Schmitt-Grohé and Uribe (2004)
  - Transactions cost technology: Money reduces transactions costs.
  - Difference: "Money" = bank deposits + CBDC, not cash + reserves.
- Functional form:

$$f_t = \left( (1 - \gamma)^{\frac{1}{\epsilon}} \left( Deposits_t \right)^{\frac{\epsilon - 1}{\epsilon}} + \gamma^{\frac{1}{\epsilon}} \left( CBDC_t \right)^{\frac{\epsilon - 1}{\epsilon}} \right)^{\frac{\epsilon}{\epsilon - 1}}$$

- CBDC enters like government debt.
- But it is much cheaper.

## 4.5 Fiscal Policy

4.5.1 Government Budget Constraint

$$b_t^g + m_t^g = r_t b_{t-1}^g + r_{t-1} + r_{t-1} + g_t + tr f_t - \tau_t$$

#### 4.5.2 Fiscal Policy Rule

Overall Deficit Ratio:

$$gdx_{t}^{rat} = 100 \frac{g\check{d}x_{t}}{g\check{d}p_{t}} = 100 \frac{B_{t}^{g} + M_{t}^{g} - B_{t-1}^{g} - M_{t-1}^{g}}{GDP_{t}}$$

- Relevant stock change: Government Debt + CBDC.
- Insulates budget from potentially highly volatile CBDC seigniorage flows.
- Rule for Deficit Ratio:

$$gdx_t^{rat} = gdx_{ss}^{rat} - 100d^{gdp} \ln \left( rac{g \check{d} p_t}{g d p_{ss}} 
ight)$$

### 4.6 Monetary Policy - The Policy Rate

$$i_t = (i_{t-1})^{i_i} \left(i_{steady\ state}\right)^{(1-i_i)} \left(\frac{\pi_{4,t+3}^p}{\left(\pi_{tgt}^p\right)^4}\right)^{\frac{(1-i_i)i_{\pi}p}{4}}$$

- This is a standard forward-looking Taylor rule with interest rate smoothing.
- I show this to make sure that central bankers do not get nervous:

This is not a completely new world.

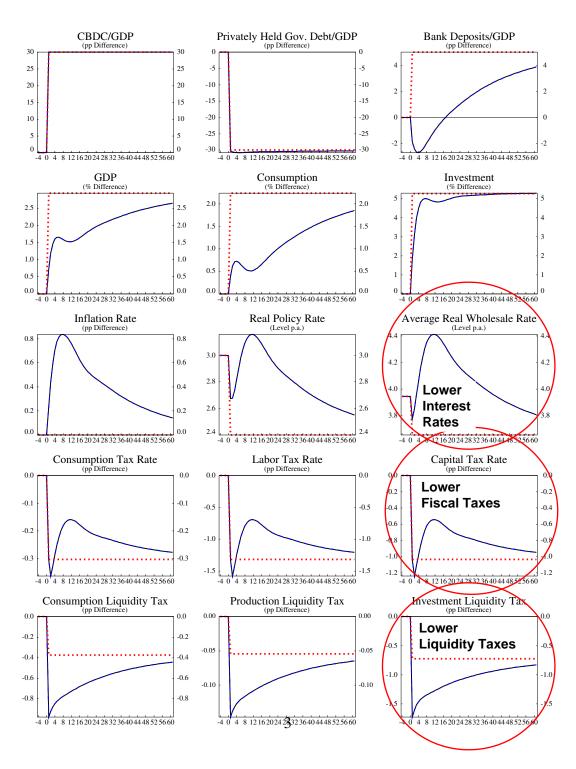
#### 4.7 Monetary Policy - CBDC

#### 4.7.1 Quantity Rule for CBDC

$$m_t^{rat} = m_{tgt}^{rat} S_t^{ms} - 100 m_{\pi^p} E_t \ln \left( rac{\pi_{4,t+3}^p}{\left(\pi_{tgt}^p
ight)^4} 
ight)$$

- Fix the quantity of CBDC, let CBDC interest rate clear the market.
- $m_{\pi^p} > 0$ : Removes CBDC from circulation in a boom.

#### 4.7.2 Price Rule for CBDC

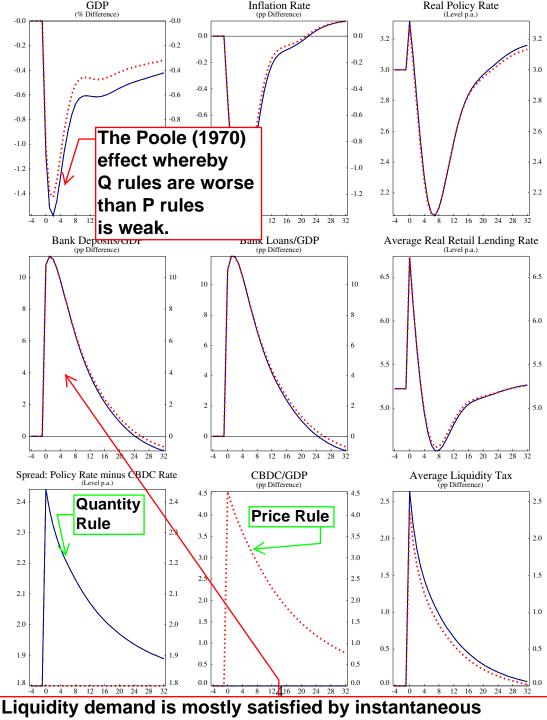

$$i_{m,t} = rac{i_t}{\mathfrak{sp}} \left(rac{\pi^p_{ extbf{4},t+3}}{\left(\pi^p_{tgt}
ight)^{ extbf{4}}}
ight)^{-i^m_{\pi^p}}$$

- Fix interest rate on CBDC, let the quantity of CBDC clear the market.
- $i_{\pi p}^{m} > 0$ : Makes CBDC less attractive in a boom.

# 5 Steady State Effects of the Transition to CBDC

- Assumptions:
  - Issue CBDC against government debt.
  - Magnitude: 30% of GDP.
- Results:

|                                                  | Steady State         |
|--------------------------------------------------|----------------------|
|                                                  | <b>Output Effect</b> |
| 1. Lower Real Policy Rates                       | +1.8%                |
| 2. Higher Deposit Rates Relative to Policy Rates | -0.9%                |
| 3. Reductions in Fiscal Tax Rates                | +1.1%                |
| 4. Reductions in Liquidity Tax Rates             | +0.9%                |
| Total                                            | +2.9%                |
|                                                  |                      |



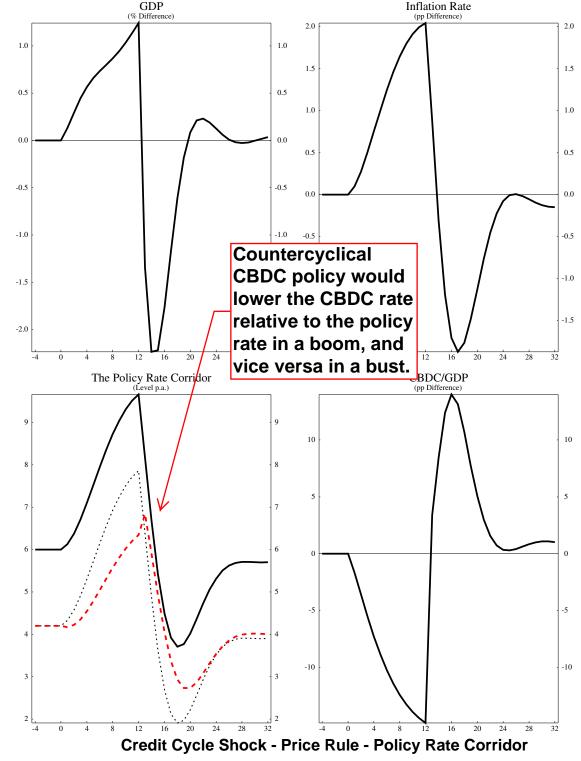

**Transition to Steady State with CBDC** 

solid line = actual transition; dotted line = change in long-run steady state

# **6** Quantity Rules or Price Rules for CBDC

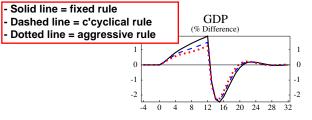
A Poole (1970) contractionary money demand shock.




creation of bank deposits through loans. But CBDC can help.

Shock to Demand for Total Liquidity

solid line = quantity rule; dotted line = price rule


# 7 Countercyclical CBDC Rules

A Christiano-Motto-Rostagno (2014) boom-bust credit cycle.



Bottom Left: Nominal Policy and CBDC Rates

Solid Line = Policy Rate, Dotted Line = Policy Rate minus Fixed Spread, Dashed Line = CBDC Rate



# 8 Financial Stability: CBDC Bank Runs?

- Bank-deposits-to-CBDC run difficult **in aggregate**. 2 reasons:
  - 1. Aggregate increases in CBDC demand do not affect bank deposits:
    - Central bank sells CBDC only against government debt.
    - Not against bank deposits: No unconditional LoLR guarantee.
    - CBDC purchases among non-banks are irrelevant for deposits.
  - 2. CBDC policy rules can further discourage volatile CBDC demand.
    - Quantity rule:
      - \* CBDC supply fixed, CBDC interest rate clears the market.
      - \* Lower political bound on CBDC rate? Switch to price rule.
    - Price rule:
      - \* CBDC supply endogenous, CBDC quantity clears the market.
      - \* Running out of government bonds? Switch to other securities.

## 9 Summary

- 1. Steady state efficiency:
  - Lower interest rates, higher seigniorage, more and cheaper liquidity.
  - Increase in steady-state GDP could be as much as 3%.
- 2. Business cycle stability:
  - Second policy instrument.
  - Improved ability to stabilize inflation and the business cycle.
- 3. Financial stability:
  - CBDC should reduce many financial stability risks.
  - But if it is not designed well it may introduce others.
  - The "run risk" can be mostly eliminated by sound system design.
- Critical issue: Design of a smooth transition.

# 10 Bank of England CBDC Agenda

- Main points:
  - 1. Decision on CBDC: Not yet, we are in exploratory mode.
  - 2. Use case: Focused on retail rather than wholesale use case.
  - 3. Platform model: Authorized private technological intermediaries.
  - 4. Cash: CBDC would co-exist with cash rather than replacing it.
  - 5. Valuation: CBDC would be in  $\mathcal{L}$  rather than volatile "crypto".
  - 6. Verification: CBDC would replace "crypto" mining by authorization.
  - 7. **Technology:** No DLT presumption centralised technology could work.
  - 8. Stakeholder engagement: BoE-HMT Taskforce, stakeholder forums.

- Open questions (other than the ones already mentioned):
  - Should there be limits on CBDC holdings or transactions?
  - How best to manage offline payments / financial inclusion / privacy?
  - Should CBDC be account-based or token-based?

# THANK YOU